1
|
Chen PH, Chen GH, Tsai WB. Innovative Polymeric Coatings with Dual Antifouling and Light-Activated Bactericidal Functions for Urinary Catheter Applications. Polymers (Basel) 2024; 16:2974. [PMID: 39518184 PMCID: PMC11548113 DOI: 10.3390/polym16212974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Catheter-associated urinary tract infections (CAUTIs) present significant health risks in medical settings, necessitating innovative solutions to prevent bacterial colonization on catheter surfaces. This study introduces a novel polymeric coating with dual antifouling and light-activated bactericidal properties to enhance the bactericidal efficacy of urinary catheters. The coatings were synthesized using a one-step process involving pyrogallol chemistry to deposit a copolymer composed of zwitterionic sulfobetaine for antifouling and sodium copper chlorophyllin, a photosensitizer that generates reactive oxygen species under light exposure to effectively kill bacteria. We evaluated the antifouling properties, cytocompatibility, and bactericidal performance of the coatings under various light conditions. The results showed significant reductions in bacterial adhesion, with light activation further endowing the catheter with bactericidal effects. Additionally, light could be delivered through an optical fiber within the catheter lumen to target and kill bacteria. The innovative coating using light-activated bactericidal action offers a promising approach to preventing CAUTIs, representing a potential breakthrough in developing safer and more effective urinary catheters.
Collapse
Affiliation(s)
| | | | - Wei-Bor Tsai
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan; (P.-H.C.); (G.-H.C.)
| |
Collapse
|
2
|
Hu Y, Zhou Y, Li K, Zhou D. Recent advances in near-infrared stimulated nanohybrid hydrogels for cancer photothermal therapy. Biomater Sci 2024; 12:4590-4606. [PMID: 39136645 DOI: 10.1039/d4bm00662c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Nanomedicine has emerged as a promising avenue for advancing cancer treatment, but the challenge of mitigating its in vivo side effects necessitates the development of innovative structures and materials. Recent investigation has unveiled nanogels as particularly compelling candidates, characterized by a porous, three-dimensional network architecture that exhibits exceptional drug loading capacity. Beyond this, nanogels boast a substantial specific surface area and can be tailored with specific chemical functionalities. Consequently, nanogels are frequently engineered as a multi-modal synergistic platform for combating cancer, wherein photothermal therapy stands out due to its capacity to penetrate deep tissues and achieve localized tumor eradication through the application of elevated temperatures. In this review, we delve into the synthesis of diverse varieties of photothermal nanogels capable of controlled drug release triggered by either chemical or physical stimuli. It also summarizes their potential for synergistic integration with photothermal therapy alongside other therapeutic modalities to realize effective tumor ablation. Moreover, we analyze the primary mechanisms underlying the contribution of photothermal nanogels to cancer treatment while underscoring their adeptness in regulating therapeutic temperatures for repairing bone defects resulting from tumor-associated trauma. Envisioned as an auspicious strategy in the realm of cancer therapy, photothermal nanogels hold promise for furnishing controlled drug delivery and precise thermal ablation capabilities.
