1
|
Głowacki MJ, Niedziałkowski P, Ryl J, Prześniak-Welenc M, Sawczak M, Prusik K, Ficek M, Janik M, Pyrchla K, Olewniczak M, Bojarski K, Czub J, Bogdanowicz R. Enhancing colloidal stability of nanodiamond via surface modification with dendritic molecules for optical sensing in physiological environments. J Colloid Interface Sci 2024; 675:236-250. [PMID: 38970910 DOI: 10.1016/j.jcis.2024.06.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Pre-treatment of diamond surface in low-temperature plasma for oxygenation and in acids for carboxylation was hypothesized to promote the branching density of the hyperbranched glycidol polymer. This was expected to increase the homogeneity of the branching level and suppress interactions with proteins. As a result, composite nanodiamonds with reduced hydrodynamic diameters that are maintained in physiological environments were anticipated. Surfaces of 140-nm-sized nanodiamonds were functionalized with oxygen and carboxyl groups for grafting of hyperbranched dendritic polyglycerol via anionic ring-opening polymerization of glycidol. The modification was verified with Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Dynamic light scattering investigated colloidal stability in pH-diverse (2-12) solutions, concentrated phosphate-buffered saline, and cell culture media. Thermogravimetric analysis of nanodiamonds-protein incubations examined non-specific binding. Fluorescence emission was tested across pH conditions. Molecular dynamics simulations modeled interparticle interactions in ionic solutions. The hyperbranched polyglycerol grafting increased colloidal stability of nanodiamonds across diverse pH, high ionic media like 10 × concentrated phosphate-buffered saline, and physiological media like serum and cell culture medium. The hyperbranched polyglycerol suppressed non-specific protein adsorption while maintaining intensive fluorescence of nanodiamonds regardless of pH. Molecular modelling indicated reduced interparticle interactions in ionic solutions correlating with the improved colloidal stability.
Collapse
Affiliation(s)
- Maciej J Głowacki
- Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Paweł Niedziałkowski
- University of Gdańsk, Faculty of Chemistry, Department of Analytical Chemistry, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Jacek Ryl
- Gdańsk University of Technology, Faculty of Applied Physics and Mathematics, Institute of Nanotechnology and Materials Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Marta Prześniak-Welenc
- Gdańsk University of Technology, Faculty of Applied Physics and Mathematics, Institute of Nanotechnology and Materials Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mirosław Sawczak
- Polish Academy of Sciences, The Szewalski Institute of Fluid-Flow Machinery, The Centre for Plasma and Laser Engineering, Fiszera 14, 80-231 Gdańsk, Poland
| | - Klaudia Prusik
- Gdańsk University of Technology, Faculty of Applied Physics and Mathematics, Institute of Nanotechnology and Materials Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mateusz Ficek
- Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Monika Janik
- Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw, Poland
| | - Krzysztof Pyrchla
- Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Michał Olewniczak
- Gdańsk University of Technology, Faculty of Chemistry, Department of Physical Chemistry, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Krzysztof Bojarski
- Gdańsk University of Technology, Faculty of Chemistry, Department of Physical Chemistry, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Jacek Czub
- Gdańsk University of Technology, Faculty of Chemistry, Department of Physical Chemistry, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Robert Bogdanowicz
- Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
2
|
Choi S, Yoon KY, Dong G. Modular Synthetic Platform for Interior-Functionalized Dendritic Macromolecules Enabled by the Palladium/Norbornene Catalysis. J Am Chem Soc 2024; 146:18855-18860. [PMID: 38949482 DOI: 10.1021/jacs.4c06090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Synthesis of interior-functionalized dendritic macromolecules is generally tedious and labor-intensive, which has been a key factor hampering their practical applications. Here, we have revisited this long-standing challenge and devised a modular and convergent platform to synthesize multifunctional dendrons with all-carbon backbones up to four generations via an in situ functionalization strategy. Enabled by the palladium/norbornene cooperative catalysis, different functional groups can be introduced to each generation of dendrons during the dendron growth, making it convenient for systematic comparison of their properties. The utility of this versatile platform is further showcased in the internal-functionalization-dependent properties of dendrons as organogels and aggregation-induced emission materials.
