1
|
Wu Z, Liu Y, Huang R, Huang W. Mechanistic investigation of the electricity and gallic acid synergistically accelerated Fe(III)/Fe(II) cycle for the degradation of carbamazepine. CHEMOSPHERE 2024; 349:140915. [PMID: 38070611 DOI: 10.1016/j.chemosphere.2023.140915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
This study investigated the application of a natural plant polyphenol, gallic acid (GA) to form complex with iron to promote the redox cycle of Fe(III)/Fe(II) under neutral initial pH conditions in the electrochemical (EC) system for activation of peroxymonosulfate (PMS) to efficiently degrade carbamazepine (CBZ). Results demonstrated that the synergistic effects of GA and EC significantly improved the removal efficiency, and the EC/GA/Fe(III)/PMS system effectively removed 100% of CBZ within a wide initial pH range of 3.0-7.0. The optimum stoichiometric ratio of GA to Fe(III) was found as 2:1. Investigations including quenching experiment, chemical probe analysis, and electron paramagnetic resonance (EPR) analysis were conducted to identify the primary reaction radicals as •OH, SO4•-, along with the 1O2 and Fe(IV). In the EC/GA/Fe(III)/PMS system, the synergistic effect of GA and electrochemistry led to a remarkable enhancement in the generation of •OH. Furthermore, the complexation reduction mechanism of GA and Fe(III) was proposed based on experimental and instrumental analyses, which demonstrated that the semi-quinone products of GA were the main substances promoting the Fe(III)/Fe(II) cycle. Mass spectrometry results showed that CBZ generated 27 byproducts during degradation, with formic acid as the main product of GA. The degradation efficiency of the EC/GA/Fe(III)/PMS system remained stable and excellent, exhibiting remarkable performance in the presence of various inorganic anions, including Cl- and NO3-, as well as naturally occurring organic compounds such as fulvic acid (FA). Overall results indicated that the EC/GA/Fe(III)/PMS system can be applied to effectively treat practical wastewater treatment without requirement of pH adjustment.
Collapse
Affiliation(s)
- Zijing Wu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430078, Hubei, China
| | - Yang Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430078, Hubei, China
| | - Rongfu Huang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Weixiong Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430078, Hubei, China.
| |
Collapse
|
2
|
Zhong D, Wu Y, Lv L, Yang X, Lv Y, Jiang Y. Magnetic confinement-enabled membrane reactor for enhanced removal of wide-spectrum contaminants in water: Proof of concept, synergistic decontamination mechanisms, and sustained treatment performance. WATER RESEARCH 2023; 231:119603. [PMID: 36680822 DOI: 10.1016/j.watres.2023.119603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Membrane chemical reactors (MCRs) have demonstrated a great potential for simultaneous removal of wide-spectrum pollutants in advanced water treatment. However, current catalyst (re)loading and catalytic reactivity limitations obstruct their practical applications. Herein, as a proof-of-concept, we report a hollow fiber membrane chemical reactor (HF-MCR) with high and sustainable catalytic reactivity, enabled by novel magnetic confinement engineering of the catalysts. Namely, the zerovalent iron (ZVI) nanocatalysts were spatially dispersed and confined to nearly parallel magnetic induction lines, forming forest-like microwire arrays in the membrane lumen. Such arrays exhibited ultrahigh hydrodynamic stability. The HF-MCR integrated sequential membrane separation and Fenton-like catalysis, thus being capable of high and synergistic wide-spectrum decontamination. The membrane separation process completely removed large nanoplastics (NPs) via size exclusion, and thus the subsequent Fenton-like catalysis process enhanced removal efficiency of otherwise permeated bisphenol A (BPA) and phosphate (P) by in situ generated reactive oxygen species (primarily 1O2) and iron (oxyhydr)oxides, respectively. Furthermore, highly dispersed ZVI arrays and their continuous surface depassivation driven by magnetic gradient and hydrodynamic forces conferred abundant accessible catalytic sites (i.e., Fe0 and FeII) to stimulate Fenton-like catalysis. The consequent enhancement of BPA and P removal kinetics was 3-765 and 49-492 folds those in conventional (flow-through or batch) systems, respectively. Periodic ZVI reloading ensured sustained decontamination performance of the HF-MCR. This is the first demonstration of the magnetic confinement engineering that enables efficient and unlimited catalyst (re)loading and sustainable catalytic reactivity in the MCR for water treatment, which is beyond the reach of current approaches.
