1
|
Mattinen M, Chen W, Dawley RA, Verheijen MA, Hensen EJM, Kessels WMM, Bol AA. Structural Aspects of MoS x Prepared by Atomic Layer Deposition for Hydrogen Evolution Reaction. ACS Catal 2024; 14:10089-10101. [PMID: 38988655 PMCID: PMC11232007 DOI: 10.1021/acscatal.4c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
Molybdenum sulfides (MoS x ) in both crystalline and amorphous forms are promising earth-abundant electrocatalysts for hydrogen evolution reaction (HER) in acid. Plasma-enhanced atomic layer deposition was used to prepare thin films of both amorphous MoS x with adjustable S/Mo ratio (2.8-4.7) and crystalline MoS2 with tailored crystallinity, morphology, and electrical properties. All the amorphous MoS x films transform into highly HER-active amorphous MoS2 (overpotential 210-250 mV at 10 mA/cm2 in 0.5 M H2SO4) after electrochemical activation at approximately -0.3 V vs reversible hydrogen electrode. However, the initial film stoichiometry affects the structure and consequently the HER activity and stability. The material changes occurring during activation are studied using ex situ and quasi in situ X-ray photoelectron spectroscopy. Possible structures of as-deposited and activated catalysts are proposed. In contrast to amorphous MoS x , no changes in the structure of crystalline MoS2 catalysts are observed. The overpotentials of the crystalline films range from 300 to 520 mV at 10 mA/cm2, being the lowest for the most defective catalysts. This work provides a practical method for deposition of tailored MoS x HER electrocatalysts as well as new insights into their activity and structure.
Collapse
Affiliation(s)
- Miika Mattinen
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Wei Chen
- Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Rebecca A. Dawley
- Department
of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Marcel A. Verheijen
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Eurofins
Materials Science Netherlands, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | - Emiel J. M. Hensen
- Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - W. M. M. Kessels
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ageeth A. Bol
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Department
of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
2
|
Park DA, Son JY, Seo JM, Park BK. Synthesis and Volatility Characterization of Mo(II) and W(II) Compounds for Thin Films. Inorg Chem 2023; 62:16874-16881. [PMID: 37788074 DOI: 10.1021/acs.inorgchem.3c02449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Mo(II) and W(II) compounds, Mo(η3-allyl)(CO)2(Tri-MEDA)Br (1), Mo(η3-allyl)(CO)2(TMEDA)Br (2), W(η3-allyl)(CO)2(Tri-MEDA)Br (3), and W(η3-allyl)(CO)2(TMEDA)Br (4) (Tri-MEDA = N,N,N'-trimethylethylenediamine), were synthesized and characterized. The molecular structures of 1 and 3 were nearly identical with a pseudo-octahedral geometry except for the different Mo and W metal centers. The thermogravimetric analysis of 1 and 3 showed approximately 53 and 64% residues at 550 °C, respectively, which were significantly higher than the values for the expected materials. However, 1 and 3 sublimed at 100 °C under 0.40 Torr and 120 °C under 0.50 Torr, respectively, confirming that they were volatile. For 1 and 3, the temperatures at a vapor pressure of 1 Torr and enthalpies of vaporization (ΔHvap) were 168.78 °C and 143.8 kJ mol-1, and 167.48 °C and 148.5 kJ mol-1, respectively. The tungsten compound (3) exhibited good durability for 5 weeks under a thermal stability test at a sublimation temperature of 120 °C.