Collapse
Affiliation(s)
- Shinyoung Choi
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ki-Young Yoon
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
3
|
Hawthorne D, Pannala A, Sandeman S, Lloyd A. Sustained and targeted delivery of hydrophilic drug compounds: A review of existing and novel technologies from bench to bedside. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Guo X, Li S, Tian J, Chen S, Ma G, Xiao H, Liu Z, Wang L, Jiang X. Long-circulation zwitterionic dendrimer nanodrugs for phototherapy of tumors. Colloids Surf B Biointerfaces 2022; 217:112681. [PMID: 35803033 DOI: 10.1016/j.colsurfb.2022.112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/17/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022]
Abstract
The development of stealth and effective antitumor nanodrugs has been drawing great attention. Herein, generation five poly(amide amine) dendrimer (G5 PAMAM) was modified by zwitterionic material carboxybetaine methacrylamide (CBMAA) on its surface to prepare zwitterionic dendrimer (G5-CBMAAn). The results showed that G5-CBMAA30 had the longest blood circulation time due to its thickest zwitterionic layer, and its residual rate after injection into mice at 2 and 12 h was as high as 47.22 % and 14.37 %, respectively. Nanodrug G5-CBMAA30-ICG was prepared by containing indocyanine green (ICG) in the cavity of G5-CBMAA30. G5-CBMAA30-ICG had better tumor targeting ability and antitumor effect than free ICG in mice after laser irradiation, and the tumor inhibition rate was 96.6 % after 14 days' treatment. The prepared G5-CBMAA30-ICG has great potential applications in the field of antitumor by phototherapy.
Collapse
Affiliation(s)
- Xiaolei Guo
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Shukai Li
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Jingrui Tian
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medicine, North China University of Science and Technology, Tangshan 063210, China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guanglong Ma
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Haiyan Xiao
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Zhiwei Liu
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Longgang Wang
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China.
| | - Xiaohua Jiang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medicine, North China University of Science and Technology, Tangshan 063210, China.
| |
Collapse
|
5
|
Hussain A, Rehman F, Rafeeq H, Waqas M, Asghar A, Afsheen N, Rahdar A, Bilal M, Iqbal HMN. In-situ, Ex-situ, and nano-remediation strategies to treat polluted soil, water, and air - A review. CHEMOSPHERE 2022; 289:133252. [PMID: 34902385 DOI: 10.1016/j.chemosphere.2021.133252] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 02/05/2023]
Abstract
Nanotechnology, as an emerging science, has taken over all fields of life including industries, health and medicine, environmental issues, agriculture, biotechnology etc. The use of nanostructure molecules has revolutionized all sectors. Environmental pollution is a great concern now a days, in all industrial and developing as well as some developed countries. A number of remedies are in practice to overcome this problem. The application of nanotechnology in the bioremediation of environmental pollutants is a step towards revolution. The use of various types of nanoparticles (TiO2 based NPs, dendrimers, Fe based NPs, Silica and carbon nanomaterials, Graphene based NPs, nanotubes, polymers, micelles, nanomembranes etc.) is in practice to diminish environmental hazards. For this many In-situ (bioventing, bioslurping, biosparging, phytoremediation, permeable reactive barrier etc.) and Ex-situ (biopile, windrows, bioreactors, land farming etc.) methodologies are employed. Improved properties like nanoscale size, less time utilization, high adaptability for In-situ and Ex-situ use, undeniable degree of surface-region to-volume proportion for possible reactivity, and protection from ecological elements make nanoparticles ideal for natural applications. There are distinctive nanomaterials and nanotools accessible to treat the pollutants. Each of these methods and nanotools depends on the properties of foreign substances and the pollution site. The current designed review highlights the techniques used for bioremediation of environmental pollutants as well as use of various nanoparticles along with proposed In-situ and Ex-situ bioremediation techniques.
Collapse
Affiliation(s)
- Asim Hussain
- Department of Biochemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Fazeelat Rehman
- Department of Chemistry, School of Natural Sciences, National University of Sciences & Technology, Islamabad 44000, Pakistan
| | - Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Muhammad Waqas
- Department of Applied Sciences, National Textile University Faisalabad, 37610, Pakistan
| | - Asma Asghar
- Department of Biochemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
6
|
Mehrizi TZ, Kafiabad SA, Eshghi P. Effects and treatment applications of polymeric nanoparticles on improving platelets' storage time: a review of the literature from 2010 to 2020. Blood Res 2021; 56:215-228. [PMID: 34880140 PMCID: PMC8721452 DOI: 10.5045/br.2021.2021094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/26/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Maintaining the quality of platelet products and increasing their storage time are priorities for treatment applications. The formation of platelet storage lesions that limit the storage period and preservation temperature, which can prepare a decent environment for bacterial growth, are the most important challenges that researchers are dealing with in platelet preservation. Nanotechnology is an emerging field of science that has introduced novel solutions to resolve these problems. Here, we reviewed the reported effects of polymeric nanoparticles-including chitosan, dendrimers, polyethylene glycol (PEG), and liposome-on platelets in articles from 2010 to 2020. As a result, we concluded that the presence of dendrimer nanoparticles with a smaller size, negative charge, low molecular weight, and low concentration along with PEGylation can increase the stability and survival of platelets during storage. In addition, PEGylation of platelets can also be a promising approach to improve the quality of platelet bags during storage.
