1
|
Yang M, Kim S, Jeong S, Lee S, Lee S, Jo H, Kim N, Song N, Park SC, Lee D. Harnessing Dual-Responsive Polymeric Micelles for Precision Oxidative Stress Amplification in Targeted Cancer Therapy. Biomacromolecules 2025; 26:437-448. [PMID: 39648938 DOI: 10.1021/acs.biomac.4c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Targeting the altered redox balance in cancer cells, this study explores a strategy to induce selective cancer cell death by combining reactive oxygen species (ROS) generation with glutathione (GSH) depletion. We developed oxidative stress-amplifying polymeric (pCB) micelles that function both as therapeutic agents and carriers for GSH-depleting retinoic acid prodrug (BRDP). pCB incorporating ROS-generating cinnamaldehyde and a GSH-depleting quinone methide precursor could self-assemble into micelles encapsulating BRDP, delivering both ROS generators and GSH-depleting drugs. The micelles were surface-functionalized with the tripeptide Arg-Gly-Asp (RGD) for targeted delivery to integrin-overexpressing tumors. In a mouse xenograft model, RGD-decorated BRDP-loaded micelles significantly accumulated in tumor sites, enhancing anticancer efficacy without toxicity to normal tissues. This study marks significant advancement in the field of oxidative stress-amplifying polymeric precursors, presenting a novel and highly effective anticancer therapeutic approach that integrates multiple tumor-specific triggers and ROS-mediated mechanisms.
Collapse
Affiliation(s)
- Manseok Yang
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
| | - Sujin Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
| | - Seungwon Jeong
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
| | - Suyeon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
| | - Seunga Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
| | - Hanui Jo
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
| | - Nuri Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
| | - Nanhee Song
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
| | - Seong-Cheol Park
- Department of Polymer Engineering, Suncheon National University, Suncheon, Chonnam 57922, Korea
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
| |
Collapse
|
2
|
Shahzad A, Liu W, Sun Y, Liu X, Xia J, Cui K, Sai B, Zhu Y, Yang Z, Zhang Q. Flavonoids as modulators of metabolic reprogramming in renal cell carcinoma (Review). Oncol Rep 2024; 52:167. [PMID: 39422066 PMCID: PMC11526433 DOI: 10.3892/or.2024.8826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Renal cell carcinoma (RCC) is distinguished by its varied metabolic reprogramming driven by tumor suppressor gene dysregulation and oncogene activation. Tumors can adapt nutrient uptake and metabolism pathways to meet the altered biosynthetic, bioenergetic and redox demands of cancer cells, whereas conventional chemotherapeutics and molecular inhibitors predominantly target individual metabolic pathways without addressing this adaptability. Flavonoids, which are well‑known for their antioxidant and anti‑inflammatory properties, offer a unique approach by influencing multiple metabolic targets. The present comprehensive review reveals the intricate processes of RCC metabolic reprogramming, encompassing glycolysis, mitochondrial oxidative phosphorylation and fatty acid biosynthesis. The insights derived from the present review may contribute to the understanding of the specific anticancer mechanisms of flavonoids, potentially paving the way for the development of natural antitumor drugs focused on the metabolic reprogramming of RCC.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yijian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
3
|
Lim C, Blocher McTigue WC. Form Equals Function: Influence of Coacervate Architecture on Drug Delivery Applications. ACS Biomater Sci Eng 2024; 10:6766-6789. [PMID: 39423330 PMCID: PMC11558567 DOI: 10.1021/acsbiomaterials.4c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
Complex coacervates, formed through electrostatic interactions between oppositely charged polymers, present a versatile platform for drug delivery, providing rapid assembly, selective encapsulation, and responsiveness to environmental stimuli. The architecture and properties of coacervates can be tuned by controlling structural and environmental design factors, which significantly impact the stability and delivery efficiency of the drugs. While environmental design factors such as salt, pH, and temperature play a crucial role in coacervate formation, structural design factors such as polymer concentration, polymer structure, mixing ratio, and chain length serve as the core framework that shapes coacervate architecture. These elements modulate the phase behavior and material properties of coacervates, allowing for a highly tunable system. In this review, we primarily analyze how these structural design factors contribute to the formation of diverse coacervate architecture, ranging from bulk coacervates to polyion complex micelles, vesicles, and cross-linked gels, though environmental design factors are considered. We then examine the effectiveness of these architectures in enhancing the delivery and efficacy of drugs across various administration routes, such as noninvasive (e.g., oral and transdermal) and invasive delivery. This review aims to provide foundational insights into the design of advanced drug delivery systems by examining how the origin and chemical structure of polymers influence coacervate architecture, which in turn defines their material properties. We then explore how the architecture can be tailored to optimize drug delivery for specific administration routes. This approach leverages the intrinsic properties derived from the coacervate architecture to enable targeted, controlled, and efficient drug release, ultimately enhancing therapeutic outcomes in precision medicine.
Collapse
Affiliation(s)
- Chaeyoung Lim
- Department of Chemical and Biomolecular
Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Whitney C. Blocher McTigue
- Department of Chemical and Biomolecular
Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
4
|
Swain S, Lin TY, Chou IH, Liu SC, Mallick BC, Lin HY, Huang CH. Photoactive nanocatalysts as DTT-assisted BSA-AuNCs with enhanced oxidase-mimicking ability for sensitive fluorometric detection of antioxidants. J Nanobiotechnology 2024; 22:585. [PMID: 39342215 PMCID: PMC11438146 DOI: 10.1186/s12951-024-02850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Redox imbalance and oxidative stress are increasingly recognized as significant factors in health disorders such as neurodegenerative disorders, premature aging and cancer. However, detecting antioxidant levels that is crucial for managing oxidative stress, can be challenging due to existing assays' limitations, such as insensitivity to thiol-containing antioxidants. This study presents a simple fluorescence-based assay for antioxidant detection employing the enhanced photocatalytic oxidase-like activity of dithiothreitol (DTT)-assisted bovine serum albumin (BSA)-stabilized gold nanoclusters (DTT@BSA-AuNCs). The reported nanozyme exhibits remarkable stability, versatility, and catalytic activity. Under LED irradiation, DTT@BSA-AuNCs generate singlet oxygen, which converts non-fluorescent thiamine to fluorescent thiochrome, utilizing dissolved oxygen for catalysis. Antioxidants inhibit thiochrome formation, leading to fluorescence quenching. This method enables sensitive detection of antioxidants such as ascorbic acid and glutathione with limits of detection of 0.08 µM and 0.32 µM, respectively, under neutral pH, outperforming previous studies. The assay successfully detects antioxidants in human saliva and cancer cell models. The DTT@BSA-AuNCs-based assay offers a cost-effective, sensitive, and straightforward approach for detecting antioxidants in biological samples, facilitating improved monitoring of oxidative stress in various diseases.
Collapse
Affiliation(s)
- Sanskruti Swain
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Ting-Yi Lin
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - I-Hsuan Chou
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Chen Liu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Bikash C Mallick
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hsing-Ying Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chen-Han Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
5
|
Liu Y, Zhao Y, Song H, Li Y, Liu Z, Ye Z, Zhao J, Wu Y, Tang J, Yao M. Metabolic reprogramming in tumor immune microenvironment: Impact on immune cell function and therapeutic implications. Cancer Lett 2024; 597:217076. [PMID: 38906524 DOI: 10.1016/j.canlet.2024.217076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Understanding of the metabolic reprogramming has revolutionized our insights into tumor progression and potential treatment. This review concentrates on the aberrant metabolic pathways in cancer cells within the tumor microenvironment (TME). Cancer cells differ from normal cells in their metabolic processing of glucose, amino acids, and lipids in order to adapt to heightened biosynthetic and energy needs. These metabolic shifts, which crucially alter lactic acid, amino acid and lipid metabolism, affect not only tumor cell proliferation but also TME dynamics. This review also explores the reprogramming of various immune cells in the TME. From a therapeutic standpoint, targeting these metabolic alterations represents a novel cancer treatment strategy. This review also discusses approaches targeting the regulation of metabolism of different nutrients in tumor cells and influencing the tumor microenvironment to enhance the immune response. In summary, this review summarizes metabolic reprogramming in cancer and its potential as a target for innovative therapeutic strategies, offering fresh perspectives on cancer treatment.
