1
|
Kuddushi M, Xu BB, Malek N, Zhang X. Review of ionic liquid and ionogel-based biomaterials for advanced drug delivery. Adv Colloid Interface Sci 2024; 331:103244. [PMID: 38959813 DOI: 10.1016/j.cis.2024.103244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Ionic liquids (ILs) play a crucial role in the design of novel materials. The ionic nature of ILs provides numerous advantages in drug delivery, acting as a green solvent or active ingredient to enhance the solubility, permeability, and binding efficiency of drugs. They could also function as a structuring agent in the development of nano/micro particles for drug delivery, including micelles, vesicles, gels, emulsion, and more. This review summarize the ILs and IL-based gel structures with their advanced drug delivery applications. The first part of review focuses on the role of ILs in drug formulation and the applications of ILs in drug delivery. The second part of review offers a comprehensive overview of recent drug delivery applications of IL-based gel. It aims to offer new perspectives and attract more attention to open up new avenues in the biomedical applications of ILs and IL-based gels.
Collapse
Affiliation(s)
- Muzammil Kuddushi
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Naved Malek
- Ionic Liquid Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 07, India
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada.
| |
Collapse
|
2
|
Pandya I, Kumar S, Aswal VK, El Seoud O, Assiri MA, Malek N. Metal organic framework-based polymeric hydrogel: A promising drug delivery vehicle for the treatment of breast cancer. Int J Pharm 2024; 658:124206. [PMID: 38734276 DOI: 10.1016/j.ijpharm.2024.124206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
The constraints associated with current cancer therapies have inspired scientists to develop advanced, precise, and safe drug delivery methods. These delivery systems boost treatment effectiveness, minimize harm to healthy cells, and combat cancer recurrence. To design advanced drug delivery vehicle with these character, in the present manuscript, we have designed a self-healing and injectable hybrid hydrogel through synergistically interacting metal organic framework, CuBTC with the poly(vinyl alcohol) (PVA). This hybrid hydrogel acts as a localized drug delivery system and was used to encapsulate and release the anticancer drug 5-Fluorouracil selectively at the targeted site in response to the physiological pH. The hydrogel was formed through transforming the gaussian coil like matrix of PVA-CuBTC into a three-dimensional network of hydrogel upon the addition of crosslinker; borax. The biocompatible character of the hydrogel was confirmed through cell viability test. The biocompatible hybrid hydrogel then was used to encapsulate and studied for the pH responsive release behavior of the anti-cancer drug, 5-FU. The in vitro cytotoxicity of the drug-loaded hydrogel was evaluated against MCF-7 and HeLa cells. The study confirms that the hybrid hydrogel is effective for targeted and sustained release of anticancer drugs at cancer sites.
Collapse
Affiliation(s)
- Ishani Pandya
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India
| | - Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Omar El Seoud
- Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Mohammed A Assiri
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Naved Malek
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India; Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Duraisamy DK, Reddy SMM, Saveri P, Deshpande AP, Shanmugam G. A Unique Temperature-Induced Reverse Supramolecular Chirality-Assisted Gel-to-Gel Transition. Macromol Rapid Commun 2024; 45:e2400018. [PMID: 38437791 DOI: 10.1002/marc.202400018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Supramolecular hydrogels typically undergo a gel-to-sol transition with heat, as intermolecular interactions within the gel weaken. Although gel-to-gel transitions during heating are rare, they may occur due to minor rearrangements caused by thermal forces in the supramolecular self-assembled structure. Here, an unprecedented temperature-induced gel-to-gel transition assisted by supramolecular chiral inversion in a hydrogel system is presented. The transition results from a left-handed M-type helix to a right-handed P-type helix, attributed to the π-system-conjugated amino acid, l-Tyrosine (Fm- l-Tyr). Upon solvent dilution, Fm-l-Tyr induces translucent hydrogel formed by entangled fibers with a kinetically stable left-handed M-type supramolecular helix. At 70 °C, hydrogel transforms into an opaque gel with a reverse supramolecular chirality yielding a thermodynamically stable right-handed P-type helix. Supramolecular chiral inversion is substantiated by two chiroptical methods. This unique gel-to-gel transition, accompanied by chiral inversion, is anticipated to attract attention, especially for applications sensitive to chirality.
