1
|
Jacob EM, Huang J, Chen M. Lipid nanoparticle-based mRNA vaccines: a new frontier in precision oncology. PRECISION CLINICAL MEDICINE 2024; 7:pbae017. [PMID: 39171210 PMCID: PMC11336688 DOI: 10.1093/pcmedi/pbae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
The delivery of lipid nanoparticle (LNP)-based mRNA therapeutics has captured the attention of the vaccine research community as an innovative and versatile tool for treating a variety of human malignancies. mRNA vaccines are now in the limelight as an alternative to conventional vaccines owing to their high precision, low-cost, rapid manufacture, and superior safety profile. Multiple mRNA vaccine platforms have been developed to target several types of cancer, and many have demonstrated encouraging results in animal models and human trials. The effectiveness of these new mRNA vaccines depends on the efficacy and stability of the antigen(s) of interest generated and the reliability of their delivery to antigen-presenting cells (APCs), especially dendritic cells (DCs). In this review, we provide a detailed overview of mRNA vaccines and their delivery strategies and consider future directions and challenges in advancing and expanding this promising vaccine platform to widespread therapeutic use against cancer.
Collapse
Affiliation(s)
- Eden M Jacob
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Ming Chen
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| |
Collapse
|
2
|
Zhou F, Huang L, Li S, Yang W, Chen F, Cai Z, Liu X, Xu W, Lehto V, Lächelt U, Huang R, Shi Y, Lammers T, Tao W, Xu ZP, Wagner E, Xu Z, Yu H. From structural design to delivery: mRNA therapeutics for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20210146. [PMID: 38855617 PMCID: PMC11022630 DOI: 10.1002/exp.20210146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/15/2023] [Indexed: 06/11/2024]
Abstract
mRNA therapeutics have emerged as powerful tools for cancer immunotherapy in accordance with their superiority in expressing all sequence-known proteins in vivo. In particular, with a small dosage of delivered mRNA, antigen-presenting cells (APCs) can synthesize mutant neo-antigens and multi-antigens and present epitopes to T lymphocytes to elicit antitumor effects. In addition, expressing receptors like chimeric antigen receptor (CAR), T-cell receptor (TCR), CD134, and immune-modulating factors including cytokines, interferons, and antibodies in specific cells can enhance immunological response against tumors. With the maturation of in vitro transcription (IVT) technology, large-scale and pure mRNA encoding specific proteins can be synthesized quickly. However, the clinical translation of mRNA-based anticancer strategies is restricted by delivering mRNA into target organs or cells and the inadequate endosomal escape efficiency of mRNA. Recently, there have been some advances in mRNA-based cancer immunotherapy, which can be roughly classified as modifications of the mRNA structure and the development of delivery systems, especially the lipid nanoparticle platforms. In this review, the latest strategies for overcoming the limitations of mRNA-based cancer immunotherapies and the recent advances in delivering mRNA into specific organs and cells are summarized. Challenges and opportunities for clinical applications of mRNA-based cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Feng Zhou
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lujia Huang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shiqin Li
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Wenfang Yang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Fangmin Chen
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Wujun Xu
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Vesa‐Pekka Lehto
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Ulrich Lächelt
- Department of Pharmaceutical SciencesUniversity of ViennaViennaAustria
| | - Rongqin Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug DeliveryMinistry of Education, Fudan UniversityShanghaiChina
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachenGermany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachenGermany
| | - Wei Tao
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Zhi Ping Xu
- Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhenChina
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for NanoscienceLudwig‐Maximilians‐UniversitätMunichGermany
| | - Zhiai Xu
- School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
| | - Haijun Yu
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
3
|
Estapé Senti M, García Del Valle L, Schiffelers RM. mRNA delivery systems for cancer immunotherapy: Lipid nanoparticles and beyond. Adv Drug Deliv Rev 2024; 206:115190. [PMID: 38307296 DOI: 10.1016/j.addr.2024.115190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
mRNA-based vaccines are emerging as a promising alternative to standard cancer treatments and the conventional vaccines. Moreover, the FDA-approval of three nucleic acid based therapeutics (Onpattro, BNT162b2 and mRNA-1273) has further increased the interest and trust on this type of therapeutics. In order to achieve a significant therapeutic efficacy, the mRNA needs from a drug delivery system. In the last years, several delivery platforms have been explored, being the lipid nanoparticles (LNPs) the most well characterized and studied. A better understanding on how mRNA-based therapeutics operate (both the mRNA itself and the drug delivery system) will help to further improve their efficacy and safety. In this review, we will provide an overview of what mRNA cancer vaccines are and their mode of action and we will highlight the advantages and challenges of the different delivery platforms that are under investigation.
Collapse
Affiliation(s)
- Mariona Estapé Senti
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Lucía García Del Valle
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Raymond M Schiffelers
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Mochida Y, Uchida S. mRNA vaccine designs for optimal adjuvanticity and delivery. RNA Biol 2024; 21:1-27. [PMID: 38528828 DOI: 10.1080/15476286.2024.2333123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
Adjuvanticity and delivery are crucial facets of mRNA vaccine design. In modern mRNA vaccines, adjuvant functions are integrated into mRNA vaccine nanoparticles, allowing the co-delivery of antigen mRNA and adjuvants in a unified, all-in-one formulation. In this formulation, many mRNA vaccines utilize the immunostimulating properties of mRNA and vaccine carrier components, including lipids and polymers, as adjuvants. However, careful design is necessary, as excessive adjuvanticity and activation of improper innate immune signalling can conversely hinder vaccination efficacy and trigger adverse effects. mRNA vaccines also require delivery systems to achieve antigen expression in antigen-presenting cells (APCs) within lymphoid organs. Some vaccines directly target APCs in the lymphoid organs, while others rely on APCs migration to the draining lymph nodes after taking up mRNA vaccines. This review explores the current mechanistic understanding of these processes and the ongoing efforts to improve vaccine safety and efficacy based on this understanding.