Collapse
Affiliation(s)
- Yuqiang Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Yu Zhao
- Department of Thoracic Surgery, Sheng Jing Hospital, China Medical University, Shenyang, Liaoning, 110000, China
| | - Huisheng Song
- Affiliated Qingyuan Hospital, Guangzhou Medica University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511500, China
| | - Yunting Li
- Department of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Zihao Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Zhiming Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jianzhu Zhao
- Department of oncology, Sheng Jing Hospital, China Medical University, Shenyang, Liaoning, 110000, China
| | - Yuzheng Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jun Tang
- Department of Thoracic Surgery, Sheng Jing Hospital, China Medical University, Shenyang, Liaoning, 110000, China.
| | - Maojin Yao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
| |
Collapse
|
6
|
Jin Z, Jiang L, He Q. Critical learning from industrial catalysis for nanocatalytic medicine. Nat Commun 2024; 15:3857. [PMID: 38719843 PMCID: PMC11079063 DOI: 10.1038/s41467-024-48319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Systematical and critical learning from industrial catalysis will bring inspiration for emerging nanocatalytic medicine, but the relevant knowledge is quite limited so far. In this review, we briefly summarize representative catalytic reactions and corresponding catalysts in industry, and then distinguish the similarities and differences in catalytic reactions between industrial and medical applications in support of critical learning, deep understanding, and rational designing of appropriate catalysts and catalytic reactions for various medical applications. Finally, we summarize/outlook the present and potential translation from industrial catalysis to nanocatalytic medicine. This review is expected to display a clear picture of nanocatalytic medicine evolution.
Collapse
Affiliation(s)
- Zhaokui Jin
- Medical Center on Aging, Ruijin Hospital; Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510182, China
| | - Lingdong Jiang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Qianjun He
- Medical Center on Aging, Ruijin Hospital; Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
7
|
André R, Pacheco R, Santos HM, Serralheiro ML. Exploring the Hypocholesterolemic Potential of a Fucus vesiculosus Extract: Omic Insights into Molecular Mechanisms at the Intestinal Level. Mar Drugs 2024; 22:187. [PMID: 38667804 PMCID: PMC11050770 DOI: 10.3390/md22040187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
High blood cholesterol levels are a major risk factor for cardiovascular diseases. A purified aqueous extract of Fucus vesiculosus, rich in phlorotannins and peptides, has been described for its potential to inhibit cholesterol biosynthesis and intestinal absorption. In this work, the effect of this extract on intestinal cells' metabolites and proteins was analysed to gain a deeper understanding of its mode of action on lipids' metabolism, particularly concerning the absorption and transport of exogenous cholesterol. Caco-2 cells, differentiated into enterocytes, were exposed to the extract, and analysed by untargeted metabolomics and proteomics. The results of the metabolomic analysis showed statistically significant differences in glutathione content of cells exposed to the extract compared to control cells, along with an increased expression of fatty acid amides in exposed cells. A proteomic analysis showed an increased expression in cells exposed to the extract compared to control cells of FAB1 and NPC1, proteins known to be involved in lipid metabolism and transport. To the extent of our knowledge, this study is the first use of untargeted metabolomics and a proteomic analysis to investigate the effects of F. vesiculosus on differentiated Caco-2 cells, offering insights into the molecular mechanism of the extract's compounds on intestinal cells.
Collapse
Affiliation(s)
- Rebeca André
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Rita Pacheco
- Department of Chemical Engineering, ISEL—Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal
- Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Hugo M. Santos
- LAQV@REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
- PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-182 Caparica, Portugal
| | - Maria Luísa Serralheiro
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
- Department of Chemistry and Biochemistry, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C8 bldg, 1749-016 Lisboa, Portugal
| |
Collapse
|
8
|
Abdel-Wahab ND, Kabil MF, El-Sherbiny IM, Salama MF, El-Sayed G, El-Sherbini ES. Potential anticancer effect of free and nanoformulated Deferasirox for breast cancer treatment: in-vitro and in-vivo evaluation. Drug Dev Ind Pharm 2024; 50:223-235. [PMID: 38305197 DOI: 10.1080/03639045.2024.2314189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Breast cancer (BC) stands as the second-leading cause of mortality among women worldwide. Many chemotherapeutic treatments for BC come with significant adverse effects. Additionally, BC is recognized as one of the most resistant forms of malignancy to treatment. Consequently, there exists a critical need for innovative therapeutic agents that are both highly effective and exhibit reduced toxicity and side effects for patients. Deferasirox (DFX), an iron-chelating drug approved by the FDA for oral use, emerges as a promising contender in the fight against BC proliferation. DFX, primarily administered orally, is utilized to address chronic iron excess resulting from blood transfusions, and it is the inaugural treatment for chronic iron overload syndrome. However, DFX encounters limitations due to its poor water solubility. AIM This study aimed at incorporating DFX into lipid nanocapsules (DFX-LNCs) followed by investigating the anticancer effect of the DFX nanoform as compared to free DFX in-vitro and on an orthotopic BC mouse model in-vivo. METHODS The DFX-LNCs was prepared and imaged using TEM and also characterized in terms of particle size (PS), zeta potential (ZP), and polydispersity index (PDI) using DLS. Moreover, drug release, cytotoxicity, and anticancer effect were assessed in-vitro, and in-vivo. RESULTS The results revealed that DFX-LNCs are more cytotoxic than free DFX with IC50 of 4.417 µg/ml and 16.114 µg/ml, respectively, while the plain LNCs didn't show any cytotoxic effect on the 4T1 cell line (IC50 = 122.797 µg/ml). Besides, the apoptotic effect of DFX-LNCs was more pronounced than that of free DFX, as evidenced by Annexin V/PI staining, increased BAX expression, and decreased expression of BcL-2. Moreover, DFX-LNCs showed a superior antitumor effect in-vivo with potent antioxidant and anti-proliferative effects. CONCLUSION The newly developed DFX nanoform demonstrated a high potential as a promising therapeutic agent for BC treatment.