Collapse
Affiliation(s)
- Dinesh Kumar Duraisamy
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Samala Murali Mohan Reddy
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, 600020, India
| | - Puchalapalli Saveri
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Abhijit P Deshpande
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Pandey DK, Kuddushi M, Kumar A, Singh DK. Iron Oxide Nanoparticles Loaded Smart Hybrid Hydrogel for Anti-Inflammatory Drug Delivery: Preparation and Characterizations. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Shah A, Patel T, Al-Ghamdi AA, Malek NI. Stimuli responsive self-assembled structural aggregates of ionic liquid based surfactants as the membrane free microreactors for dyes sequestration and drug encapsulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Imidazole-based surface-active gelator: Thermo responsive gel-to-gel transition of 1-hexadecyl-3-methyl imidazolium salicylate for multidimensional applications. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Ionic liquid-based catanionic vesicles: A de novo system to judiciously improve the solubility, stability and antimicrobial activity of curcumin. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Panja S, Adams DJ. Stimuli responsive dynamic transformations in supramolecular gels. Chem Soc Rev 2021; 50:5165-5200. [PMID: 33646219 DOI: 10.1039/d0cs01166e] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Supramolecular gels are formed by the self-assembly of small molecules under the influence of various non-covalent interactions. As the interactions are individually weak and reversible, it is possible to perturb the gels easily, which in turn enables fine tuning of their properties. Synthetic supramolecular gels are kinetically trapped and usually do not show time variable changes in material properties after formation. However, such materials potentially become switchable when exposed to external stimuli like temperature, pH, light, enzyme, redox, and chemical analytes resulting in reconfiguration of gel matrix into a different type of network. Such transformations allow gel-to-gel transitions while the changes in the molecular aggregation result in alteration of physical and chemical properties of the gel with time. Here, we discuss various methods that have been used to achieve gel-to-gel transitions by modifying a pre-formed gel material through external perturbation. We also describe methods that allow time-dependent autonomous switching of gels into different networks enabling synthesis of next generation functional materials. Dynamic modification of gels allows construction of an array of supramolecular gels with various properties from a single material which eventually extend the limit of applications of the gels. In some cases, gel-to-gel transitions lead to materials that cannot be accessed directly. Finally, we point out the necessity and possibility of further exploration of the field.
Collapse
Affiliation(s)
- Santanu Panja
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
9
|
Sridhar SP, John J, Holmqvist P, Olsson U, Chandran S, Joseph B. Adsorption of Anionic Dyes Using a Poly(styrene- block-4-vinylpyridine) Block Copolymer Organogel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3996-4006. [PMID: 33764788 DOI: 10.1021/acs.langmuir.1c00288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An organogel was prepared by chemically cross-linking a poly(styrene-block-4-vinylpyridine) diblock copolymer using dibromododecane in dimethylformamide. Analysis of the prominent structure peak in small-angle X-ray scattering along with the results of light scattering and rheological profile suggests the bridging of the spherical micelles to one another to form an interconnected network after gelation. The use of this organogel as a selective adsorbent for removing anionic dyes from individual aqueous dye solutions and in a mixture of cationic and anionic dye solutions has shown more than 90% removal of the anionic dyes within 2 h. The regeneration and reusability studies showed that even after 20 cycles, the adsorption property of the organogel holds extremely well still beyond 90%. These results are indicative of the potential use of poly(styrene-block-4-vinylpyridine) organogel for the anionic ions removal in wastewater treatment.