Collapse
Affiliation(s)
- Tahereh Zadeh Mehrizi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Sedigheh Amini Kafiabad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Peyman Eshghi
- Pediatric Congenital Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences and Iran Blood Transfusion Organization, Tehran, Iran
| |
Collapse
|
7
|
Kongcharoen H, Coester B, Yu F, Aziz I, Poh WC, Tan MWM, Tonanon P, Ciou JH, Chan B, Webster RD, Lew WS, Lee PS. Magnetically Directed Co-nanoinitiators for Cross-Linking Adhesives and Enhancing Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57851-57863. [PMID: 34843200 DOI: 10.1021/acsami.1c08040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magnetically directed localized polymerization is of immense interest for its extensive impacts and applications in numerous fields. The use of means untethered from an external magnetic field to localize initiation of polymerization to develop a curing system is a novel concept, with a sustainable, efficient, and eco-friendly approach and a wide range of potential in both science and engineering. However, the conventional means for the initiation of polymerization cannot define the desirable location of polymerization, which is often exacerbated by the poor temporal control in the curing system. Herein, the copper-immobilized dendrimer-based magnetic iron oxide silica (MNPs-G2@Cu2+) co-nanoinitiators are rationally designed as initiators for redox radical polymerization. The nanoinitiators are magnetically responsive and therefore enable localized polymerization using an external magnetic field. In this work, anaerobic polymerization of an adhesive composed of triethylene glycol dimethacrylate, tert-butyl peroxybenzoate, and MNPs-G2@Cu2+ as the magnetic co-nanoinitiators has been investigated. The use of a magnet locates and promotes redox free radical polymerization through the synergistic functions between peroxide and MNPs-G2@Cu2+ co-nanoinitiators. The mechanical properties of the resulting polymer are considerably reinforced because the MNPs-G2@Cu2+ co-nanoinitiators concurrently play another crucial role as nanofillers. This strategy provides a novel approach for magnetically tunable localized polymerization, which allows new opportunities to govern the formulation of advanced adhesives through polymerization under hazard-free conditions for various promising applications.
Collapse
Affiliation(s)
- Haruethai Kongcharoen
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Birte Coester
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Fei Yu
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Izzat Aziz
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Wei Church Poh
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Matthew Wei Ming Tan
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Panyawut Tonanon
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Jing-Hao Ciou
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Benjamin Chan
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Richard D Webster
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Wen Siang Lew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| |
Collapse
|
8
|
García-Álvarez F, Martínez-García M. Click reaction in the synthesis of dendrimer drug-delivery systems. Curr Med Chem 2021; 29:3445-3470. [PMID: 34711155 DOI: 10.2174/0929867328666211027124724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022]
Abstract
Drug delivery systems are technologies designed for the targeted delivery and controlled release of medicinal agents. Among the materials employed as drug delivery systems, dendrimers have gained increasing interest in recent years because of their properties and structural characteristics. The use of dendrimer-nanocarrier formulations enhances the safety and bioavailability, increases the solubility in water, improves stability and pharmacokinetic profile, and enables efficient delivery of the target drug to a specific site. However, the synthesis of dendritic architectures through convergent or divergent methods has drawbacks and limitations that disrupt aspects related to design and construction and consequently slow down the transfer from academia to industry. In that sense, the implementation of click chemistry has been received increasing attention in the last years, because offers new efficient approaches to obtain dendritic species in good yields and higher monodispersity. This review focuses on recent strategies for building dendrimer drug delivery systems using click reactions from 2015 to early 2021. The dendritic structures showed in this review are based on β-cyclodextrins (β-CD), poly(amidoamine) (PAMAM), dendritic poly (lysine) (PLLD), dimethylolpropionic acid (bis-MPA), phosphoramidate (PAD), and poly(propargyl alcohol-4-mercaptobutyric (PPMA).