Collapse
Affiliation(s)
- Nadeen Diaa Abdel-Wahab
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Egypt
| | - Mohamed Fawzi Kabil
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, Giza, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed F Salama
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Egypt
| | - Gehad El-Sayed
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Egypt
| | - El-Said El-Sherbini
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Egypt
| |
Collapse
|
9
|
Kyriakou S, Demosthenous N, Amery T, Stewart KJ, Winyard PG, Franco R, Pappa A, Panayiotidis MI. Naturally Derived Phenethyl Isothiocyanate Modulates Induction of Oxidative Stress via Its N-Acetylated Cysteine Conjugated form in Malignant Melanoma. Antioxidants (Basel) 2024; 13:82. [PMID: 38247506 PMCID: PMC10812449 DOI: 10.3390/antiox13010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Phenethyl isothiocyanate (PEITC) is a secondary metabolic product yielded upon the hydrolysis of gluconasturtiin and it is highly accumulated in the flowers of watercress. The aim of the current study was to assess the role of a naturally derived PEITC-enriched extract in the induction of oxidative stress and to evaluate its anti-melanoma potency through the regulation of its metabolism with the concurrent production of the N-acetyl cysteine conjugated by-product. For this purpose, an in vitro melanoma model was utilized consisting of human primary (A375) cells as well as metastatic (COLO-679) malignant melanoma cells together with non-tumorigenic immortalized keratinocytes (HaCaT). Cytotoxicity was assessed via the Alamar Blue assay whereas the antioxidant/prooxidant activity of PEITC was determined via spectrophotometric assays. Finally, kinetic characterization of the end-product of PEITC metabolism was monitored via UPLC coupled to a tandem mass spectrometry (MS/MS). Our results indicate that although PhEF showed very minor antioxidant activity in a cell-free system, in a cell-based system, it can modulate the activity of key enzyme(s) involved in cellular antioxidant defense mechanism(s). In addition, we have shown that PhEF induces lipid and protein oxidation in a concentration-dependent manner, while its cytotoxicity is not only dependent on PEITC itself but also on its N-acetylated cysteine conjugated form.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (N.D.)
| | - Nikoletta Demosthenous
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (N.D.)
| | - Tom Amery
- The Watercress Company, Dorchester DT2 8QY, UK;
| | - Kyle J. Stewart
- Watercress Research Limited, Unit 24, De Havilland Road, Exeter EX5 2GE, UK; (K.J.S.); (P.G.W.)
| | - Paul G. Winyard
- Watercress Research Limited, Unit 24, De Havilland Road, Exeter EX5 2GE, UK; (K.J.S.); (P.G.W.)
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (N.D.)
| |
Collapse
|
10
|
Kang C, Ren X, Lee D, Ramesh R, Nimmo S, Yang-Hartwich Y, Kim D. Harnessing small extracellular vesicles for pro-oxidant delivery: novel approach for drug-sensitive and resistant cancer therapy. J Control Release 2024; 365:286-300. [PMID: 37992875 PMCID: PMC10872719 DOI: 10.1016/j.jconrel.2023.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Multidrug resistance (MDR) is an inevitable clinical problem in chemotherapy due to the activation of abundant P-glycoprotein (P-gp) that can efflux drugs. Limitations of current cancer therapy highlight the need for the development of a comprehensive cancer treatment strategy, including drug-resistant cancers. Small extracellular vesicles (sEVs) possess significant potential in surmounting drug resistance as they can effectively evade the efflux mechanism and transport small molecules directly to MDR cancer cells. One mechanism mediating MDR in cancer cells is sustaining increased levels of reactive oxygen species (ROS) and maintenance of the redox balance with antioxidants, including glutathione (GSH). Herein, we developed GSH-depleting benzoyloxy dibenzyl carbonate (B2C)-encapsulated sEVs (BsEVs), which overcome the efflux system to exert highly potent anticancer activity against human MDR ovarian cancer cells (OVCAR-8/MDR) by depleting GSH to induce oxidative stress and, in turn, apoptotic cell death in both OVCAR-8/MDR and OVCAR-8 cancer cells. BsEVs restore drug responsiveness by inhibiting ATP production through the oxidation of nicotinamide adenine dinucleotide with hydrogen (NADH) and inducing mitochondrial dysfunction, leading to the dysfunction of efflux pumps responsible for drug resistance. In vivo studies showed that BsEV treatment significantly inhibited the growth of OVCAR-8/MDR and OVCAR-8 tumors. Additionally, OVCAR-8/MDR tumors showed a trend towards a greater sensitivity to BsEVs compared to OVCAR tumors. In summary, this study demonstrates that BsEVs hold tremendous potential for cancer treatment, especially against MDR cancer cells.
Collapse
Affiliation(s)
- Changsun Kang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Xiaoyu Ren
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju 54896, South Korea
| | - Rajagopal Ramesh
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Susan Nimmo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
11
|
Pal C. Small-molecule redox modulators with anticancer activity: A comprehensive mechanistic update. Free Radic Biol Med 2023; 209:211-227. [PMID: 37898387 DOI: 10.1016/j.freeradbiomed.2023.10.406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The pursuit of effective anticancer therapies has led to a burgeoning interest in the realm of redox modulation. This review provides a comprehensive exploration of the intricate mechanisms by which diverse anticancer molecules leverage redox pathways for therapeutic intervention. Redox modulation, encompassing the fine balance of oxidation-reduction processes within cells, has emerged as a pivotal player in cancer treatment. This review delves into the multifaceted mechanisms of action employed by various anticancer compounds, including small molecules and natural products, to disrupt cancer cell proliferation and survival. Beginning with an examination of the role of redox signaling in cancer development and resistance, the review highlights how aberrant redox dynamics can fuel tumorigenesis. It then meticulously dissects the strategies employed by anticancer agents to induce oxidative stress, perturb redox equilibrium, and trigger apoptosis within cancer cells. Furthermore, the review explores the challenges and potential side effects associated with redox-based treatments, along with the development of novel redox-targeted agents. In summary, this review offers a profound understanding of the dynamic interplay between redox modulation and anticancer molecules, presenting promising avenues to revolutionize cancer therapy and enhance patient outcomes.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal, 743273, India.
| |
Collapse
|
12
|
de Luna FCF, Ferreira WAS, Casseb SMM, de Oliveira EHC. Anticancer Potential of Flavonoids: An Overview with an Emphasis on Tangeretin. Pharmaceuticals (Basel) 2023; 16:1229. [PMID: 37765037 PMCID: PMC10537037 DOI: 10.3390/ph16091229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Natural compounds with pharmacological activity, flavonoids have been the subject of an exponential increase in studies in the field of scientific research focused on therapeutic purposes due to their bioactive properties, such as antioxidant, anti-inflammatory, anti-aging, antibacterial, antiviral, neuroprotective, radioprotective, and antitumor activities. The biological potential of flavonoids, added to their bioavailability, cost-effectiveness, and minimal side effects, direct them as promising cytotoxic anticancer compounds in the optimization of therapies and the search for new drugs in the treatment of cancer, since some extensively antineoplastic therapeutic approaches have become less effective due to tumor resistance to drugs commonly used in chemotherapy. In this review, we emphasize the antitumor properties of tangeretin, a flavonoid found in citrus fruits that has shown activity against some hallmarks of cancer in several types of cancerous cell lines, such as antiproliferative, apoptotic, anti-inflammatory, anti-metastatic, anti-angiogenic, antioxidant, regulatory expression of tumor-suppressor genes, and epigenetic modulation.
Collapse
Affiliation(s)
- Francisco Canindé Ferreira de Luna
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SEAMB), Evandro Chagas Institute (IEC), BR 316, KM 7, s/n, Levilândia, Ananindeua 67030-000, Brazil; (W.A.S.F.); (E.H.C.d.O.)
| | - Wallax Augusto Silva Ferreira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SEAMB), Evandro Chagas Institute (IEC), BR 316, KM 7, s/n, Levilândia, Ananindeua 67030-000, Brazil; (W.A.S.F.); (E.H.C.d.O.)
| | | | - Edivaldo Herculano Correa de Oliveira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SEAMB), Evandro Chagas Institute (IEC), BR 316, KM 7, s/n, Levilândia, Ananindeua 67030-000, Brazil; (W.A.S.F.); (E.H.C.d.O.)