Collapse
Affiliation(s)
- Sanjeevi Prasath Sridhar
- Soft Matter Laboratory, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Jacob John
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Peter Holmqvist
- Division of Physical Chemistry, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | - Ulf Olsson
- Division of Physical Chemistry, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | - Saravanan Chandran
- Soft Matter Laboratory, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Brijitta Joseph
- Soft Matter Laboratory, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
- Division of Physical Chemistry, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
10
|
El Seoud OA, Keppeler N, Malek NI, Galgano PD. Ionic Liquid-Based Surfactants: Recent Advances in Their Syntheses, Solution Properties, and Applications. Polymers (Basel) 2021; 13:1100. [PMID: 33808369 PMCID: PMC8036849 DOI: 10.3390/polym13071100] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
The impetus for the expanding interest in ionic liquids (ILs) is their favorable properties and important applications. Ionic liquid-based surfactants (ILBSs) carry long-chain hydrophobic tails. Two or more molecules of ILBSs can be joined by covalent bonds leading, e.g., to gemini compounds (GILBSs). This review article focuses on aspects of the chemistry and applications of ILBSs and GILBSs, especially in the last ten years. Data on their adsorption at the interface and micelle formation are relevant for the applications of these surfactants. Therefore, we collected data for 152 ILBSs and 11 biamphiphilic compounds. The head ions of ILBSs are usually heterocyclic (imidazolium, pyridinium, pyrrolidinium, etc.). Most of these head-ions are also present in the reported 53 GILBSs. Where possible, we correlate the adsorption/micellar properties of the surfactants with their molecular structures, in particular, the number of carbon atoms present in the hydrocarbon "tail". The use of ILBSs as templates for the fabrication of mesoporous nanoparticles enables better control of particle porosity and size, hence increasing their usefulness. ILs and ILBSs form thermodynamically stable water/oil and oil/water microemulsions. These were employed as templates for (radical) polymerization reactions, where the monomer is the "oil" component. The formed polymer nanoparticles can be further stabilized against aggregation by using a functionalized ILBS that is co-polymerized with the monomers. In addition to updating the literature on the subject, we hope that this review highlights the versatility and hence the potential applications of these classes of surfactants in several fields, including synthesis, catalysis, polymers, decontamination, and drug delivery.
Collapse
Affiliation(s)
- Omar A. El Seoud
- Institute of Chemistry, The University of São Paulo, São Paulo 05508-000, Brazil; (N.K.); (P.D.G.)
| | - Nicolas Keppeler
- Institute of Chemistry, The University of São Paulo, São Paulo 05508-000, Brazil; (N.K.); (P.D.G.)
| | - Naved I. Malek
- Applied Chemistry Department, Sardar Vallabhbhai National Institute of Technology, Surat 395 007, Gujarat, India;
| | - Paula D. Galgano
- Institute of Chemistry, The University of São Paulo, São Paulo 05508-000, Brazil; (N.K.); (P.D.G.)
| |
Collapse
|
11
|
Experimental and theoretical excess molar properties of aqueous choline chloride based deep eutectic solvents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Shah A, Kuddushi M, Mondal K, Jain M, Malek N. Magnetically driven release of dopamine from magnetic-non-magnetic cellulose beads. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Shah A, Jain M, Lad V, Ray D, Aswal VK, Malek NI. Selective accumulation of dyes and curcumin in a macroscopic complex coacervates composed of morpholinium based ester functionalized ionic liquid and sodium salicylate. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114140] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Kuddushi M, Kumar A, Ray D, Aswal VK, El Seoud OA, Malek NI. Concentration- and Temperature-Responsive Reversible Transition in Amide-Functionalized Surface-Active Ionic Liquids: Micelles to Vesicles to Organogel. ACS OMEGA 2020; 5:24272-24284. [PMID: 33015444 PMCID: PMC7528175 DOI: 10.1021/acsomega.0c02397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
A ubiquitous example of DNA and proteins inspires the scientific community to design synthetic systems that can construct various self-assembled complex nano-objects for high-end physiological functions. To gain insight into judiciously designed artificial amphiphilic structures that through self-assembling form various morphological architectures within a single system, herein, we have studied self-aggregation of amide-functionalized surface-active ionic liquids (AFSAILs) with different head groups in the DMSO/water mixed system. The AFSAIL forms stimuli-responsive reversible micelle and vesicle configurations that coexist with three-dimensional (3D) network structures, the organogel in the DMSO/water mixed system. The self-assembly driving forces, self-organization patterns, network morphologies, and mechanical properties of these network structures have been investigated. With the proven biodegradability and biocompatibility, one can envisage these AFSAILs as the molecules with a new dimension of versatility.