Collapse
Affiliation(s)
- Yongjun Hu
- Department of Oncology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yi Zhou
- Huanggang Central Hospital of Yangtze University, Huanggang, 438000, China
| | - Kaichun Li
- Department of Oncology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Dong Zhou
- Engineering Research Centre for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
3
|
Shinde VR, Khatun S, Thanekar AM, Bhattacharjee B, Rengan AK. Sodium copper chlorophyllin-loaded chitosan nanoparticle-based photodynamic therapy for B16 melanoma cancer cells. Chem Biol Drug Des 2024; 104:e14594. [PMID: 39072923 DOI: 10.1111/cbdd.14594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/30/2024]
Abstract
Melanoma is one of the most aggressive and fatal skin cancers owing to its ability to metastasize and develop resistance to chemotherapy. Photodynamic therapy (PDT) is a minimally noninvasive treatment modality comprising photosensitizers (PSs), light sources, and endogenous molecular oxygen that exert a localized cytotoxic effect on cancer cells. The current study explores the therapeutic potential of sodium copper chlorophyllin-loaded chitosan nanoparticles (CH-SCC NPs) along with handheld laser-based PDT on B16 cancer cells. A modified chlorophyll derivative identified as sodium copper chlorophyllin (SCC) is a dietary supplement that has anticancer properties. Herein, we have synthesized CH-SCC NPs using the ionic gelation method to enhance the PS's bioavailability and efficiency. Chitosan nanoparticles exhibited high biocompatibility in a normal cell line L929, zebrafish, and chick embryos, and were successfully employed to deliver the SCC to cancer cells. CH-SCC NPs showed an enhanced PDT effect that killed approximately 80%-85% of B16 cells. CH-SCC NPs in combination with a handheld portable laser source showed significant therapeutic potential against the B16 skin cancer cell line. The experimental findings further strengthen our device-repurposing strategy, which suggests that SCC nanoformulations along with handheld laser can be a suitable treatment for skin cancer even in remote areas where power source and treatment cost can be a limitation.
Collapse
Affiliation(s)
- Vinod Ravasaheb Shinde
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Sajmina Khatun
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Ajinkya Madhukar Thanekar
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Basu Bhattacharjee
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| |
Collapse
|
4
|
Liu X, Beaudoin G, Zhang H, Esquivel Guzmán JA, Le Roux É, Pellerin C, Rivera E, Lavertu M, Zhu XX. Chlorophyllin-Containing Copolymers and Their Responsive Properties. ACS APPLIED BIO MATERIALS 2024; 7:124-130. [PMID: 38109902 DOI: 10.1021/acsabm.3c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Copper-chlorophyllin is a water-soluble derivative of chlorophylls and shows low cytotoxicity and antimutagenic properties in cultured cells. It has multiple applications, including its use as a photosensitizer in photothermal therapy because of its green light-activated photothermal performance. In this work, it was copolymerized with a poly(ethylene glycol) methacrylic monomer to yield random copolymers by free radical polymerization, which showed dual temperature- and pH-dependent phase transitions in aqueous solutions. The cloud points of the copolymer solutions were raised by lowering the pH of the aqueous solutions due to the protonation of the carboxylic groups on the chlorophyllin moieties, which decreased the overall hydrophilicity of the polymers. At low pH values, complete protonation of the carboxylic acid groups of the chlorophyllin moieties led to an irreversible aggregation of the copolymers in water. The incorporation of chlorophyllin in the copolymer improved its stability over its single molecular form.
Collapse
Affiliation(s)
- Xuemin Liu
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Guillaume Beaudoin
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Hu Zhang
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Jair A Esquivel Guzmán
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Élise Le Roux
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Christian Pellerin
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Ernesto Rivera
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CP 04510 Mexico City, Mexico
| | - Marc Lavertu
- Département de Génie Chimique, Polytechnique Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Xiao Xia Zhu
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
5
|
Rana P, Singh C, Kaushik A, Saleem S, Kumar A. Recent advances in stimuli-responsive tailored nanogels for cancer therapy; from bench to personalized treatment. J Mater Chem B 2024; 12:382-412. [PMID: 38095136 DOI: 10.1039/d3tb02650g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
To improve the quality of health in a personalized manner, better control over pharmacologically relevant cargo formulation, organ-specific targeted delivery, and on-demand release of therapeutic agents is crucial. Significant work has been put into designing and developing revolutionary nanotherapeutics approaches for the effective monitoring and personalized treatment of disease. Nanogel (NG) has attracted significant interest because of its tremendous potential in cancer therapy and its environmental stimuli responsiveness. NG is considered a next-generation delivery technology due to its benefits like as size tunability, high loading, stimuli responsiveness, prolonged drug release via in situ gelling mechanisms, stability, and its potential to provide personalized therapy from the investigation of human genes and the genes in various types of cancers and its association with a selective anticancer drug. Stimuli-responsive NGs can be used as smart nanomedicines to detect and treat cancer and can be tuned as personalized medicine as well. This comprehensive review article's major objectives include the challenges of NGs' clinical translation for cancer treatment as well as its early preclinical successes and prospects.