- Faculty of Natural Sciences, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Rua Augusto Correa, 01, Belém 66075-990, Brazil
| |
Collapse
|
13
|
Jung E, Kwon S, Song N, Kim N, Jo H, Yang M, Park S, Kim C, Lee D. Tumor-targeted redox-regulating and antiangiogenic phototherapeutics nanoassemblies for self-boosting phototherapy. Biomaterials 2023; 298:122127. [PMID: 37086554 DOI: 10.1016/j.biomaterials.2023.122127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Abstract
Cancer cells are equipped with abundant antioxidants such as glutathione (GSH) that eliminate reactive oxygen species (ROS) to deteriorate the therapeutic efficacy of photodynamic therapy (PDT). Another challenge in PDT is circumventing PDT-induced hypoxic condition that provokes upregulation of pro-angiogenic factor such as vascular endothelial growth factor (VEGF). It is therefore reasonable to expect that therapeutic outcomes of PDT could be maximized by concurrent delivery of photosensitizers with GSH depleting agents and VEGF suppressors. To achieve cooperative therapeutic actions of PDT with in situ GSH depletion and VEGF suppression, we developed tumor targeted redox-regulating and antiangiogenic phototherapeutic nanoassemblies (tRAPs) composed of self-assembling disulfide-bridged borylbenzyl carbonate (ssBR), photosensitizer (IR780) and tumor targeting gelatin. As a framework of tRAPs, ssBR was rationally designed to form nanoconstructs that serve as photosensitizer carriers with intrinsic GSH depleting- and VEGF suppressing ability. tRAPs effectively depleted intracellular GSH to render cancer cells more vulnerable to ROS and also provoked immunogenic cell death (ICD) of cancer cells upon near infrared (NIR) laser irradiation. In mouse xenograft models, tRAPs preferentially accumulated in tumors and dramatically eradicated tumors with laser irradiation. The design rationale of tRAPs provides a simple and versatile strategy to develop self-boosting phototherapeutic agents with great potential in targeted cancer therapy.
Collapse
Affiliation(s)
- Eunkyeong Jung
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea; Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Soonyoung Kwon
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea
| | - Nanhee Song
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea
| | - Nuri Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea
| | - Hanui Jo
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea
| | - Manseok Yang
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea
| | - Sangjun Park
- Research Institute of Radiological & Medical Sciences, Korea Institute of Radiological & Medical Sciences, Nowongu, Seoul, 01812, Republic of Korea
| | - Chunho Kim
- Research Institute of Radiological & Medical Sciences, Korea Institute of Radiological & Medical Sciences, Nowongu, Seoul, 01812, Republic of Korea
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea; Department of Polymer⋅Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
| |
Collapse
|
14
|
Mondal A, Das S, Ali SM, Kolay S, Sengupta A, Molla MR. Bioderived Lipoic Acid-Based Dynamic Covalent Nanonetworks of Poly(disulfide)s: Enhanced Encapsulation Stability and Cancer Cell-Selective Delivery of Drugs. Bioconjug Chem 2023; 34:489-500. [PMID: 36693213 DOI: 10.1021/acs.bioconjchem.2c00493] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dynamic covalent poly(disulfide)-based cross-linked nanoaggregates, termed nanonetworks (NNs), endowed with pH- and redox-responsive degradation features have been fabricated for stable noncovalent encapsulation and triggered cargo release in a controlled fashion. A bioderived lipoic acid-based Gemini surfactant-like amphiphilic molecule was synthesized for the preparation of nanoaggregates. It self-assembles by a entropy-driven self-assembly process in aqueous milieu. To further stabilize the self-assembled nanostructure, the core was cross-linked by ring-opening disulfide exchange polymerization (RODEP) of 1,2-dithiolane rings situated inside the core of the nanoaggregates. The cross-linked nanoaggregates, i.e., nanonetwork, are found to be stable in the presence of blood serum, and also, they maintain the self-assembled structure even below the critical aggregation concentration (CAC) as probed by dynamic light scattering (DLS) experiments. The nanonetwork showed almost 50% reduction in guest leakage compared to that of the nanoaggregates as shown by the release profile in the absence of stimuli, suggesting high encapsulation stability as evidenced by the fluorescence resonance energy transfer (FRET) experiment. The decross-linking of the nanonetwork occurs in response to redox and pH stimuli due to disulfide reduction and β-thioester hydrolysis, respectively, thus empowering disassembly-mediated controlled cargo release up to ∼87% for 55 h of incubation. The biological evaluation of the doxorubicin (DOX)-loaded nanonetwork revealed environment-specific surface charge modulation-mediated cancer cell-selective cellular uptake and cytotoxicity. The benign nature of the nanonetwork toward normal cells makes the system very promising in targeted drug delivery applications. Thus, the ease of synthesis, nanonetwork fabrication reproducibility, robust stability, triggered drug release in a controlled fashion, and cell-selective cytotoxicity behavior, we believe, will make the system a potential candidate in the development of robust materials for chemotherapeutic applications.
Collapse
Affiliation(s)
- Arun Mondal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Shreya Das
- Department of Life Science & Biotechnology, Jadavpur University, 188 R. S. C. M. Road, Jadavpur, Kolkata 700032, India
| | - Sk Mursed Ali
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Soumya Kolay
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Arunima Sengupta
- Department of Life Science & Biotechnology, Jadavpur University, 188 R. S. C. M. Road, Jadavpur, Kolkata 700032, India
| | - Mijanur Rahaman Molla
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
15
|
Kennedy SP, Treacy O, Allott EH, Eustace AJ, Lynam-Lennon N, Buckley N, Robson T. Precision Medicine and Novel Therapeutic Strategies in Detection and Treatment of Cancer: Highlights from the 58th IACR Annual Conference. Cancers (Basel) 2022; 14:6213. [PMID: 36551698 PMCID: PMC9777219 DOI: 10.3390/cancers14246213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Innovation in both detection and treatment of cancer is necessary for the constant improvement in therapeutic strategies, especially in patients with novel or resistant variants of cancer. Cancer mortality rates have declined by almost 30% since 1991, however, depending on the cancer type, acquired resistance can occur to varying degrees. To combat this, researchers are looking towards advancing our understanding of cancer biology, in order to inform early detection, and guide novel therapeutic approaches. Through combination of these approaches, it is believed that a more complete and thorough intervention on cancer can be achieved. Here, we will discuss the advances and approaches in both detection and treatment of cancer, presented at the 58th Irish Association for Cancer Research (IACR) annual conference.
Collapse
Affiliation(s)
- Sean P. Kennedy
- School of Biological, Health and Sports Sciences, Technological University Dublin, D07 ADY7 Dublin, Ireland
| | - Oliver Treacy
- Discipline of Pharmacology and Therapeutics, College of Medicine, Nursing and Health Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Emma H. Allott
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 HD53 Dublin, Ireland
| | - Alex J. Eustace
- National Institute for Cellular Biotechnology, Dublin City University, D09 NR58 Dublin, Ireland
| | - Niamh Lynam-Lennon
- Department of Surgery, Trinity St James’s Cancer Institute, Trinity Translational Medicine Institute, St James’s Hospital, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Niamh Buckley
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons Ireland, D02 YN77 Dublin, Ireland
| |
Collapse
|
16
|
Adebayo AK, Nakshatri H. Modeling Preclinical Cancer Studies under Physioxia to Enhance Clinical Translation. Cancer Res 2022; 82:4313-4321. [PMID: 36169928 PMCID: PMC9722631 DOI: 10.1158/0008-5472.can-22-2311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Oxygen (O2) plays a key role in cellular homeostasis. O2 levels are tightly regulated in vivo such that each tissue receives an optimal amount to maintain physiologic status. Physiologic O2 levels in various organs range between 2% and 9% in vivo, with the highest levels of 9% in the kidneys and the lowest of 0.5% in parts of the brain. This physiologic range of O2 tensions is disrupted in pathologic conditions such as cancer, where it can reach as low as 0.5%. Regardless of the state, O2 tension in vivo is maintained at significantly lower levels than ambient O2, which is approximately 21%. Yet, routine in vitro cellular manipulations are carried out in ambient air, regardless of whether or not they are eventually transferred to hypoxic conditions for subsequent studies. Even brief exposure of hematopoietic stem cells to ambient air can cause detrimental effects through a mechanism termed extraphysiologic oxygen shock/stress (EPHOSS), leading to reduced engraftment capabilities. Here, we provide an overview of the effects of ambient air exposure on stem and non-stem cell subtypes, with a focus on recent findings that reveal the impact of EPHOSS on cancer cells.