Collapse
Affiliation(s)
- Yuki Mochida
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Satoshi Uchida
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| |
Collapse
|
5
|
Burn OK, Dasyam N, Hermans IF. Recruiting Natural Killer T Cells to Improve Vaccination: Lessons from Preclinical and Clinical Studies. Crit Rev Oncog 2024; 29:31-43. [PMID: 38421712 DOI: 10.1615/critrevoncog.2023049407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The capacity of type I natural killer T (NKT) cells to provide stimulatory signals to antigen-presenting cells has prompted preclinical research into the use of agonists as immune adjuvants, with much of this work focussed on stimulating T cell responses to cancer. In attempting to evaluate this approach in the clinic, our recent dendritic-cell based study failed to show an advantage to adding an agonist to the vaccine. Here we present potential limitations of the study, and suggest why other simpler strategies may be more effective. These include strategies to target antigen-presenting cells in the host, either through promoting efficient transfer from injected cell lines, facilitating uptake of antigen and agonist as injected conjugates, or encapsulating the components into injected nanovectors. While the vaccine landscape has changed with the rapid uptake of mRNA vaccines, we suggest that there is still a role for recruiting NKT cells in altering T cell differentiation programmes, notably the induction of resident memory T cells.
Collapse
Affiliation(s)
- Olivia K Burn
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
6
|
Abstract
Natural killer T (NKT) cells are a population of innate-like T cells capable of enhancing both innate and adaptive immune responses. Co-delivering an NKT cell agonist and antigen can provide molecular signals to antigen-presenting cells, such as dendritic and B cells, that facilitate strong antigen-specific adaptive immune responses. Accordingly, there has been a significant number of developmental NKT cell-dependent vaccine therapies developed, particularly in the last decade, with many incorporating cancer antigens. In this review, we summarize studies that chemically conjugate the NKT cell agonist and antigen as an effective strategy for agonist-antigen co-delivery to drive antitumor responses.
Collapse
Affiliation(s)
- Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| |
Collapse
|
7
|
Yuan M, Han Z, Liang Y, Sun Y, He B, Chen W, Li F. mRNA nanodelivery systems: targeting strategies and administration routes. Biomater Res 2023; 27:90. [PMID: 37740246 PMCID: PMC10517595 DOI: 10.1186/s40824-023-00425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/26/2023] [Indexed: 09/24/2023] Open
Abstract
With the great success of coronavirus disease (COVID-19) messenger ribonucleic acid (mRNA) vaccines, mRNA therapeutics have gained significant momentum for the prevention and treatment of various refractory diseases. To function efficiently in vivo and overcome clinical limitations, mRNA demands safe and stable vectors and a reasonable administration route, bypassing multiple biological barriers and achieving organ-specific targeted delivery of mRNA. Nanoparticle (NP)-based delivery systems representing leading vector approaches ensure the successful intracellular delivery of mRNA to the target organ. In this review, chemical modifications of mRNA and various types of advanced mRNA NPs, including lipid NPs and polymers are summarized. The importance of passive targeting, especially endogenous targeting, and active targeting in mRNA nano-delivery is emphasized, and different cellular endocytic mechanisms are discussed. Most importantly, based on the above content and the physiological structure characteristics of various organs in vivo, the design strategies of mRNA NPs targeting different organs and cells are classified and discussed. Furthermore, the influence of administration routes on targeting design is highlighted. Finally, an outlook on the remaining challenges and future development toward mRNA targeted therapies and precision medicine is provided.
Collapse
Affiliation(s)
- Mujie Yuan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Zeyu Han
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Fan Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
8
|
Ganley M, Holz LE, Minnell JJ, de Menezes MN, Burn OK, Poa KCY, Draper SL, English K, Chan STS, Anderson RJ, Compton BJ, Marshall AJ, Cozijnsen A, Chua YC, Ge Z, Farrand KJ, Mamum JC, Xu C, Cockburn IA, Yui K, Bertolino P, Gras S, Le Nours J, Rossjohn J, Fernandez-Ruiz D, McFadden GI, Ackerley DF, Painter GF, Hermans IF, Heath WR. mRNA vaccine against malaria tailored for liver-resident memory T cells. Nat Immunol 2023; 24:1487-1498. [PMID: 37474653 DOI: 10.1038/s41590-023-01562-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/15/2023] [Indexed: 07/22/2023]
Abstract
Malaria is caused by Plasmodium species transmitted by Anopheles mosquitoes. Following a mosquito bite, Plasmodium sporozoites migrate from skin to liver, where extensive replication occurs, emerging later as merozoites that can infect red blood cells and cause symptoms of disease. As liver tissue-resident memory T cells (Trm cells) have recently been shown to control liver-stage infections, we embarked on a messenger RNA (mRNA)-based vaccine strategy to induce liver Trm cells to prevent malaria. Although a standard mRNA vaccine was unable to generate liver Trm or protect against challenge with Plasmodium berghei sporozoites in mice, addition of an agonist that recruits T cell help from type I natural killer T cells under mRNA-vaccination conditions resulted in significant generation of liver Trm cells and effective protection. Moreover, whereas previous exposure of mice to blood-stage infection impaired traditional vaccines based on attenuated sporozoites, mRNA vaccination was unaffected, underlining the potential for such a rational mRNA-based strategy in malaria-endemic regions.