Collapse
Affiliation(s)
- Delai Zhong
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuchen Wu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Leiyi Lv
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xue Yang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yiliang Lv
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
3
|
Gallo A, Sprocati R, Rolle M, Sethi R. Electrokinetic delivery of permanganate in clay inclusions for targeted contaminant degradation. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 251:104102. [PMID: 36372631 DOI: 10.1016/j.jconhyd.2022.104102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The use of electrokinetics (EK) has great potential to deliver reactants in impervious porous media, thus overcoming some of the challenges in the remediation of contaminants trapped in low-permeability zones. In this work we experimentally investigate electrokinetic transport in heterogeneous porous media consisting of a sandy matrix with a target clay inclusion. We demonstrate the efficient EK-delivery of permanganate in the target clay zone (transport velocity 0.3-0.5 m day-1) and its reactivity with Methylene Blue, a positively charged contaminant trapped within the inclusion. The delivery method was optimized using a KH2PO4/K2HPO4 buffer to attenuate the effect of electrolysis reactions in the electrode chambers, thus mitigating the propagation of pH fronts and preventing the phenomenon of permanganate stalling. The experiments showed that the buffer electrical conductivity greatly impacts the potential gradient in the heterogeneous porous medium with implications on the observed rates of electrokinetic transport (variation up to 40%). The reactive experiments provided direct evidence of the permanganate penetration within the clay and of its capability to degrade the target immobilized contaminant. The experimental results were analyzed using a process-based model, elucidating the governing transport mechanisms and highlighting the effect of different mass transfer processes on conservative and reactive electrokinetic transport.
Collapse
Affiliation(s)
- Andrea Gallo
- Department of Environmental, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Riccardo Sprocati
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| | - Massimo Rolle
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| | - Rajandrea Sethi
- Department of Environmental, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy.
| |
Collapse
|
4
|
Furia F, Minella M, Gosetti F, Turci F, Sabatino R, Di Cesare A, Corno G, Vione D. Elimination from wastewater of antibiotics reserved for hospital settings, with a Fenton process based on zero-valent iron. CHEMOSPHERE 2021; 283:131170. [PMID: 34467949 DOI: 10.1016/j.chemosphere.2021.131170] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/18/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
The Fenton process activated by Zero Valent Iron (ZVI-Fenton) is shown here to effectively remove antibiotics reserved for hospital settings (specifically used to treat antibiotic-resistant infections) from wastewater, thereby helping in the fight against bacterial resistance. Effective degradation of cefazolin, imipenem and vancomycin in real urban wastewater was achieved at pH 5, which is quite near neutrality when compared with classic Fenton that works effectively at pH 3-4. The possibility to operate successfully at pH 5 has several advantages compared to operation at lower pH values: (i) lower reagent costs for pH adjustment; (ii) insignificant impact on wastewater conductivity, because lesser acid is required to acidify and lesser or no base for neutralization; (iii) undetectable release of dissolved Fe, which could otherwise be an issue for wastewater quality. The cost of reagents for the treatment ranges between 0.04 and 0.07 $ m-3, which looks very suitable for practical applications. The structures of the degradation intermediates of the studied antibiotics and their likely abundance suggest that, once the primary compound is eliminated, most of the potential to trigger antibiotic action has been removed. Application of the ZVI-Fenton technique to wastewater treatment could considerably lower the possibility for antibiotics to trigger the development of resistance in bacteria.