Collapse
Affiliation(s)
- Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
17
|
Mondal P, Natesh J, Penta D, Meeran SM. Extract of Murraya koenigii selectively causes genomic instability by altering redox-status via targeting PI3K/AKT/Nrf2/caspase-3 signaling pathway in human non-small cell lung cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154272. [PMID: 35728387 DOI: 10.1016/j.phymed.2022.154272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/01/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death worldwide. Dietary bioactives have been used as alternative therapeutics to overcome various adverse effects caused by chemotherapeutics. Curry leaves are a widely used culinary spice and different parts of this plant have been used in traditional medicines. Curry leaves are a rich source of multiple bioactives, especially polyphenols and alkaloids. Therefore, extraction processes play a key role in obtaining the optimum yield of bioactives and their efficacy. PURPOSE We aim to select an extraction process that achieves the optimum yield of bioactives in curry leaves crude extract (CLCE) with minimum solvent usage and in a shorter time. Further, to investigate the anticancer properties of CLCE and its mechanism against lung cancer. METHODS Different extraction processes were performed and analyzed polyphenol content. The bioactives and essential oils present in curry leaves were identified through LC-MS/MS and GC-MS analysis. The cytotoxicity of microwave-assisted CLCE (MA-CLCE) was investigated through MTT and colony-forming assays. The DNA damage was observed by comet assay. The apoptotic mechanisms of MA-CLCE were investigated by estimating ROS production, depolarization of mitochondrial membrane potential (MMP), and apoptotic proteins. The glutathione assay estimated the antioxidant potential of MA-CLCE in normal cells. RESULTS Generally, conventional extraction methods require high temperatures, extra energy input, and time. Recently, green extraction processes are getting wider attention as alternative extraction methods. This study compared different extraction processes and found that the microwave-assisted extraction (MAE) method yields the highest polyphenols from curry leaves among other extraction processes with minimum processing. The MA-CLCE functions as an antioxidant under normal physiological conditions but pro-oxidant to cancer cells. MA-CLCE scavenges free radicals and enhances the intracellular GSH level in alveolar macrophages in situ. We found that MA-CLCE selectively inhibits cell proliferation and induces apoptosis in cancer cells by altering cellular redox status. MA-CLCE induces chromatin condensation and genotoxicity through ROS-induced depolarization of MMP. The depolarization of MMP causes the release of cytochrome c into the cytosol and activates the apoptotic pathway in lung cancer cells. However, pretreatment with ascorbic acid, an antioxidant, inhibits the MA-CLCE-induced apoptosis by reducing ROS production, which impedes mitochondrial membrane disruption, preventing BAX/BCL-2 expression alteration. Simultaneously, MA-CLCE downregulates the expression of survival signaling regulator PI3K/AKT, which modulates Nrf-2. MA-CLCE also diminishes intracellular antioxidant proficiency by suppressing Nrf-2 expression, followed by HO-1 expressions. CONCLUSION Among several extraction methods, MA-CLCE is rich in several bioactives, especially polyphenols, alkaloids, and essential oils. Here, we reported for the first time that MA-CLCE functions as a pro-oxidant to lung cancer cells and acts as an antioxidant to normal cells by regulating different cellular programs and signaling pathways. Therefore, it can be further developed as a promising phytomedicine against lung cancer.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, Laboratory of Nutritional Epigenetics, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jagadish Natesh
- Department of Biochemistry, Laboratory of Nutritional Epigenetics, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dhanamjai Penta
- Department of Biochemistry, Laboratory of Nutritional Epigenetics, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, Laboratory of Nutritional Epigenetics, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
18
|
Lee Y, Song N, Kim N, Yang M, Kwon G, Hyeon H, Jung E, Park SC, Kim C, Lee D. Oxidative Stress Amplifying Polyprodrug Micelles as Drug Carriers for Combination Anticancer Therapy. Biomacromolecules 2022; 23:3887-3898. [PMID: 36007196 DOI: 10.1021/acs.biomac.2c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cancer cells are more vulnerable to reactive oxygen species (ROS)-mediated oxidative stress than normal cells due to disturbed redox balance. It can be postulated that ROS-generating drug carriers exert anticancer actions, leading to combination anticancer therapy with drug payloads. Here, we report a ROS-generating polyprodrug of cinnamaldehyde (CA) that not only serves as a drug carrier but also synergizes with drug payloads. The polyprodrug of CA (pCA) incorporates ROS-generating CA in the backbone of an amphiphilic polymer through an acid-cleavable acetal linkage. pCA could self-assemble with tumor-targeting lipopeptide (DSPE-PEG-RGD) and encapsulate doxorubicin (DOX) to form T-pCAD micelles. At acidic pH, T-pCAD micelles release both CA and DOX to exert synergistic anticancer actions. Animal studies using mouse xenograft models revealed that T-pCAD micelles accumulate in tumors preferentially and suppress the tumor growth significantly. Based on the oxidative stress amplification and acid-responsiveness, ROS-generating pCAD micelles hold tremendous potential as drug carriers for combination anticancer therapy.
Collapse
Affiliation(s)
- Yujin Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk 54896, Republic of Korea
| | - Nanhee Song
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk 54896, Republic of Korea
| | - Nuri Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk 54896, Republic of Korea
| | - Manseok Yang
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk 54896, Republic of Korea
| | - Gayoung Kwon
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk 54896, Republic of Korea
| | - Hyejin Hyeon
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk 54896, Republic of Korea
| | - Eunkyeong Jung
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk 54896, Republic of Korea
| | - Seong-Cheol Park
- Department of Polymer Engineering, Sunchon National University, Sunchon, Junganr-ro 255, Chonnam 57922, Republic of Korea
| | - Chunho Kim
- Radiation and Medical Research Center, Korea Institute of Radiation and Medical Science, Nowonro 75, Nowon-Gu, Seoul 01812, Republic of Korea
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk 54896, Republic of Korea.,Department of Polymer Nano Science and Technology, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk 54896, Republic of Korea
| |
Collapse
|
19
|
Jung E, Jeong SW, Lee Y, Jeon C, Shin H, Song N, Lee Y, Lee D. Self-deliverable and self-immolative prodrug nanoassemblies as tumor targeted nanomedicine with triple cooperative anticancer actions. Biomaterials 2022; 287:121681. [PMID: 35917709 DOI: 10.1016/j.biomaterials.2022.121681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022]
Abstract
Stimulus-responsive self-assembling prodrug-based nanomedicine has emerged as a novel paradigm in controlled drug delivery. All-trans retinoic acid (RA), one of vitamin A metabolites, induces apoptotic cancer cell death, but its clinical applications are limited by weak anticancer efficacy. To fully maximize the therapeutic potential of RA, we exploited the unique chemistry of arylboronic acid which undergoes hydrogen peroxide (H2O2)-triggered degradation to release quinone methide (QM) that alkylates glutathione (GSH) to disrupt redox homeostasis and is also converted into hydroxybenzyl alcohol (HBA) to suppress the expression of vascular endothelial growth factor (VEGF). Here, we report that boronated retinoic acid prodrug (RABA) can be formulated into self-deliverable nanoassemblies which release both RA and QM in a H2O2-triggered self-immolative manner to exert cooperative anticancer activities. RABA nanoassemblies exert anticancer effects by inducing reactive oxygen species (ROS)-mediated apoptosis, eliciting immunogenic cell death (ICD) and suppressing angiogenic VEGF expression. The excellent anticancer efficacy of RABA nanoassemblies can be explained by benefits of self-assembling prodrug-based drug self-delivery and cooperative anticancer actions. The design strategy of RABA would provide a new insight into the rational design of self-deliverable and self-immolative boronated prodrug nanoassemblies for targeted cancer therapy.