Collapse
Affiliation(s)
- Mitch Ganley
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Lauren E Holz
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | | | - Maria N de Menezes
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Olivia K Burn
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Kean Chan Yew Poa
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sarah L Draper
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Kieran English
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Susanna T S Chan
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Regan J Anderson
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Andrew J Marshall
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Anton Cozijnsen
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Yu Cheng Chua
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Zhengyu Ge
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | | | - John C Mamum
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Calvin Xu
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Ian A Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Katsuyuki Yui
- Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Patrick Bertolino
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Daniel Fernandez-Ruiz
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey I McFadden
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - David F Ackerley
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| | - Ian F Hermans
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
- Malaghan Institute of Medical Research, Wellington, New Zealand.
| | - William R Heath
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
9
|
Li Y, Wang M, Peng X, Yang Y, Chen Q, Liu J, She Q, Tan J, Lou C, Liao Z, Li X. mRNA vaccine in cancer therapy: Current advance and future outlook. Clin Transl Med 2023; 13:e1384. [PMID: 37612832 PMCID: PMC10447885 DOI: 10.1002/ctm2.1384] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Messenger ribonucleic acid (mRNA) vaccines are a relatively new class of vaccines that have shown great promise in the immunotherapy of a wide variety of infectious diseases and cancer. In the past 2 years, SARS-CoV-2 mRNA vaccines have contributed tremendously against SARS-CoV2, which has prompted the arrival of the mRNA vaccine research boom, especially in the research of cancer vaccines. Compared with conventional cancer vaccines, mRNA vaccines have significant advantages, including efficient production of protective immune responses, relatively low side effects and lower cost of acquisition. In this review, we elaborated on the development of cancer vaccines and mRNA cancer vaccines, as well as the potential biological mechanisms of mRNA cancer vaccines and the latest progress in various tumour treatments, and discussed the challenges and future directions for the field.
Collapse
Affiliation(s)
- Youhuai Li
- Department of Breast SurgeryBaoji Municipal Central HospitalWeibin DistrictBaojiShaanxiChina
| | - Mina Wang
- Graduate SchoolBeijing University of Chinese MedicineBeijingChina
- Department of Acupuncture and MoxibustionBeijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijing Key Laboratory of Acupuncture NeuromodulationBeijingChina
| | - Xueqiang Peng
- Department of General SurgeryThe Fourth Affiliated HospitalChina Medical UniversityShenyangChina
| | - Yingying Yang
- Clinical Research CenterShanghai Key Laboratory of Maternal Fetal MedicineShanghai Institute of Maternal‐Fetal Medicine and Gynecologic OncologyShanghai First Maternity and Infant HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Qishuang Chen
- Graduate SchoolBeijing University of Chinese MedicineBeijingChina
| | - Jiaxing Liu
- Department of General SurgeryThe Fourth Affiliated HospitalChina Medical UniversityShenyangChina
| | - Qing She
- Department of Breast SurgeryBaoji Municipal Central HospitalWeibin DistrictBaojiShaanxiChina
| | - Jichao Tan
- Department of Breast SurgeryBaoji Municipal Central HospitalWeibin DistrictBaojiShaanxiChina
| | - Chuyuan Lou
- Department of OphthalmologyXi'an People's Hospital (Xi'an Fourth Hospital)Xi'anShaanxiChina
| | - Zehuan Liao
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Department of Microbiology, Tumor and Cell Biology (MTC)Karolinska InstitutetSweden
| | - Xuexin Li
- Department of Medical Biochemistry and Biophysics (MBB)Karolinska InstitutetBiomedicumStockholmSweden
| |
Collapse
|
10
|
Hadiloo K, Tahmasebi S, Esmaeilzadeh A. CAR-NKT cell therapy: a new promising paradigm of cancer immunotherapy. Cancer Cell Int 2023; 23:86. [PMID: 37158883 PMCID: PMC10165596 DOI: 10.1186/s12935-023-02923-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Today, cancer treatment is one of the fundamental problems facing clinicians and researchers worldwide. Efforts to find an excellent way to treat this illness continue, and new therapeutic strategies are developed quickly. Adoptive cell therapy (ACT) is a practical approach that has been emerged to improve clinical outcomes in cancer patients. In the ACT, one of the best ways to arm the immune cells against tumors is by employing chimeric antigen receptors (CARs) via genetic engineering. CAR equips cells to target specific antigens on tumor cells and selectively eradicate them. Researchers have achieved promising preclinical and clinical outcomes with different cells by using CARs. One of the potent immune cells that seems to be a good candidate for CAR-immune cell therapy is the Natural Killer-T (NKT) cell. NKT cells have multiple features that make them potent cells against tumors and would be a powerful replacement for T cells and natural killer (NK) cells. NKT cells are cytotoxic immune cells with various capabilities and no notable side effects on normal cells. The current study aimed to comprehensively provide the latest advances in CAR-NKT cell therapy for cancers.