Collapse
Affiliation(s)
- Da-Ae Park
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT),Daejeon 34114, Republic of Korea
| | - Ji Young Son
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT),Daejeon 34114, Republic of Korea
- Department of Chemistry, Korea University 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ji Min Seo
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT),Daejeon 34114, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Bo Keun Park
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT),Daejeon 34114, Republic of Korea
- Advanced Materials and Chemical Engineering, KRICT School, University of Science and Technology (UST), Daejeon 34114, Republic of Korea
| |
Collapse
|
3
|
Cathodic Activation of Titania-Fly Ash Cenospheres for Efficient Electrochemical Hydrogen Production: A Proposed Solution to Treat Fly Ash Waste. Catalysts 2022. [DOI: 10.3390/catal12050466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Fly ash (FA) is a waste product generated in huge amounts by coal-fired electric and steam-generating plants. As a result, the use of FA alone or in conjunction with other materials is an intriguing study topic worth exploring. Herein, we used FA waste in conjunction with titanium oxide (TiO2) to create (FA-TiO2) nanocomposites. For the first time, a cathodic polarization pre-treatment regime was applied to such nanocomposites to efficiently produce hydrogen from an alkaline solution. The FA-TiO2 hybrid nanocomposites were prepared by a straightforward solvothermal approach in which the FA raw material was mixed with titanium precursor in dimethyl sulfoxide (DMSO) and refluxed during a given time. The obtained FA-TiO2 hybrid nanocomposites were fully characterized using various tools and displayed a cenosphere-like shape. The synthesized materials were tested as electrocatalysts for the hydrogen evolution reaction (HER) in 0.1 M KOH solution in the dark, employing various electrochemical techniques. The as-prepared (unactivated) FA-TiO2 exhibited a considerable HER electrocatalytic activity, with an onset potential (EHER) value of −144 mV vs. RHE, a Tafel slope (−bc) value of 124 mV dec−1 and an exchange current density (jo) of ~0.07 mA cm−2. The FA-TiO2′s HER catalytic performance was significantly enhanced upon cathodic activation (24 h of chronoamperometry measurements performed at a high cathodic potential of −1.0 V vs. RHE). The cathodically activated FA-TiO2 recorded HER electrochemical kinetic parameters of EHER = −28 mV, −bc = 115 mV dec−1, jo = 0.65 mA cm−2, and an overpotential η10 = 125 mV to yield a current density of 10 mA cm−2. Such parameters were comparable to those measured here for the commercial Pt/C under the same experimental conditions (EHER = −10 mV, −bc = 113 mV dec−1, jo = 0.88 mA cm−2, η10 = 110 mV), as well as to the most active electrocatalysts for H2 generation from aqueous alkaline electrolytes.
Collapse
|
4
|
Kim Y, Woo WJ, Kim D, Lee S, Chung SM, Park J, Kim H. Atomic-Layer-Deposition-Based 2D Transition Metal Chalcogenides: Synthesis, Modulation, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005907. [PMID: 33749055 DOI: 10.1002/adma.202005907] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/16/2020] [Indexed: 06/12/2023]
Abstract
Transition metal chalcogenides (TMCs) are a large family of 2D materials with different properties, and are promising candidates for a wide range of applications such as nanoelectronics, sensors, energy conversion, and energy storage. In the research of new materials, the development and investigation of industry-compatible synthesis techniques is of key importance. In this respect, it is important to study 2D TMC materials synthesized by the atomic layer deposition (ALD) technique, which is widely applied in industries. In addition to the synthesis of 2D TMCs, ALD is used to modulate the characteristic of 2D TMCs such as their carrier density and morphology. So far, the improvement of thin film uniformity without oxidation and the synthesis of low-dimensional nanomaterials on 2D TMCs have been the research focus. Herein, the synthesis and modulation of 2D TMCs by ALD is described, and the characteristics of ALD-based TMCs used in nanoelectronics, sensors, and energy applications are discussed.
Collapse
Affiliation(s)
- Youngjun Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Whang Je Woo
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Donghyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Sangyoon Lee
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Seung-Min Chung
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Jusang Park
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Hyungjun Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
5
|
Plutnar J, Pumera M. Applications of Atomic Layer Deposition in Design of Systems for Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102088. [PMID: 34365720 DOI: 10.1002/smll.202102088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/07/2021] [Indexed: 06/13/2023]
Abstract
There is a huge demand for clean energy conversion in all industries. The clean energy production processes include electrocatalytic and photocatalytic conversion of water to hydrogen, carbon dioxide reduction, nitrogen conversion to ammonia, and oxygen reduction reaction and require novel cheap and efficient photo- and electrocatalysts and their scalable methods of fabrication. Atomic layer deposition is a thin film deposition method that allows to deposit thin layers of catalysts on virtually any surface of any shape, size, and porosity in an even and easy to control manner. Here the state of the art in applications of atomic layer deposition in the clean energy production and the opportunities it represents for the whole field of the photo- and electrocatalysis for a sustainable future are reviewed.