Collapse
Affiliation(s)
- Eunkyeong Jung
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Seung Won Jeong
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Yeongjong Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Chanhee Jeon
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Hyunbin Shin
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Nanhee Song
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Yujin Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea; Department of Polymer⋅Nano Science and Technology, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea.
| |
Collapse
|
20
|
Bonelli J, Ortega-Forte E, Vigueras G, Bosch M, Cutillas N, Rocas J, Ruiz J, Marchan V. Polyurethane-polyurea hybrid nanocapsules as efficient delivery systems of anticancer Ir(III) metallodrugs. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01542g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclometalated Ir(III) complexes hold great promise as an alternative to platinum metallodrugs for therapy and diagnosis of cancer. However, low aqueous solubility and poor cell membrane permeability difficult in vivo...
Collapse
|
21
|
Song N, Park M, Kim N, Lee Y, Jung E, Lee D. Tumor-targeting oxidative stress nanoamplifiers as anticancer nanomedicine with immunostimulating activity. Biomater Sci 2022; 10:6160-6171. [DOI: 10.1039/d2bm00601d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
GSH depleting prodrugs and ROS generators self-assemble to generate oxidative stress nanoamplifiers that can preferentially kill cancer cells and exert immunostimulating activity.
Collapse
Affiliation(s)
- Nanhee Song
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Miran Park
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Nuri Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Yujin Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Eunkyeong Jung
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
- Department of NanoEngineering, University of California San Diego, La Jolla, 92093, CA, USA
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
- Department of Polymer Nano Science and Technology, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| |
Collapse
|
22
|
Peanut-Shaped Gold Nanoparticles with Shells of Ceragenin CSA-131 Display the Ability to Inhibit Ovarian Cancer Growth In Vitro and in a Tumor Xenograft Model. Cancers (Basel) 2021; 13:cancers13215424. [PMID: 34771587 PMCID: PMC8582422 DOI: 10.3390/cancers13215424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/17/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Despite a spectrum of therapeutics available for the treatment of ovarian tumors, there is a constant need to develop novel treatment options, particularly due to a high incidence of drug resistant tumors and low 5-year survival of patients diagnosed with ovarian carcinomas. In this study, we employed a nanotechnology-based approach to present a novel nanosystem based on ceragenin CSA-131 attached to the surface of a peanut-shaped gold nanoparticle. We demonstrate that such a prepared nanoformulation was highly effective against ovarian cancer cells in in vitro settings and, with limited toxicity, was able to prevent the growth of ovarian tumors in treated animals. Based on obtained data we suggest that ceragenin-containing nanosystems should be considered and further tested as potential therapeutics for ovarian malignancy. Abstract Gold nanoparticles-assisted delivery of antineoplastics into cancerous cells is presented as an effective approach for overcoming the limitations of systemic chemotherapy. Although ceragenins show great potential as anti-cancer agents, in some tumors, effective inhibition of cancer cells proliferation requires application of ceragenins at doses within their hemolytic range. For the purpose of toxicity/efficiency ratio control, peanut-shaped gold nanoparticles (AuP NPs) were functionalized with a shell of ceragenin CSA-131 and the cytotoxicity of AuP@CSA-131 against ovarian cancer SKOV-3 cells and were then analyzed. In vivo efficiency of intravenously and intratumorally administered CSA-131 and AuP@CSA-131 was examined using a xenograft ovarian cancer model. Serum parameters were estimated using ELISA methods. Comparative analysis revealed that AuP@CSA-131 exerted stronger anti-cancer effects than free ceragenin, which was determined by enhanced ability to induce caspase-dependent apoptosis and autophagy processes via reactive oxygen species (ROS)-mediated pathways. In an animal study, AuP@CSA-131 was characterized by delayed clearance and prolonged blood circulation when compared with free ceragenin, as well as enhanced anti-tumor efficiency, particularly when applied intratumorally. Administration of CSA-131 and AuP@CSA-131 prevented the inflammatory response associated with cancer development. These results present the possibility of employing non-spherical gold nanoparticles as an effective nanoplatform for the delivery of antineoplastics for the treatment of ovarian malignancy.
Collapse
|
23
|
Kim JH, Verwilst P, Won M, Lee J, Sessler JL, Han J, Kim JS. A Small Molecule Strategy for Targeting Cancer Stem Cells in Hypoxic Microenvironments and Preventing Tumorigenesis. J Am Chem Soc 2021; 143:14115-14124. [PMID: 34374290 DOI: 10.1021/jacs.1c03875] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Breast cancer consists of heterogenic subpopulations, which determine the prognosis and response to chemotherapy. Among these subpopulations, a very limited number of cancer cells are particularly problematic. These cells, known as breast cancer stem cells (BCSCs), are thought responsible for metastasis and recurrence. They are thus major contributor to the unfavorable outcomes seen for many breast cancer patients. BCSCs are more prevalent in the hypoxic niche. This is an oxygen-deprived environment that is considered crucial to their proliferation, stemness, and self-renewal but also one that makes BCSCs highly refractory to traditional chemotherapeutic regimens. Here we report a small molecule construct, AzCDF, that allows the therapeutic targeting of BCSCs and which is effective in normally refractory hypoxic tumor environments. A related system, AzNap, has been developed that permits CSC imaging. Several design elements are incorporated into AzCDF, including the CAIX inhibitor acetazolamide (Az) to promote localization in MDA-MB-231 CSCs, a dimethylnitrothiophene subunit as a hypoxia trigger, and a 3,4-difluorobenzylidene curcumin (CDF) as a readily released therapeutic payload. This allows AzCDF to serve as a hypoxia-liable molecular platform that targets BCSCs selectively which decreases CSC migration, retards tumor growth, and lowers tumorigenesis rates as evidenced by a combination of in vitro and in vivo studies. To the best of our knowledge, this is the first time a CSC-targeting small molecule has been shown to prevent tumorigenesis in an animal model.