Collapse
Affiliation(s)
- Kaveh Hadiloo
- Student Research Committee, Department of immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of immunology, School of Medicine, Shahid beheshti University of Medical Sciences, Tehran, Iran.
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
11
|
Recent Advances in Cancer Vaccines: Challenges, Achievements, and Futuristic Prospects. Vaccines (Basel) 2022; 10:vaccines10122011. [PMID: 36560420 PMCID: PMC9788126 DOI: 10.3390/vaccines10122011] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a chronic disease, and it can be lethal due to limited therapeutic options. The conventional treatment options for cancer have numerous challenges, such as a low blood circulation time as well as poor solubility of anticancer drugs. Therapeutic cancer vaccines emerged to try to improve anticancer drugs' efficiency and to deliver them to the target site. Cancer vaccines are considered a viable therapeutic technique for most solid tumors. Vaccines boost antitumor immunity by delivering tumor antigens, nucleic acids, entire cells, and peptides. Cancer vaccines are designed to induce long-term antitumor memory, causing tumor regression, eradicate minimal residual illness, and prevent non-specific or unpleasant effects. These vaccines can assist in the elimination of cancer cells from various organs or organ systems in the body, with minimal risk of tumor recurrence or metastasis. Vaccines and antigens for anticancer therapy are discussed in this review, including current vaccine adjuvants and mechanisms of action for various types of vaccines, such as DNA- or mRNA-based cancer vaccines. Potential applications of these vaccines focusing on their clinical use for better therapeutic efficacy are also discussed along with the latest research available in this field.
Collapse
|
12
|
Karim ME, Haque ST, Al-Busaidi H, Bakhtiar A, Tha KK, Holl MMB, Chowdhury EH. Scope and challenges of nanoparticle-based mRNA delivery in cancer treatment. Arch Pharm Res 2022; 45:865-893. [DOI: 10.1007/s12272-022-01418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
|
13
|
Markov OV, Sen’kova AV, Mohamed IS, Shmendel EV, Maslov MA, Oshchepkova AL, Brenner EV, Mironova NL, Zenkova MA. Dendritic Cell-Derived Artificial Microvesicles Inhibit RLS 40 Lymphosarcoma Growth in Mice via Stimulation of Th1/Th17 Immune Response. Pharmaceutics 2022; 14:pharmaceutics14112542. [PMID: 36432733 PMCID: PMC9696603 DOI: 10.3390/pharmaceutics14112542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cell-free antitumor vaccines represent a promising approach to immunotherapy of cancer. Here, we compare the antitumor potential of cell-free vaccines based on microvesicles derived from dendritic cells (DCs) with DC- and cationic-liposome-based vaccines using a murine model of drug-resistant lymphosarcoma RLS40 in vivo. The vaccines were the following: microvesicle vaccines—cytochalasin B-induced membrane vesicles (CIMVs) obtained from DCs loaded with total tumor RNA using cholesterol/spermine-containing cationic liposomes L or mannosylated liposomes ML; DC vaccines—murine DCs loaded with total tumor-derived RNA using the same liposomes; and liposomal vaccines—lipoplexes of total tumor-derived RNA with liposomes L or ML. Being non-hepatotoxic, CIMV- and DC-based vaccines administered subcutaneously exhibited comparable potential to stimulate highly efficient antitumor CTLs in vivo, whereas liposomal vaccines were 25% weaker CTL inducers. Nevertheless, the antitumor efficiencies of the different types of the vaccines were similar: sizes of tumor nodes and the number of liver metastases were significantly decreased, regardless of the vaccine type. Notably, the booster vaccination did not improve the overall antitumor efficacy of the vaccines under the study. CIMV- and DC- based vaccines more efficiently than liposome-based ones decreased mitotic activity of tumor cells and induced their apoptosis, stimulated accumulation of neutrophil inflammatory infiltration in tumor tissue, and had a more pronounced immunomodulatory activity toward the spleen and thymus. Administration of CIMV-, DC-, and liposome-based vaccines resulted in activation of Th1/Th17 cells as well as the induction of positive immune checkpoint 4-1BBL and downregulation of suppressive immune checkpoints in a raw PD-1 >>> TIGIT > CTLA4 > TIM3. We demonstrated that cell-free CIMV-based vaccines exhibited superior antitumor and antimetastatic activity in a tumor model in vivo. The obtained results can be considered as the basis for developing novel strategies for oncoimmunotherapy.