Collapse
Affiliation(s)
- Muzammil Kuddushi
- Applied
Chemistry Department, S. V. National Institute
of Technology, Surat 395007, Gujarat, India
| | - Arvind Kumar
- Salt
and Marine Chemicals Division, CSIR-Central
Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India
| | - Debes Ray
- Solid
State Physics Division, Bhabha Atomic Research
Center Trombay, Mumbai 400085 India
| | - Vinod Kumar Aswal
- Solid
State Physics Division, Bhabha Atomic Research
Center Trombay, Mumbai 400085 India
| | - Omar A. El Seoud
- Institute
of Chemistry, The University of Sao Paulo, 748 Prof. Lineu Prestes Avenue, Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Naved I. Malek
- Applied
Chemistry Department, S. V. National Institute
of Technology, Surat 395007, Gujarat, India
| |
Collapse
|
15
|
Kuddushi M, Ray D, Aswal V, Hoskins C, Malek N. Poly(vinyl alcohol) and Functionalized Ionic Liquid-Based Smart Hydrogels for Doxorubicin Release. ACS APPLIED BIO MATERIALS 2020; 3:4883-4894. [PMID: 35021732 DOI: 10.1021/acsabm.0c00393] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Limitations associated with the traditional cancer therapies prompt the scientific community to develop effective, safer, smarter, and targeted drug carriers that improve the efficiency of the drug carrier, reduce the adverse effects of the drug on the healthy cells, and help in preventing the cancer recurrences. This research aims to design a stimuli-responsive, self-healable, adhesive, and injectable polymeric hydrogel with an ester-functionalized ionic liquid as one of the additives to improve the efficiency of the anticancer drug in encapsulation and localized delivery. The designed polymeric hydrogel responds to intracellular biological stimuli (e.g., acidic pH of cancerous cells and temperature), changes the morphology through changing the shape and size of the gelator within the hydrogel matrix, and releases encapsulated doxorubicin (DOX) at the tumor site efficiently. Molecular interactions, gel morphology, and mechanical strength of the hydrogel were characterized through various analytical techniques, including small-angle neutron scattering. Adhesive properties of the polymeric hydrogel were measured by lap-shear strength tests and the biocompatibility and cellular drug uptake study on human breast cancer (MCF-7) and human cervical carcinoma cells (HeLa). The in vitro cytotoxicity and drug release study showed that the hybrid hydrogel is more effective at killing the cancerous cells, and the targeted release of DOX occurred at intracellular acidic pH. The polymeric hydrogel provides an efficient therapeutic approach for the encapsulation and release of the drug. Overall, the study offers a proof of concept to test the feasibility of the hydrogel system whether the hydrogel formulation helped or hindered the total cellular DOX trafficking.