Collapse
Affiliation(s)
- Prinsy Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala-133207, Haryana, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand-246174, India
| | - Ajeet Kaushik
- NanoBiotech Lab, Department of Environmental Engineering, Florida Polytechnic University (FPU), Lakeland, FL, 33805-8531, USA
- School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, P. O. Box 93499, Riyadh 11673, Saudi Arabia
| | - Arun Kumar
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya-824209, India.
| |
Collapse
|
6
|
P S R, Alvi SB, Begum N, Veeresh B, Rengan AK. Self-Assembled Fluorosome-Polydopamine Complex for Efficient Tumor Targeting and Commingled Photodynamic/Photothermal Therapy of Triple-Negative Breast Cancer. Biomacromolecules 2021; 22:3926-3940. [PMID: 34383466 DOI: 10.1021/acs.biomac.1c00744] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Photodynamic/photothermal therapy (PDT/PTT) that deploys a near-infrared responsive nanosystem is emerging to be a promising modality in cancer treatment. It is highly desirable to have a multifunctional nanosystem that can be used for efficient tumor targeting and inhibiting metastasis/recurrence of cancer. In the current study, self-assembled chlorophyll-rich fluorosomes derived from Spinacia oleracea were developed. These fluorosomes were co-assembled on a polydopamine core, forming camouflaged nanoparticles (SPoD NPs). The SPoD NPs exhibited a commingled PDT/PTT (i.e., interdependent PTT and PDT) that inhibited both normoxic and hypoxic cancer cell growth. These nanoparticles showed stealth properties with enhanced physiological stability and passive tumor targeting. SPoD NPs also exhibited tumor suppression by synergistic PTT and PDT. It also prevented lung metastasis and splenomegaly in tumor-bearing Balb/c mice. Interestingly, treatment with SPoD NPs also caused the suppression of secondary tumors by eliciting an anti-tumor immune response. In conclusion, a co-assembled multifunctional nanosystem derived from S. oleracea showed enhanced stability and tumor-targeting efficacy, resulting in a commingled PDT/PTT effect.
Collapse
Affiliation(s)
- Rajalakshmi P S
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502285, India
| | - Syed Baseeruddin Alvi
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502285, India
| | - Nazia Begum
- Department of Pharmacology, G. Pulla Reddy College of Pharmacy, Hyderabad, Telangana 500028, India
| | - Bantal Veeresh
- Department of Pharmacology, G. Pulla Reddy College of Pharmacy, Hyderabad, Telangana 500028, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502285, India
| |
Collapse
|
7
|
Shen J, Sun C, Wang Z, Chu Z, Liu C, Xu X, Xia M, Zhao M, Wang C. Sequential receptor-mediated mixed-charge nanomedicine to target pancreatic cancer, inducing immunogenic cell death and reshaping the tumor microenvironment. Int J Pharm 2021; 601:120553. [PMID: 33794325 DOI: 10.1016/j.ijpharm.2021.120553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/09/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PC) is an aggressive form of cancer with dense stroma and immune-suppressive microenvironment, which are the major barriers for treatment. To address such barriers, this study aimed to develop a sequential receptor-mediated mixed-charge targeted delivery system for PC based on 2-(3-((S)-5-amino-1-carboxypentyl)-ureido) pentanedioate (ACUPA-) and triphenylphosphonium (TPP+) modified nanomicelles containing ingenol-3-mebutate (I3A), which was named ACUPA-/TPP+-I3A or ACUPA/TPP-I3A. ACUPA/TPP-I3A induced immunogenic cell death (ICD), which significantly increased the number of tumor-infiltrating T lymphocytes, activated adaptive immunity, and achieved superior survival time. I3A, a novel anticancer drug, could induce PC cell necrosis to release damage-associated molecular patterns, thereby activating adaptive immunity. With certain ratios of negatively (ACUPA-) and positively (TPP+) charged ligands, ACUPA/TPP-I3A acquired a negative charge in plasma (pH 7.4, to inhibit aggregation and uptake in the circulation) and was neutral in the acidic tumor microenvironment (pH 5.0-6.0, to overcome electrostatic hindrances and facilitate transcytosis). Furthermore, neovascular endothelium-specific ACUPA enabled rapid transcytosis of ACUPA/TPP-I3A across tumor vessel walls, entering into endosome/lysosomes (pH 4.5-5.0, its charge became positive and exhibited lysosome escape). Then, ACUPA/TPP-I3A selectively targeted mitochondria, which correlated with TPP-mediated effect. Finally, I3A was released to induce ICD that activated adaptive immunity and achieved superior survival time. Therefore, reshaping of the tumor microenvironment and potentiating antitumor immunity using ACUPA-/TPP+-I3A constituted a novel strategy to prolong the survival time.