Collapse
Affiliation(s)
- Oleg V. Markov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(383)-363-51-61
| | - Aleksandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
| | - Islam S. Mohamed
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
| | - Elena V. Shmendel
- M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo Ave. 86, 119571 Moscow, Russia
| | - Mikhail A. Maslov
- M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo Ave. 86, 119571 Moscow, Russia
| | - Anastasiya L. Oshchepkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
| | - Evgeniy V. Brenner
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
| | - Nadezhda L. Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
| |
Collapse
|
14
|
Kairuz D, Samudh N, Ely A, Arbuthnot P, Bloom K. Advancing mRNA technologies for therapies and vaccines: An African context. Front Immunol 2022; 13:1018961. [PMID: 36353641 PMCID: PMC9637871 DOI: 10.3389/fimmu.2022.1018961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/10/2022] [Indexed: 09/26/2023] Open
Abstract
Synthetic mRNA technologies represent a versatile platform that can be used to develop advanced drug products. The remarkable speed with which vaccine development programs designed and manufactured safe and effective COVID-19 vaccines has rekindled interest in mRNA technology, particularly for future pandemic preparedness. Although recent R&D has focused largely on advancing mRNA vaccines and large-scale manufacturing capabilities, the technology has been used to develop various immunotherapies, gene editing strategies, and protein replacement therapies. Within the mRNA technologies toolbox lie several platforms, design principles, and components that can be adapted to modulate immunogenicity, stability, in situ expression, and delivery. For example, incorporating modified nucleotides into conventional mRNA transcripts can reduce innate immune responses and improve in situ translation. Alternatively, self-amplifying RNA may enhance vaccine-mediated immunity by increasing antigen expression. This review will highlight recent advances in the field of synthetic mRNA therapies and vaccines, and discuss the ongoing global efforts aimed at reducing vaccine inequity by establishing mRNA manufacturing capacity within Africa and other low- and middle-income countries.
Collapse
Affiliation(s)
| | | | | | | | - Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
15
|
Fang E, Liu X, Li M, Zhang Z, Song L, Zhu B, Wu X, Liu J, Zhao D, Li Y. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther 2022; 7:94. [PMID: 35322018 PMCID: PMC8940982 DOI: 10.1038/s41392-022-00950-y] [Citation(s) in RCA: 202] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
To date, the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has determined 399,600,607 cases and 5,757,562 deaths worldwide. COVID-19 is a serious threat to human health globally. The World Health Organization (WHO) has declared COVID-19 pandemic a major public health emergency. Vaccination is the most effective and economical intervention for controlling the spread of epidemics, and consequently saving lives and protecting the health of the population. Various techniques have been employed in the development of COVID-19 vaccines. Among these, the COVID-19 messenger RNA (mRNA) vaccine has been drawing increasing attention owing to its great application prospects and advantages, which include short development cycle, easy industrialization, simple production process, flexibility to respond to new variants, and the capacity to induce better immune response. This review summarizes current knowledge on the structural characteristics, antigen design strategies, delivery systems, industrialization potential, quality control, latest clinical trials and real-world data of COVID-19 mRNA vaccines as well as mRNA technology. Current challenges and future directions in the development of preventive mRNA vaccines for major infectious diseases are also discussed.
Collapse
Affiliation(s)
- Enyue Fang
- National Institute for Food and Drug Control, Beijing, 102629, China
- Wuhan Institute of Biological Products, Co., Ltd., Wuhan, 430207, China
| | - Xiaohui Liu
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Miao Li
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Zelun Zhang
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Lifang Song
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Baiyu Zhu
- Texas A&M University, College Station, TX, 77843, USA
| | - Xiaohong Wu
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Jingjing Liu
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Danhua Zhao
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Yuhua Li
- National Institute for Food and Drug Control, Beijing, 102629, China.
| |
Collapse
|
16
|
Meijlink MA, Chua YC, Chan STS, Anderson RJ, Rosenberg MW, Cozijnsen A, Mollard V, McFadden GI, Draper SL, Holz LE, Hermans IF, Heath WR, Painter GF, Compton BJ. 6″-Modifed α-GalCer-peptide conjugate vaccine candidates protect against liver-stage malaria. RSC Chem Biol 2022; 3:551-560. [PMID: 35656478 PMCID: PMC9092427 DOI: 10.1039/d1cb00251a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/02/2022] [Indexed: 11/21/2022] Open
Abstract
Self-adjuvanting vaccines consisting of peptide epitopes conjugated to immune adjuvants are a powerful way of generating antigen-specific immune responses. We previously showed that a Plasmodium-derived peptide conjugated to a rearranged form of α-galactosylceramide (α-GalCer) could stimulate liver-resident memory T (TRM) cells that were effective killers of liver-stage Plasmodium berghei ANKA (Pba)-infected cells. To investigate if similar or even superior TRM responses can be induced by modifying the α-GalCer adjuvant, we created new conjugate vaccine cadidates by attaching an immunogenic Plasmodium-derived peptide antigen to 6″-substituted α-GalCer analogues. Vaccine synthesis involved developing an efficient route to α-galactosylphytosphingosine (α-GalPhs), from which the prototypical iNKT cell agonist, α-GalCer, and its 6″-deoxy-6″-thio and -amino analogues were derived. Attaching a cathepsin B-cleavable linker to the 6″-modified α-GalCer created pro-adjuvants bearing a pendant ketone group available for peptide conjugation. Optimized reaction conditions were developed that allow for the efficient conjugation of peptide antigens to the pro-adjuvants via oxime ligation to create new glycolipid-peptide (GLP) conjugate vaccines. A single dose of the vaccine candidates induced acute NKT and Plasmodium-specific CD8+ T cell responses that generated potent hepatic TRM responses in mice. Our findings demonstrate that attaching antigenic peptides to 6″-modifed α-GalCer generates powerful self-adjuvanting conjugate vaccine candidates that could potentially control hepatotropic infections such as liver-stage malaria. Candidate vaccines comprised of peptide antigen conjugated to 6″-modified α-GalCer analogues generate potent hepatic TRM responses in mice with a single dose inducing protective immunity against malaria in a Plasmodium sporozoite challenge model.![]()