Collapse
Affiliation(s)
- Jan Plutnar
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague, 16628, Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague, 16628, Czech Republic
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, 61200, Czech Republic
- Department of Chemistry, Mendel University, Zemedelska 1, Brno, 61300, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Korea
| |
Collapse
|
6
|
Hai G, Huang J, Cao L, Kajiyoshi K, Wang L, Feng L, Liu Y, Pan L. Fe, Ni-codoped W 18O 49 grown on nickel foam as a bifunctional electrocatalyst for boosted water splitting. Dalton Trans 2021; 50:11604-11609. [PMID: 34355722 DOI: 10.1039/d1dt01468d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Designing cost-effective bifunctional catalysts with high-performance and durability is of great significance for renewable energy systems. Herein, typical Fe, Ni-codoped W18O49/NF was prepared via a simple solvothermal method. The incorporation of Fe ions enhanced the electronic interaction and enlarged the electrochemically active surface area. The increased W4+ leads to a high proportion of unsaturated W[double bond, length as m-dash]O bonds, thus enhancing the adsorption capacity of water. The valence configuration of nickel (Ni) sites in such dual-cation doping is well adjusted, realizing a high proportion of trivalent Ni ions (Ni3+). Due to the orbital interactions, the Fe3+/Ni3+ ions and OER reaction intermediates exhibit strong orbital overlap. The positions of the valence band and conduction band are well modulated. As a result, the Fe, Ni-codoped W18O49/NF shows improved electrocatalytic activity, and achieves a low decomposition voltage of 1.58 V at 10 mA cm-2 and retains long-time stability.
Collapse
Affiliation(s)
- Guojuan Hai
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Englhard J, Cao Y, Bochmann S, Barr MKS, Cadot S, Quadrelli EA, Bachmann J. Stabilizing an ultrathin MoS 2 layer during electrocatalytic hydrogen evolution with a crystalline SnO 2 underlayer. RSC Adv 2021; 11:17985-17992. [PMID: 34046174 PMCID: PMC8129885 DOI: 10.1039/d1ra00877c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/05/2021] [Indexed: 01/31/2023] Open
Abstract
Amorphous MoS2 has been investigated abundantly as a catalyst for hydrogen evolution. Not only its performance but also its chemical stability in acidic conditions have been reported widely. However, its adhesion has not been studied systematically in the electrochemical context. The use of MoS2 as a lubricant is not auspicious for this purpose. In this work, we start with a macroporous anodic alumina template as a model support, add an underlayer of SnO2 to provide electrical conduction and adhesion, then provide the catalytically active, amorphous MoS2 material by atomic layer deposition (ALD). The composition, morphology, and crystalline or amorphous character of all layers are confirmed by spectroscopic ellipsometry, X-ray photoelectron spectroscopy, grazing incidence X-ray diffractometry, scanning electron microscopy and energy dispersive X-ray spectroscopy. The electrocatalytic water reduction performance of the macroporous AAO/SnO2/MoS2 electrodes, quantified by voltammetry, steady-state chronoamperometry and electrochemical impedance spectroscopy, is improved by annealing the SnO2 layer prior to MoS2 deposition. Varying the geometric parameters of the electrode composite yields an optimized performance of 10 mA cm-2 at 0.22 V overpotential, with a catalyst loading of 0.16 mg cm-2. The electrode's stability is contingent on SnO2 crystallinity. Amorphous SnO2 allows for a gradual dewetting of the originally continuous MoS2 layer over wide areas. In stark contrast to this, crystalline SnO2 maintains the continuity of MoS2 until at least 0.3 V overpotential.