Collapse
Affiliation(s)
- Ji Hyeon Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Peter Verwilst
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Miae Won
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Junhyoung Lee
- Department of Biological Sciences, Hyupsung University, Hwasung-si 18330, Korea
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jiyou Han
- Department of Biological Sciences, Hyupsung University, Hwasung-si 18330, Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
24
|
Jung E, Lee J, Lee Y, Seon S, Park M, Song C, Lee D. Tumor-Targeting H 2O 2-Responsive Photosensitizing Nanoparticles with Antiangiogenic and Immunogenic Activities for Maximizing Anticancer Efficacy of Phototherapy. ACS APPLIED BIO MATERIALS 2021; 4:4450-4461. [PMID: 35006857 DOI: 10.1021/acsabm.1c00210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) uses photosensitizers and light to kill cancer cells and has become a promising therapeutic modality because of advantages such as minimal invasiveness and high cancer selectivity. However, PTT or PDT as a single treatment modality has insufficient therapeutic efficacy. Moreover, oxygen consumption by PDT activates angiogenic factors and leads to cancer recurrence and progression. Therefore, the therapeutic outcomes of phototherapy would be maximized by employing photosensitizers for concurrent PTT and PDT and suppressing angiogenic factors. Therefore, integrating photosensitive agents and antiangiogenic agents in a single nanoplatform would be a promising strategy to maximize the therapeutic efficacy of phototherapy. In this study, we developed hyaluronic acid-coated fluorescent boronated polysaccharide (HA-FBM) nanoparticles as a combination therapeutic agent for phototherapy and antiangiogenic therapy. Upon a single near-infrared laser irradiation, HA-FBM nanoparticles generated heat and singlet oxygen simultaneously to kill cancer cells and also induced immunogenic cancer cell death. Beside their fundamental roles as photosensitizers, HA-FBM nanoparticles exerted antiangiogenic effects by suppressing the vascular endothelial growth factor (VEGF) and cancer cell migration. In a mouse xenograft model, intravenously injected HA-FBM nanoparticles targeted tumors by binding CD44-overexpressing cancer cells and suppressed angiogenic VEGF expression. Upon laser irradiation, HA-FBM nanoparticles remarkably eradicated tumors and increased anticancer immunity. Given their synergistic effects of phototherapy and antiangiogenic therapy from tumor-targeting HA-FBM nanoparticles, we believe that integrating the photosensitizers and antiangiogenic agents into a single nanoplatform presents an attractive strategy to maximize the anticancer therapeutic efficacy of phototherapy.
Collapse
Affiliation(s)
- Eunkyeong Jung
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Jeonghun Lee
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Yeongjong Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Semee Seon
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Miran Park
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Chulgyu Song
- Department of Electronics Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea.,Department of Polymer Nano Science and Technology, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea
| |
Collapse
|
25
|
Sharma A, Chun J, Ji MS, Lee S, Kang C, Kim JS. Binary Prodrug of Dichloroacetic Acid and Doxorubicin with Enhanced Anticancer Activity. ACS APPLIED BIO MATERIALS 2021; 4:2026-2032. [PMID: 35014328 DOI: 10.1021/acsabm.0c00443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inevitable challenge in conventional chemotherapy is to deliver the anticancer drugs to the dense population of tumors cells while minimizing the drug-associated side effects on the normal cells. Cancer cells' preference for glycolysis for energy production is well recognized. Intuitively, taking advantage of such cancer-associated metabolism would be a promising strategy for anticancer drug delivery with minimal side effects. In this investigation, we have designed a binary prodrug PDOX as a sequential drug delivery regimens to realize the combination therapy for cancer. As cancer cells exhibit abrupt metabolism with elevated pyruvate dehydrogenase kinase (PDK) activity, dichloroacetic acid (DCA, a well-known PDK inhibitor) was used in combination with anticancer drug doxorubicin (DOX). The designed molecular prodrug was activated selectively by cancer-associated esterase to deliver DCA and DOX, respectively, and induced synergetic effects. Hence, sequential targeted delivery of molecular prodrug PDOX offers a promising approach to overcome the offside drug toxicity, pharmacokinetics, and biodistribution of individuals and provide an alternative option for cancer treatment.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Chemistry, Korea University, Seoul 02841, Korea.,CSIR-Central Scientific Instruments Organization, Sector-30C, Chandigarh 160030, India
| | - Jieun Chun
- The School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Myung Sun Ji
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Sooyeon Lee
- The School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Chulhun Kang
- The School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
26
|
Zhao B, Wang Y, Yao X, Chen D, Fan M, Jin Z, He Q. Photocatalysis-mediated drug-free sustainable cancer therapy using nanocatalyst. Nat Commun 2021; 12:1345. [PMID: 33649319 PMCID: PMC7921091 DOI: 10.1038/s41467-021-21618-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
Drug therapy unavoidably brings toxic side effects and drug content-limited therapeutic efficacy although many nanocarriers have been developed to improve them to a certain extent. In this work, a concept of drug-free therapeutics is proposed and defined as a therapeutic methodology without the use of traditional toxic drugs, without the consumption of therapeutic agents during treatment but with the inexhaustible therapeutic capability to maximize the benefit of treatment, and a Z-scheme SnS1.68-WO2.41 nanocatalyst is developed to achieve near infrared (NIR)-photocatalytic generation of oxidative holes and hydrogen molecules for realizing combined hole/hydrogen therapy by the drug-free therapeutic strategy. Without the need of any drug and other therapeutic agent assistance, the nanocatalyst oxidizes/consumes intratumoral over-expressed glutathione (GSH) by holes and simultaneously generates hydrogen molecules in a lasting and controllable way under NIR irradiation. Mechanistically, generated hydrogen molecules and GSH consumption inhibit cancer cell energy and destroy intratumoral redox balance, respectively, to synergistically damage DNA and induce tumor cell apoptosis. High efficacy and biosafety of combined hole/hydrogen therapy of tumors are achieved by the nanocatalyst. The proposed catalysis-based drug-free therapeutic strategy breaks a pathway to realize high efficacy and low toxicity of cancer treatment.
Collapse
Affiliation(s)
- Bin Zhao
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Yingshuai Wang
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Xianxian Yao
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Danyang Chen
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| | - Mingjian Fan
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Zhaokui Jin
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
27
|
Byrne SR, Rokita SE. Unraveling Reversible DNA Cross-Links with a Biological Machine. Chem Res Toxicol 2020; 33:2903-2913. [PMID: 33147957 DOI: 10.1021/acs.chemrestox.0c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reversible generation and capture of certain electrophilic quinone methide intermediates support dynamic reactions with DNA that allow for migration and transfer of alkylation and cross-linking. This reversibility also expands the possible consequences that can be envisioned when confronted by DNA repair processes and biological machines. To begin testing the response to such an encounter, quinone methide-based modification of DNA has now been challenged with a helicase (T7 bacteriophage gene protein four, T7gp4) that promotes 5' to 3' translocation and unwinding. This model protein was selected based on its widespread application, well characterized mechanism and detailed structural information. Little over one-half of the cross-linking generated by a bisfunctional quinone methide remained stable to T7gp4 and did not suppress its activity. The helicase likely avoids the topological block generated by this fraction of cross-linking by its ability to shift from single- to double-stranded translocation. The remaining fraction of cross-linking was destroyed during T7gp4 catalysis. Thus, this helicase is chemically competent to promote release of the quinone methide from DNA. The ability of T7gp4 to act as a Brownian ratchet for unwinding DNA may block recapture of the QM intermediate by DNA during its transient release from a donor strand. Most surprisingly, T7gp4 releases the quinone methide from both the translocating strand that passes through its central channel and the excluded strand that was typically unaffected by other lesions. The ability of T7gp4 to reverse the cross-link formed by the quinone methide does not extend to that formed irreversibly by the nitrogen mustard mechlorethamine.
Collapse
Affiliation(s)
- Shane R Byrne
- Chemistry Biology Interface Graduate Training Program and Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Steven E Rokita
- Chemistry Biology Interface Graduate Training Program and Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
28
|
Role of Glutathione in Cancer: From Mechanisms to Therapies. Biomolecules 2020; 10:biom10101429. [PMID: 33050144 PMCID: PMC7600400 DOI: 10.3390/biom10101429] [Citation(s) in RCA: 382] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022] Open
Abstract
Glutathione (GSH) is the most abundant non-protein thiol present at millimolar concentrations in mammalian tissues. As an important intracellular antioxidant, it acts as a regulator of cellular redox state protecting cells from damage caused by lipid peroxides, reactive oxygen and nitrogen species, and xenobiotics. Recent studies have highlighted the importance of GSH in key signal transduction reactions as a controller of cell differentiation, proliferation, apoptosis, ferroptosis and immune function. Molecular changes in the GSH antioxidant system and disturbances in GSH homeostasis have been implicated in tumor initiation, progression, and treatment response. Hence, GSH has both protective and pathogenic roles. Although in healthy cells it is crucial for the removal and detoxification of carcinogens, elevated GSH levels in tumor cells are associated with tumor progression and increased resistance to chemotherapeutic drugs. Recently, several novel therapies have been developed to target the GSH antioxidant system in tumors as a means for increased response and decreased drug resistance. In this comprehensive review we explore mechanisms of GSH functionalities and different therapeutic approaches that either target GSH directly, indirectly or use GSH-based prodrugs. Consideration is also given to the computational methods used to describe GSH related processes for in silico testing of treatment effects.