Collapse
Affiliation(s)
- Francesco Furia
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5,9, 10125, Torino, Italy
| | - Marco Minella
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5,9, 10125, Torino, Italy
| | - Fabio Gosetti
- Dipartimento di Scienze Dell'Ambiente e Della Terra, Università di Milano - Bicocca, Piazza Della Scienza 1, 20126, Milano, Italy
| | - Francesco Turci
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5,9, 10125, Torino, Italy
| | - Raffaella Sabatino
- Molecular Ecology Group, National Research Council of Italy, Water Research Institute, Largo Tonolli 50, 28922, Verbania, VCO, Italy
| | - Andrea Di Cesare
- Molecular Ecology Group, National Research Council of Italy, Water Research Institute, Largo Tonolli 50, 28922, Verbania, VCO, Italy
| | - Gianluca Corno
- Molecular Ecology Group, National Research Council of Italy, Water Research Institute, Largo Tonolli 50, 28922, Verbania, VCO, Italy
| | - Davide Vione
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5,9, 10125, Torino, Italy.
| |
Collapse
|
5
|
Gonçalves NP, Minella M, Mailhot G, Brigante M, Bianco Prevot A. Photo-activation of persulfate and hydrogen peroxide by humic acid coated magnetic particles for Bisphenol A degradation. Catal Today 2021. [DOI: 10.1016/j.cattod.2019.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Audino F, Pérez-Moya M, Graells M, Espuña A, Csukas B, Varga M. A novel modeling approach for a generalizable photo-Fenton-based degradation of organic compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22913-22934. [PMID: 32329002 PMCID: PMC7293673 DOI: 10.1007/s11356-020-08616-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
This work aims at proposing and validating a model that can be exploited for the future development of industrial applications (e.g., process design and control) of Fenton and photo-Fenton processes. Hence, a compromise modeling solution has been developed between the non-generalizable accuracy of the first principles models (FPMs) and the oversimplification of the empirical models (EMs). The work presents a novel model of moderate complexity that is simplified enough to be generalizable and computationally affordable, while retaining physical meaning. The methodology is based on a general degradation mechanism that can be algorithmically generated from the carbon number of the target compound, as well as from the knowledge of two kinetic parameters, one for the faster initial rate and the other one for the subsequent degradation steps. The contaminant degradation mechanism has been combined with an appropriately simplified implementation of the well-known Fenton and photo-Fenton kinetics. This model describes the degradation not only of the target compound and of the oxidant, but also of total organic carbon (TOC), which is used to define the overall quality of the water. Experimental design techniques were used along with a non-conventional modeling methodology of programmable process structures (PPS). This novel modeling approach was applied and validated on the degradation of three model compounds. A successful prediction of the evolution of the contaminants H2O2 and TOC was confirmed and assessed by the root mean square error (RMSE).
Collapse
Affiliation(s)
- Francesca Audino
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, Av. Eduard Maristany, 16, 08019, Barcelona, Spain
| | - Montserrat Pérez-Moya
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, Av. Eduard Maristany, 16, 08019, Barcelona, Spain
| | - Moisès Graells
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, Av. Eduard Maristany, 16, 08019, Barcelona, Spain
| | - Antonio Espuña
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, Av. Eduard Maristany, 16, 08019, Barcelona, Spain
| | - Bela Csukas
- Research Group on Process Network Engineering, Institute of Methodology, Kaposvar University, 40 Guba S, Kaposvar, 7400, Hungary
| | - Monika Varga
- Research Group on Process Network Engineering, Institute of Methodology, Kaposvar University, 40 Guba S, Kaposvar, 7400, Hungary.