Collapse
Affiliation(s)
- Michael A. Meijlink
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Yu Cheng Chua
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Susanna T. S. Chan
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Regan J. Anderson
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Matthew W. Rosenberg
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Anton Cozijnsen
- School of BioSciences, University of Melbourntie, Parkville, VIC, Australia
| | - Vanessa Mollard
- School of BioSciences, University of Melbourntie, Parkville, VIC, Australia
| | | | - Sarah L. Draper
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Lauren E. Holz
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Ian F. Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Avalia Immunotherapies Limited, Lower Hutt, New Zealand
| | - William R. Heath
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Gavin F. Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
- Avalia Immunotherapies Limited, Lower Hutt, New Zealand
| | - Benjamin J. Compton
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| |
Collapse
|
17
|
Zeng C, Zhang C, Walker PG, Dong Y. Formulation and Delivery Technologies for mRNA Vaccines. Curr Top Microbiol Immunol 2022; 440:71-110. [PMID: 32483657 PMCID: PMC8195316 DOI: 10.1007/82_2020_217] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
mRNA vaccines have become a versatile technology for the prevention of infectious diseases and the treatment of cancers. In the vaccination process, mRNA formulation and delivery strategies facilitate effective expression and presentation of antigens, and immune stimulation. mRNA vaccines have been delivered in various formats: encapsulation by delivery carriers, such as lipid nanoparticles, polymers, peptides, free mRNA in solution, and ex vivo through dendritic cells. Appropriate delivery materials and formulation methods often boost the vaccine efficacy which is also influenced by the selection of a proper administration route. Co-delivery of multiple mRNAs enables synergistic effects and further enhances immunity in some cases. In this chapter, we overview the recent progress and existing challenges in the formulation and delivery technologies of mRNA vaccines with perspectives for future development.
Collapse
Affiliation(s)
- Chunxi Zeng
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, 43210, Columbus, OH, USA
| | - Chengxiang Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, 43210, Columbus, OH, USA
| | - Patrick G Walker
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, 43210, Columbus, OH, USA. .,The Center for Clinical and Translational Science, The Ohio State University, Columbus, OH, 43210, USA. .,The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA. .,Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, 43210, Columbus, OH, USA. .,Department of Radiation Oncology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
18
|
Nelson A, Lukacs JD, Johnston B. The Current Landscape of NKT Cell Immunotherapy and the Hills Ahead. Cancers (Basel) 2021; 13:cancers13205174. [PMID: 34680322 PMCID: PMC8533824 DOI: 10.3390/cancers13205174] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Natural killer T (NKT) cells are a subset of lipid-reactive T cells that enhance anti-tumor immunity. While preclinical studies have shown NKT cell immunotherapy to be safe and effective, clinical studies lack predictable therapeutic efficacy and no approved treatments exist. In this review, we outline the current strategies, challenges, and outlook for NKT cell immunotherapy. Abstract NKT cells are a specialized subset of lipid-reactive T lymphocytes that play direct and indirect roles in immunosurveillance and anti-tumor immunity. Preclinical studies have shown that NKT cell activation via delivery of exogenous glycolipids elicits a significant anti-tumor immune response. Furthermore, infiltration of NKT cells is associated with a good prognosis in several cancers. In this review, we aim to summarize the role of NKT cells in cancer as well as the current strategies and status of NKT cell immunotherapy. This review also examines challenges and future directions for improving the therapy.
Collapse
Affiliation(s)
- Adam Nelson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Jordan D. Lukacs
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence:
| |
Collapse
|
19
|
Battaglia L, Scomparin A, Dianzani C, Milla P, Muntoni E, Arpicco S, Cavalli R. Nanotechnology Addressing Cutaneous Melanoma: The Italian Landscape. Pharmaceutics 2021; 13:1617. [PMID: 34683910 PMCID: PMC8540596 DOI: 10.3390/pharmaceutics13101617] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022] Open
Abstract
Cutaneous melanoma is one of the most aggressive solid tumors, with a low survival for the metastatic stage. Currently, clinical melanoma treatments include surgery, chemotherapy, targeted therapy, immunotherapy and radiotherapy. Of note, innovative therapeutic regimens concern the administration of multitarget drugs in tandem, in order to improve therapeutic efficacy. However, also, if this drug combination is clinically relevant, the patient's response is not yet optimal. In this scenario, nanotechnology-based delivery systems can play a crucial role in the clinical treatment of advanced melanoma. In fact, their nano-features enable targeted drug delivery at a cellular level by overcoming biological barriers. Various nanomedicines have been proposed for the treatment of cutaneous melanoma, and a relevant number of them are undergoing clinical trials. In Italy, researchers are focusing on the pharmaceutical development of nanoformulations for malignant melanoma therapy. The present review reports an overview of the main melanoma-addressed nanomedicines currently under study in Italy, alongside the state of the art of melanoma therapy. Moreover, the latest Italian advances concerning the pre-clinical evaluation of nanomedicines for melanoma are described.