Collapse
|
29
|
Elbehairi SEI, Alfaifi MY, Shati AA, Alshehri MA, Elshaarawy RF, Hafez HS. Role of Pd(II)–chitooligosaccharides–Gboxin analog in oxidative phosphorylation inhibition and energy depletion: Targeting mitochondrial dynamics. Chem Biol Drug Des 2020; 96:1148-1161. [DOI: 10.1111/cbdd.13703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/13/2020] [Accepted: 05/03/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Serag Eldin I. Elbehairi
- Biology Department Faculty of Science King Khalid University Abha Saudi Arabia
- Cell Culture Lab Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company) Giza Egypt
| | - Mohammad Y. Alfaifi
- Biology Department Faculty of Science King Khalid University Abha Saudi Arabia
| | - Ali A. Shati
- Biology Department Faculty of Science King Khalid University Abha Saudi Arabia
| | | | - Reda F.M. Elshaarawy
- Chemistry Department Faculty of Science Suez University Suez Egypt
- Institut für Anorganische Chemie und Strukturchemie Heinriche‐Heine‐Universität Düsseldorf DÜSSELDORF Germany
| | - Hani S. Hafez
- Zoology Department Faculty of Science Suez University Suez Egypt
| |
Collapse
|
30
|
Hutchinson MA, Deeyaa BD, Byrne SR, Williams SJ, Rokita SE. Directing Quinone Methide-Dependent Alkylation and Cross-Linking of Nucleic Acids with Quaternary Amines. Bioconjug Chem 2020; 31:1486-1496. [PMID: 32298588 PMCID: PMC7242154 DOI: 10.1021/acs.bioconjchem.0c00166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyamine and polyammonium ion conjugates are often used to direct reagents to nucleic acids based on their strong electrostatic attraction to the phosphoribose backbone. Such nonspecific interactions do not typically alter the specificity of the attached reagent, but polyammonium ions dramatically redirected the specificity of a series of quinone methide precursors. Replacement of a relatively nonspecific intercalator based on acridine with a series of polyammonium ions resulted in a surprising change of DNA products. Piperidine stable adducts were generated in duplex DNA that lacked the ability to support a dynamic cross-linking observed previously with acridine conjugates. Minor reaction at guanine N7, the site of reversible reaction, was retained by a monofunctional quinone methide-polyammonium ion conjugate, but a bisfunctional analogue designed for tandem quinone methide formation modified guanine N7 in only single-stranded DNA. The resulting intrastrand cross-links were sufficiently dynamic to rearrange to interstrand cross-links. However, no further transfer of adducts was observed in duplex DNA. An alternative design that spatially and temporally decoupled the two quinone methide equivalents neither restored the dynamic reaction nor cross-linked DNA efficiently. While di- and triammonium ion conjugates successfully enhanced the yields of cross-linking by a bisquinone methide relative to a monoammonium equivalent, alternative ligands will be necessary to facilitate the migration of cross-linking and its potential application to disrupt DNA repair.
Collapse
Affiliation(s)
- Mark A. Hutchinson
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| | - Blessing D. Deeyaa
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| | - Shane R. Byrne
- Chemistry-Biology Interface Program, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| | - Sierra J. Williams
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| | - Steven E. Rokita
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
- Chemistry-Biology Interface Program, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| |
Collapse
|
31
|
Gupta K, Vuckovic I, Zhang S, Xiong Y, Carlson BL, Jacobs J, Olson I, Petterson XM, Macura SI, Sarkaria J, Burns TC. Radiation Induced Metabolic Alterations Associate With Tumor Aggressiveness and Poor Outcome in Glioblastoma. Front Oncol 2020; 10:535. [PMID: 32432031 PMCID: PMC7214818 DOI: 10.3389/fonc.2020.00535] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma (GBM) is uniformly fatal with a 1-year median survival, despite best available treatment, including radiotherapy (RT). Impacts of prior RT on tumor recurrence are poorly understood but may increase tumor aggressiveness. Metabolic changes have been investigated in radiation-induced brain injury; however, the tumor-promoting effect following prior radiation is lacking. Since RT is vital to GBM management, we quantified tumor-promoting effects of prior RT on patient-derived intracranial GBM xenografts and characterized metabolic alterations associated with the protumorigenic microenvironment. Human xenografts (GBM143) were implanted into nude mice 24 hrs following 20 Gy cranial radiation vs. sham animals. Tumors in pre-radiated mice were more proliferative and more infiltrative, yielding faster mortality (p < 0.0001). Histologic evaluation of tumor associated macrophage/microglia (TAMs) revealed cells with a more fully activated ameboid morphology in pre-radiated animals. Microdialyzates from radiated brain at the margin of tumor infiltration contralateral to the site of implantation were analyzed by unsupervised liquid chromatography-mass spectrometry (LC-MS). In pre-radiated animals, metabolites known to be associated with tumor progression (i.e., modified nucleotides and polyols) were identified. Whole-tissue metabolomic analysis of pre-radiated brain microenvironment for metabolic alterations in a separate cohort of nude mice using 1H-NMR revealed a significant decrease in levels of antioxidants (glutathione (GSH) and ascorbate (ASC)), NAD+, Tricarboxylic acid cycle (TCA) intermediates, and rise in energy carriers (ATP, GTP). GSH and ASC showed highest Variable Importance on Projection prediction (VIPpred) (1.65) in Orthogonal Partial least square Discriminant Analysis (OPLS-DA); Ascorbate catabolism was identified by GC-MS. To assess longevity of radiation effects, we compared survival with implantation occurring 2 months vs. 24 hrs following radiation, finding worse survival in animals implanted at 2 months. These radiation-induced alterations are consistent with a chronic disease-like microenvironment characterized by reduced levels of antioxidants and NAD+, and elevated extracellular ATP and GTP serving as chemoattractants, promoting cell motility and vesicular secretion with decreased levels of GSH and ASC exacerbating oxidative stress. Taken together, these data suggest IR induces tumor-permissive changes in the microenvironment with metabolomic alterations that may facilitate tumor aggressiveness with important implications for recurrent glioblastoma. Harnessing these metabolomic insights may provide opportunities to attenuate RT-associated aggressiveness of recurrent GBM.
Collapse
Affiliation(s)
- Kshama Gupta
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Ivan Vuckovic
- Metabolomics Core Mayo Clinic, Rochester, MN, United States
| | - Song Zhang
- Metabolomics Core Mayo Clinic, Rochester, MN, United States
| | - Yuning Xiong
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Brett L Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Joshua Jacobs
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Ian Olson
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | | | - Slobodan I Macura
- Metabolomics Core Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Jann Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Terry C Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
32
|
Hong E, Hyun H, Lee H, Jung E, Lee D. Acid-sensitive oxidative stress inducing and photoabsorbing polysaccharide nanoparticles for combinational anticancer therapy. Int J Pharm 2020; 574:118893. [DOI: 10.1016/j.ijpharm.2019.118893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/04/2019] [Accepted: 11/17/2019] [Indexed: 01/29/2023]
|