Collapse
Affiliation(s)
- Jonas Englhard
- Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg Cauerstr. 3 91058 Erlangen Germany
| | - Yuanyuan Cao
- Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg Cauerstr. 3 91058 Erlangen Germany
| | - Sebastian Bochmann
- Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg Cauerstr. 3 91058 Erlangen Germany
| | - Maïssa K S Barr
- Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg Cauerstr. 3 91058 Erlangen Germany
| | - Stéphane Cadot
- C2P2 UMR 5265, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, ESCPE Lyon 43 Bd. du 11 Novembre 1918 69616 Villeurbanne France
| | - Elsje Alessandra Quadrelli
- C2P2 UMR 5265, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, ESCPE Lyon 43 Bd. du 11 Novembre 1918 69616 Villeurbanne France
| | - Julien Bachmann
- Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg Cauerstr. 3 91058 Erlangen Germany
- Institute of Chemistry, Saint Petersburg State University Universitetskii pr. 26 198504 St. Petersburg Russia
| |
Collapse
|
8
|
Charvot J, Zazpe R, Krumpolec R, Rodriguez-Pereira J, Pavliňák D, Pokorný D, Klikar M, Jelínková V, Macak JM, Bureš F. Deposition of MoSe 2 flakes using cyclic selenides. RSC Adv 2021; 11:22140-22147. [PMID: 35480798 PMCID: PMC9034216 DOI: 10.1039/d0ra10239c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/17/2021] [Indexed: 11/24/2022] Open
Abstract
The currently limited portfolio of volatile organoselenium compounds used for atomic layer deposition (ALD) has been extended by designing and preparing a series of four-, five- and six-membered cyclic silylselenides. Their fundamental properties were tailored by alternating the ring size, the number of embedded Se atoms and the used peripheral alkyl chains. In contrast to former preparations based on formation of sodium or lithium selenides, the newly developed synthetic method utilizes a direct and easy reaction of elemental selenium with chlorosilanes. Novel 2,2,4,4-tetraisopropyl-1,3,2,4-diselenadisiletane, which features good trade-off between chemical/thermal stability and reactivity, has been successfully used for gas-to-solid phase reaction with MoCl5 affording MoSe2. A thorough characterization of the as-deposited 2D MoSe2 flakes revealed its out-of-plane orientation and high purity. Hence, the developed four-membered cyclic silylselenide turned out to be well-suited Se-precursor for ALD of MoSe2. Diselenadisiletanes possess easy preparation, tailored stability, reactivity, volatility and fast exchange ALD reaction to afford MoSe2 flakes of high quality.![]()
Collapse
|
9
|
Späth A. Additive Nano-Lithography with Focused Soft X-rays: Basics, Challenges, and Opportunities. MICROMACHINES 2019; 10:E834. [PMID: 31801198 PMCID: PMC6953100 DOI: 10.3390/mi10120834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022]
Abstract
Focused soft X-ray beam induced deposition (FXBID) is a novel technique for direct-write nanofabrication of metallic nanostructures from metal organic precursor gases. It combines the established concepts of focused electron beam induced processing (FEBIP) and X-ray lithography (XRL). The present setup is based on a scanning transmission X-ray microscope (STXM) equipped with a gas flow cell to provide metal organic precursor molecules towards the intended deposition zone. Fundamentals of X-ray microscopy instrumentation and X-ray radiation chemistry relevant for FXBID development are presented in a comprehensive form. Recently published proof-of-concept studies on initial experiments on FXBID nanolithography are reviewed for an overview on current progress and proposed advances of nanofabrication performance. Potential applications and advantages of FXBID are discussed with respect to competing electron/ion based techniques.
Collapse
Affiliation(s)
- Andreas Späth
- Friedrich-Alexander-University Erlangen-Nuremberg, Physical Chemistry II, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|