Collapse
Affiliation(s)
- Jingmin Shen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chao Sun
- Central Research Laboratory, Institute of Medical Science, The Second Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
| | - Zhicheng Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhijie Chu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Chengcheng Liu
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwuweiqi Road, 250021 Jinan, Shandong Province, China
| | - Xuelian Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwuweiqi Road, 250021 Jinan, Shandong Province, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwuweiqi Road, 250021 Jinan, Shandong Province, China.
| | - Cheng Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
8
|
Badea M, Uivarosi V, Olar R. Improvement in the Pharmacological Profile of Copper Biological Active Complexes by Their Incorporation into Organic or Inorganic Matrix. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25245830. [PMID: 33321882 PMCID: PMC7763451 DOI: 10.3390/molecules25245830] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Every year, more Cu(II) complexes are proven to be biologically active species, but very few are developed as drugs or entered in clinical trials. This is due to their poor water solubility and lipophilicity, low stability as well as in vivo inactivation. The possibility to improve their pharmacological and/or oral administration profile by incorporation into inorganic or organic matrix was studied. Most of them are either physically encapsulated or conjugated to the matrix via a moiety able to coordinate Cu(II). As a result, a large variety of species were developed as delivery carriers. The organic carriers include liposomes, synthetic or natural polymers or dendrimers, while the inorganic ones are based on carbon nanotubes, hydrotalcite and silica. Some hybrid organic-inorganic materials based on alginate-carbonate, gold-PEG and magnetic mesoporous silica-Schiff base were also developed for this purpose.
Collapse
Affiliation(s)
- Mihaela Badea
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., 050663 Bucharest, Romania;
| | - Valentina Uivarosi
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
- Correspondence: (V.U.); (R.O.)
| | - Rodica Olar
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., 050663 Bucharest, Romania;
- Correspondence: (V.U.); (R.O.)
| |
Collapse
|
9
|
Chang R, Tsai WB. Fabrication of Photothermo-Responsive Drug-Loaded Nanogel for Synergetic Cancer Therapy. Polymers (Basel) 2018; 10:E1098. [PMID: 30961023 PMCID: PMC6403974 DOI: 10.3390/polym10101098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 11/25/2022] Open
Abstract
Temperature stimulus, easy modulation in comparison to other environmental stimuli, makes thermo-responsive nanocarriers popular in the applications of controlled drug release for cancer therapy. In this study, photosensitive sodium copper chlorophyllin (SCC) was incorporated into thermo-responsive polymeric nanogels consisted of N-isopropylacrylamide and N-(hydroxymethyl)acrylamide. Significant heat was generated from the SCC-containing nanogels under the exposure to 532-nm green laser, and resulted in cell mortality. The thermo-responsive nanogel loaded with 5-FU, an anti-cancer drug, released the drug explosively when exposed to green laser. The combination of hyperthermia and temperature-induced drug release via green laser irradiation greatly enhanced cell mortality to a maximal extent. Such photothermo-responsive nanogel possesses a great potential in anti-cancer treatment.
Collapse
Affiliation(s)
- Ray Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Wei-Bor Tsai
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|