Collapse
Affiliation(s)
- Muzammil Kuddushi
- Applied Chemistry Department, S.V. National Institute of Technology, Surat 395007, Gujarat, India.,Department of Pure & Applied Chemistry, University of Strathclyde, 99 George Street, Glasgow G1 1XQ, U.K
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Center Trombay, Mumbai 400085, India
| | - Vinod Aswal
- Solid State Physics Division, Bhabha Atomic Research Center Trombay, Mumbai 400085, India
| | - Clare Hoskins
- Department of Pure & Applied Chemistry, University of Strathclyde, 99 George Street, Glasgow G1 1XQ, U.K
| | - Naved Malek
- Applied Chemistry Department, S.V. National Institute of Technology, Surat 395007, Gujarat, India
| |
Collapse
|
16
|
Duklan N, Chamoli P, Raina K, Shukla RK. Dye dispersed lyotropic liquid crystals: Soft materials with high ionic conductivity and self-sustained adsorbents for dye sequestration. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Kuddushi M, Patel NK, Gawali SL, Mata JP, Montes-Campos H, Varela LM, Hassan PA, Malek NI. Thermo-switchable de novo ionogel as metal absorbing and curcumin loaded smart bandage material. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112922] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Kuddushi M, Patel NK, Rajput S, El Seoud OA, Mata JP, Malek NI. Temperature‐Responsive Low Molecular Weight Ionic Liquid Based Gelator: An Approach to Fabricate an Anti‐Cancer Drug‐Loaded Hybrid Ionogel. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.201900053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Muzammil Kuddushi
- Applied Chemistry DepartmentS.V. National Institute of Technology Surat 395007 Gujarat India
| | - Nehal K. Patel
- Applied Chemistry DepartmentS.V. National Institute of Technology Surat 395007 Gujarat India
| | - Sargam Rajput
- Applied Chemistry DepartmentS.V. National Institute of Technology Surat 395007 Gujarat India
| | - Omar A. El Seoud
- Institute of ChemistryThe University of São Paulo P. O. Box 26077 05513-970 São Paulo, SP Brazil
| | - Jitendra P. Mata
- Australian Centre for Neutron ScatteringAustralian Nuclear Science and Technology Organisation Lucas Heights NSW 2234 Australia
| | - Naved I. Malek
- Applied Chemistry DepartmentS.V. National Institute of Technology Surat 395007 Gujarat India
| |
Collapse
|
19
|
Kuddushi M, Mata J, Malek N. Self-Sustainable, self-healable, Load Bearable and Moldable stimuli responsive ionogel for the Selective Removal of Anionic Dyes from aqueous medium. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112048] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Shah A, Kuddushi M, Ray D, Aswal VK, Malek NI. Sodium Salicylate Mediated Ionic Liquid Based Catanionic Coacervates as Membrane‐Free Microreactors for the Selective Sequestration of Dyes and Curcumin. CHEMSYSTEMSCHEM 2019. [DOI: 10.1002/syst.201900029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ankit Shah
- Applied Chemistry DepartmentS.V. National Institute of Technology Surat 395007, Gujarat India
| | - Muzammil Kuddushi
- Applied Chemistry DepartmentS.V. National Institute of Technology Surat 395007, Gujarat India
| | - Debes Ray
- Solid State Physics DivisionBhabha Atomic Research Centre Trombay Mumbai 400085 India
| | - Vinod K Aswal
- Solid State Physics DivisionBhabha Atomic Research Centre Trombay Mumbai 400085 India
| | - Naved I. Malek
- Applied Chemistry DepartmentS.V. National Institute of Technology Surat 395007, Gujarat India
| |
Collapse
|
21
|
Kuddushi M, Rajput S, Shah A, Mata J, Aswal VK, El Seoud O, Kumar A, Malek NI. Stimuli Responsive, Self-Sustainable, and Self-Healable Functionalized Hydrogel with Dual Gelation, Load-Bearing, and Dye-Absorbing Properties. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19572-19583. [PMID: 31045340 DOI: 10.1021/acsami.9b01129] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The motivation for designing low-molecular-weight gelators with self-healing characteristics originates from elegant examples in biology such as vines of the genus Aristolochia whose internal secondary growth exhibits rapid self-healing in their stems. In the present work, we had explored the stimuli-responsive dual gelation characteristics for the ester-functionalized surfactant (4-(2-(hexadecyloxy)-2-oxoethyl)-4-methylmorpholin-4-ium bromide, C16EMorphBr) in aqueous medium at 7.20% (w/v) critical gel concentration and pH 7.4. The hydrogel provides an excellent platform to study dynamic phase behavior within a supramolecular network as it exhibits transformation from a fibrillar opaque hydrogel to a transparent hydrogel upon heating. Molecular interactions, arrangement within the supramolecular framework, and mechanical properties of the hydrogels were characterized using Fourier transform infrared, small-angle neutron scattering, rheological analysis, and tensile strength and cyclic loading-unloading tests. The fibrillar opaque gel has been characterized for its morphology using scanning electron microscopy, field emission scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The self-sustained, self-healable porous fibrillar opaque xerogel was further explored for selectively absorbing anionic dyes and for its load-bearing characteristics. We conclude a perspective on designing a new-age gelator that can open entirely new avenues in environmental protection and wearable "smart" devices.