| |
Collapse
|
7
|
Farinelli G, Minella M, Sordello F, Vione D, Tiraferri A. Metabisulfite as an Unconventional Reagent for Green Oxidation of Emerging Contaminants Using an Iron-Based Catalyst. ACS OMEGA 2019; 4:20732-20741. [PMID: 31858059 PMCID: PMC6906940 DOI: 10.1021/acsomega.9b03088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
In this work, contaminants of emerging concern were catalytically degraded in the homogeneous phase with the use of unconventional green reagents. Three reagents, namely, sulfite, metabisulfite, and persulfate, were tested and compared with conventional hydrogen peroxide in the degradation process activated by Fe-TAML. The latter is a biodegradable, homogeneous tetra-amido macrocyclic ligand catalyst containing iron(III). Metabisulfite showed the highest efficiency among the three tested reagents, and its reactivity was similar to that of H2O2. However, metabisulfite is a safer and cleaner reagent compared to H2O2. A comprehensive study of the activity of metabisulfite with Fe-TAML was carried out toward the oxidative degradation of eight contaminants of emerging concern. The catalytic process was tested at different pH values (7, 9, and 11). Metabisulfite showed the highest activity at pH 11, completely degrading some of the tested micropollutants, but in several cases, the system was active at pH 9 as well. In particular, metabisulfite showed the best efficiency toward phenolic compounds. A preliminary study on the reaction mechanism and the nature of the active species in the Fe-TAML/metabisulfite system was also conducted, highlighting that a high-valent iron-oxo species might be involved in the degradation pathways.
Collapse
Affiliation(s)
- Giulio Farinelli
- Department
of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Marco Minella
- Department
of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy
| | - Fabrizio Sordello
- Department
of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy
| | - Davide Vione
- Department
of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy
| | - Alberto Tiraferri
- Department
of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
8
|
Minella M, Bertinetti S, Hanna K, Minero C, Vione D. Degradation of ibuprofen and phenol with a Fenton-like process triggered by zero-valent iron (ZVI-Fenton). ENVIRONMENTAL RESEARCH 2019; 179:108750. [PMID: 31563032 DOI: 10.1016/j.envres.2019.108750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/18/2019] [Accepted: 09/16/2019] [Indexed: 05/29/2023]
Abstract
It is shown here that ZVI-Fenton is a suitable technique to achieve effective degradation of ibuprofen and phenol under several operational conditions. Degradation of ibuprofen was possible in the pH interval 3-6 in both synthetic laboratory systems and actual wastewater (secondary treatment effluent), but operation at the higher pH values required higher H2O2 concentration and/or higher ZVI loading. In the case of real wastewater we offset the lower degradation efficiency, caused by the occurrence of organic and inorganic interfering agents, by carrying out multiple H2O2 additions. The studied wastewater sample had a buffer-capacity minimum at pH 4-5, and optimal treatment for ibuprofen degradation might take place at either pH 4 or 6. With a reagents cost in the order of 0.06-0.10 $ m-3, the technique appears as very competitive and promising for tertiary wastewater treatment. There is a clear trade-off between savings in pH-fixing reagents and higher consumption of ZVI-Fenton reagents at the different pH values. The final choice in real application scenarios could be based on cost considerations (which favour pH 4) and/or the eventual fate of wastewater. For instance, wastewater reuse might place requirements on the salinity that is increased by the acidification/neutralization steps: in this case, operation at pH 6 is preferred. Interestingly, the ZVI-Fenton degradation of ibuprofen led to very low generation of toxic 4-isobutylacetophenone (IBAP, which is the ibuprofen by-product raising the highest concern), because of the combination of low formation yields and limited IBAP stability in the optimal reaction conditions. In addition to ibuprofen, phenol could be degraded as well by ZVI-Fenton. Interestingly, the ability of ZVI-Fenton to degrade both ibuprofen and phenol under similar conditions might open up the way to apply this technique to additional pollutants as well as to pollutant mixtures.
Collapse
Affiliation(s)
- Marco Minella
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125 Torino, Italy
| | - Stefano Bertinetti
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125 Torino, Italy
| | - Khalil Hanna
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR6226, F-35000 Rennes, France
| | - Claudio Minero
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125 Torino, Italy
| | - Davide Vione
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125 Torino, Italy.
| |
Collapse
|