Collapse
Affiliation(s)
- Fernando García-Álvarez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México D.F. Mexico
| | - Marcos Martínez-García
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México D.F. Mexico
| |
Collapse
|
9
|
Roeven E, Scheres L, Smulders MM, Zuilhof H. Zwitterionic dendrimer – Polymer hybrid copolymers for self-assembling antifouling coatings. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Zadeh Mehrizi T, Eshghi P. Investigation of the effect of nanoparticles on platelet storage duration 2010–2020. INTERNATIONAL NANO LETTERS 2021. [DOI: 10.1007/s40089-021-00340-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Design of Organoiron Dendrimers Containing Paracetamol for Enhanced Antibacterial Efficacy. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25194514. [PMID: 33023084 PMCID: PMC7583835 DOI: 10.3390/molecules25194514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 11/22/2022]
Abstract
Paracetamol (acetaminophen) is a common painkiller and antipyretic drug used globally. Attachment of paracetamol to a series of organoiron dendrimers was successfully synthesized. The aim of this study is to combine the benefits of the presence of these redox-active organoiron dendrimers, their antimicrobial activities against some human pathogenic Gram-positive, and the therapeutic characteristics of paracetamol. The antimicrobial activity of these dendrimers was investigated and tested with a minimum inhibitory concentration and this has been reported. Some of these newly synthesized dendrimers exhibited the highest inhibitory activity against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE), and Staphylococcus warneri compared to reference drugs. The results of this study indicate that the antimicrobial efficacy of the dendrimers is dependent on the size of the redox-active organoiron dendrimer and its terminal functionalities. The best result has been recorded for the fourth-generation dendrimer 11, which attached to 48 paracetamol end groups and has 90 units composed of the η6-aryl-η5-cyclopentadienyliron (II) complex. This dendrimer presented inhibition of 50% of the growth (IC50) of 0.52 μM for MRSA, 1.02 μM for VRE, and 0.73 μM for Staphylococcus warneri. The structures of the dendrimers were characterized by elemental analysis, Fourier transform infrared (FT-IR), nuclear magnetic resonance (1H-NMR), and 13C-NMR spectroscopic techniques. In addition, all synthesized dendrimers displayed good thermal stability in the range of 300–350 °C following the degradation of the cationic iron moieties which occurred around 200 °C.
Collapse
|
12
|
Singhania A, Dutta M, Saha S, Sahoo P, Bora B, Ghosh S, Fujita D, Bandyopadhyay A. Speedy one-pot electrochemical synthesis of giant octahedrons from in situ generated pyrrolidinyl PAMAM dendrimer. SOFT MATTER 2020; 16:9140-9146. [PMID: 32926056 DOI: 10.1039/d0sm00819b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel electrochemical synthesis via a radical generation pathway is described here for the generation of a quaternary megamer structure from secondary dendrimers. The reaction is rapid and completes in <5 min. We have used lower/higher generation poly(amido)amine (PAMAM) dendrimers with carboxylic acid groups at the terminals. A precise electrocatalytic reaction at >3.5 V activates the carboxylic groups to undergo anodic oxidation (-e-) and produce radical carboxylate anions on the dendrimer surface. The reaction further goes through a decarboxylative elimination. Successive self-assembly creates billions of polydispersed and extremely stable ∼500 nm octahedron nanostructures, which we failed to destroy even by using a 20 kV electron beam. This is a new route for the speedy synthesis of important futuristic materials of well-defined shape. It has applications in building designer organic crystals for solar cells, organic electronics, rapid protein gelation, rapid protein crystallization, etc.
Collapse
Affiliation(s)
- Anup Singhania
- Chemical Science & Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam-785006, India. and Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam 785006, India
| | - Mrinal Dutta
- PV Metrology Group, Advanced Materials Devices and Metrology Division, CSIR-National Physical Laboratory, New Delhi-110012, India and Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, New Delhi-110012, India
| | - Supriya Saha
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam 785006, India and Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam-785006, India
| | - Pathik Sahoo
- International Center for Materials and Nanoarchitectronics (MANA) and Research Center for Advanced Measurement and Characterization (RCAMC), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Japan
| | - Bharati Bora
- Chemical Science & Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam-785006, India.
| | - Subrata Ghosh
- Chemical Science & Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam-785006, India. and Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam 785006, India
| | - Daisuke Fujita
- Research Center for Advanced Measurement and Characterization (RCAMC), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Japan
| | - Anirban Bandyopadhyay
- International Center for Materials and Nanoarchitectronics (MANA) and Research Center for Advanced Measurement and Characterization (RCAMC), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Japan
| |
Collapse
|