Collapse
Affiliation(s)
- Muzammil Kuddushi
- Applied Chemistry Department , S.V. National Institute of Technology , Surat 395007 , Gujarat , India
| | - Sargam Rajput
- Applied Chemistry Department , S.V. National Institute of Technology , Surat 395007 , Gujarat , India
| | - Ankit Shah
- Applied Chemistry Department , S.V. National Institute of Technology , Surat 395007 , Gujarat , India
| | - Jitendra Mata
- Australian Centre for Neutron Scattering , Australian Nuclear Science and Technology Organization , Lucas Heights , NSW 2234 , Australia
| | - Vinod K Aswal
- Solid State Physics Division , Bhabha Atomic Research Centre , Trombay, Mumbai 400085 , India
| | - Omar El Seoud
- Institute of Chemistry , The University of São Paulo , P. O. Box 26077, 05513-970 São Paulo , SP , Brazil
| | - Arvind Kumar
- Salt and Marine Chemicals Division , CSIR-Central Salt and Marine Chemicals Research Institute , G. B. Marg, Bhavnagar 364002 , India
| | - Naved I Malek
- Applied Chemistry Department , S.V. National Institute of Technology , Surat 395007 , Gujarat , India
| |
Collapse
|
22
|
Understanding the peculiar effect of water on the physicochemical properties of choline chloride based deep eutectic solvents theoretically and experimentally. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.053] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Shah A, Kuddushi M, Rajput S, El Seoud OA, Malek NI. Ionic Liquid-Based Catanionic Coacervates: Novel Microreactors for Membrane-Free Sequestration of Dyes and Curcumin. ACS OMEGA 2018; 3:17751-17761. [PMID: 31458372 PMCID: PMC6643423 DOI: 10.1021/acsomega.8b02455] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/04/2018] [Indexed: 05/08/2023]
Abstract
Surfactant-mediated coacervates are termed as the new age microreactors for their ability to spontaneously sequester the molecules with varied polarities and functionalities. Efforts to emulate this applicability of coacervates through synthetic control of surfactant structures are finding success; however, there is little understanding of how to translate these changes into tailor-made properties. Herein, we designed 3-methyl-1-(octyloxycarbonylmethyl)imidazolium bromide (C8EMeImBr), an ester-functionalized ionic liquid-based surfactant, which shows better surface active properties than the nonfunctionalized and conventional cationic surfactant and forms complex coacervates over the broad range of concentration with sodium salicylate (NaSal). Mono- and divalent cations as well as ionic strength, viscosity, and time-dependent stability of the coacervates had also been addressed in order to study whether these coacervates could work as microreactors to encapsulate various molecules. The anionic charged complex coacervates with sponge morphology and honey comb-like interior show good efficiency to sequester cationic dyes from water because of electrostatic and hydrophobic interactions and good encapsulation efficiency for curcumin owing to their high surface area. Results suggest that ionic liquid-based coacervates studied here could be exploited as a novel low-cost, effective, and environmentally benign alternative to sequester dyes from the contaminated water and their recovery.
Collapse
Affiliation(s)
- Ankit Shah
- Applied
Chemistry Department, S.V. National Institute
of Technology, Surat 395007, Gujarat, India
| | - Muzammil Kuddushi
- Applied
Chemistry Department, S.V. National Institute
of Technology, Surat 395007, Gujarat, India
| | - Sargam Rajput
- Applied
Chemistry Department, S.V. National Institute
of Technology, Surat 395007, Gujarat, India
| | - Omar A. El Seoud
- Institute
of Chemistry, The University of Sao Paulo, 748 Prof. Lineu Prestes Av., Sao Paulo SP 05508-000, Brazil
| | - Naved I. Malek
- Applied
Chemistry Department, S.V. National Institute
of Technology, Surat 395007, Gujarat, India
- E-mail: , (N.I.M.)
| |
Collapse
|