Collapse
Affiliation(s)
- Luigi Battaglia
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Anna Scomparin
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
- . Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chiara Dianzani
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Paola Milla
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Elisabetta Muntoni
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Silvia Arpicco
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Roberta Cavalli
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| |
Collapse
|
20
|
Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. NATURE REVIEWS. MATERIALS 2021; 6:1078-1094. [PMID: 34394960 PMCID: PMC8353930 DOI: 10.1038/s41578-021-00358-0] [Citation(s) in RCA: 1357] [Impact Index Per Article: 452.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 05/09/2023]
Abstract
Messenger RNA (mRNA) has emerged as a new category of therapeutic agent to prevent and treat various diseases. To function in vivo, mRNA requires safe, effective and stable delivery systems that protect the nucleic acid from degradation and that allow cellular uptake and mRNA release. Lipid nanoparticles have successfully entered the clinic for the delivery of mRNA; in particular, lipid nanoparticle-mRNA vaccines are now in clinical use against coronavirus disease 2019 (COVID-19), which marks a milestone for mRNA therapeutics. In this Review, we discuss the design of lipid nanoparticles for mRNA delivery and examine physiological barriers and possible administration routes for lipid nanoparticle-mRNA systems. We then consider key points for the clinical translation of lipid nanoparticle-mRNA formulations, including good manufacturing practice, stability, storage and safety, and highlight preclinical and clinical studies of lipid nanoparticle-mRNA therapeutics for infectious diseases, cancer and genetic disorders. Finally, we give an outlook to future possibilities and remaining challenges for this promising technology.
Collapse
Affiliation(s)
- Xucheng Hou
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH USA
| | - Tal Zaks
- Moderna, Inc., Cambridge, MA USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH USA
| |
Collapse
|
21
|
Khalid K, Padda J, Khedr A, Ismail D, Zubair U, Al-Ewaidat OA, Padda S, Cooper AC, Jean-Charles G. HIV and Messenger RNA (mRNA) Vaccine. Cureus 2021; 13:e16197. [PMID: 34367800 PMCID: PMC8341208 DOI: 10.7759/cureus.16197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) is a part of the lentivirus genus of the retroviridae family that incorporates its genome into the host DNA via a series of complex steps. HIV can be classified into two types, HIV-type 1 (HIV-1) and HIV-type 2 (HIV-2), with HIV-1 being the most common type worldwide. Seventy-six million people have been infected since the start of the pandemic, with a mortality rate of 33 million. Even after 40 years, no cure has been developed for this pandemic. The development of the mRNA vaccine has led to further research for the utilization of mRNA vaccine in HIV, in attempts to create a prophylactic and therapeutic treatment. Although messenger RNA (mRNA) vaccine has been around for many years, it has recently drawn attention due to its role and response in the unforeseen coronavirus pandemic. mRNA vaccine has faced its fair-share of challenges, but it also offers many advantages compared to conventional vaccines such as safety, efficacy, rapid preparation, and versatility. mRNA vaccine has shown promising results and has great potential. In this review, we discuss the types of mRNA vaccine, along with development, delivery, advantages, challenges, and how we are working to overcome these challenges.
Collapse
Affiliation(s)
- Khizer Khalid
- Internal Medicine, Gutteridge Jean-Charles (JC) Medical Center, Orlando, USA
| | - Jaskamal Padda
- Internal Medicine, Gutteridge Jean-Charles (JC) Medical Center, Orlando, USA
| | - Anwar Khedr
- Internal Medicine, Gutteridge Jean-Charles (JC) Medical Center, Orlando, USA
| | - Dina Ismail
- Internal Medicine, Gutteridge Jean-Charles (JC) Medical Center, Orlando, USA
| | - Ujala Zubair
- Family Medicine, Gutteridge Jean-Charles (JC) Medical Center, Orlando, USA
| | - Ola A Al-Ewaidat
- Internal Medicine, Gutteridge Jean-Charles (JC) Medical Center, Orlando, USA
| | - Sandeep Padda
- Internal Medicine, Gutteridge Jean-Charles (JC) Medical Center, Orlando, USA
| | | | - Gutteridge Jean-Charles
- Internal Medicine, Advent Health & Orlando Health Hospital/Gutteridge Jean-Charles (JC) Medical Center, Orlando, USA
| |
Collapse
|
22
|
Burn OK, Pankhurst TE, Painter GF, Connor LM, Hermans IF. Harnessing NKT cells for vaccination. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab013. [PMID: 36845569 PMCID: PMC9914585 DOI: 10.1093/oxfimm/iqab013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/14/2022] Open
Abstract
Natural killer T (NKT) cells are innate-like T cells capable of enhancing both innate and adaptive immune responses. When NKT cells are stimulated in close temporal association with co-administered antigens, strong antigen-specific immune responses can be induced, prompting the study of NKT cell agonists as novel immune adjuvants. This activity has been attributed to the capacity of activated NKT cells to act as universal helper cells, with the ability to provide molecular signals to dendritic cells and B cells that facilitate T cell and antibody responses, respectively. These signals can override the requirement for conventional CD4+ T cell help, so that vaccines can be designed without need to consider CD4+ T cell repertoire and major histocompatibility complex Class II diversity. Animal studies have highlighted some drawbacks of the approach, namely, concerns around induction of NKT cell hyporesponsiveness, which may limit vaccine boosting, and potential for toxicity. Here we highlight studies that suggest these obstacles can be overcome by targeted delivery in vivo. We also feature new studies that suggest activating NKT cells can help encourage differentiation of T cells into tissue-resident memory cells that play an important role in prophylaxis against infection, and may be required in cancer therapy.
Collapse
Affiliation(s)
- Olivia K Burn
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6042, New Zealand
| | - Theresa E Pankhurst
- The School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Gavin F Painter
- The Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Petone 5046, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Lisa M Connor
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6042, New Zealand,The School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6042, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, New Zealand,Correspondence address. Malaghan Institute of Medical Research, Wellington, New Zealand. Tel: +64 4 4996914; E-mail: (I.F.H.)
| |
Collapse
|
23
|
Abbasi S, Uchida S. Multifunctional Immunoadjuvants for Use in Minimalist Nucleic Acid Vaccines. Pharmaceutics 2021; 13:644. [PMID: 34062771 PMCID: PMC8147386 DOI: 10.3390/pharmaceutics13050644] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Subunit vaccines based on antigen-encoding nucleic acids have shown great promise for antigen-specific immunization against cancer and infectious diseases. Vaccines require immunostimulatory adjuvants to activate the innate immune system and trigger specific adaptive immune responses. However, the incorporation of immunoadjuvants into nonviral nucleic acid delivery systems often results in fairly complex structures that are difficult to mass-produce and characterize. In recent years, minimalist approaches have emerged to reduce the number of components used in vaccines. In these approaches, delivery materials, such as lipids and polymers, and/or pDNA/mRNA are designed to simultaneously possess several functionalities of immunostimulatory adjuvants. Such multifunctional immunoadjuvants encode antigens, encapsulate nucleic acids, and control their pharmacokinetic or cellular fate. Herein, we review a diverse class of multifunctional immunoadjuvants in nucleic acid subunit vaccines and provide a detailed description of their mechanisms of adjuvanticity and induction of specific immune responses.
Collapse
Affiliation(s)
- Saed Abbasi
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Satoshi Uchida
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| |
Collapse
|
24
|
Esteban I, Pastor-Quiñones C, Usero L, Plana M, García F, Leal L. In the Era of mRNA Vaccines, Is There Any Hope for HIV Functional Cure? Viruses 2021; 13:501. [PMID: 33803790 PMCID: PMC8003302 DOI: 10.3390/v13030501] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 01/07/2023] Open
Abstract
Over 36 million people worldwide are infected with HIV. Antiretroviral therapy (ART) has proven to be highly effective to prevent HIV-1 transmission, clinical progression and death. Despite this success, the number of HIV-1 infected individuals continues increasing and ART should be taken for life. Therefore, there are two main priorities: the development of preventive vaccines to protect from HIV acquisition and achieve an efficient control of HIV infection in the absence of ART (functional cure). In this sense, in the last few years, there has been a broad interest in new and innovative approaches such as mRNA-based vaccines. RNA-based immunogens represent a promising alternative to conventional vaccines because of their high potency, capacity for rapid development and potential for low-cost manufacture and safe administration. Some mRNA-based vaccines platforms against infectious diseases have demonstrated encouraging results in animal models and humans. However, their application is still limited because the instability and inefficient in vivo delivery of mRNA. Immunogens, design, immunogenicity, chemical modifications on the molecule or the vaccine delivery methods are all crucial interventions for improvement. In this review we, will present the current knowledge and challenges in this research field. mRNA vaccines hold great promises as part of a combined strategy, for achieving HIV functional cure.
Collapse
Affiliation(s)
- Ignasi Esteban
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.E.); (C.P.-Q.); (L.U.); (M.P.); (F.G.)
| | - Carmen Pastor-Quiñones
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.E.); (C.P.-Q.); (L.U.); (M.P.); (F.G.)
| | - Lorena Usero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.E.); (C.P.-Q.); (L.U.); (M.P.); (F.G.)
| | - Montserrat Plana
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.E.); (C.P.-Q.); (L.U.); (M.P.); (F.G.)
| | - Felipe García
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.E.); (C.P.-Q.); (L.U.); (M.P.); (F.G.)
- Infectious Diseases Department, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| | - Lorna Leal
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.E.); (C.P.-Q.); (L.U.); (M.P.); (F.G.)
- Infectious Diseases Department, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
25
|
Raza F, Zafar H, Zhang S, Kamal Z, Su J, Yuan W, Mingfeng Q. Recent Advances in Cell Membrane-Derived Biomimetic Nanotechnology for Cancer Immunotherapy. Adv Healthc Mater 2021; 10:e2002081. [PMID: 33586322 DOI: 10.1002/adhm.202002081] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/13/2021] [Indexed: 12/17/2022]
Abstract
Immunotherapy will significantly impact the standard of care in cancer treatment. Recent advances in nanotechnology can improve the efficacy of cancer immunotherapy. However, concerns regarding efficiency of cancer nanomedicine, complex tumor microenvironment, patient heterogeneity, and systemic immunotoxicity drive interest in more novel approaches to be developed. For this purpose, biomimetic nanoparticles are developed to make innovative changes in the delivery and biodistribution of immunotherapeutics. Biomimetic nanoparticles have several advantages that can advance the clinical efficacy of cancer immunotherapy. Thus there is a greater push toward the utilization of biomimetic nanotechnology for developing effective cancer immunotherapeutics that demonstrate increased specificity and potency. The recent works and state-of-the-art strategies for anti-tumor immunotherapeutics are highlighted here, and particular emphasis has been given to the applications of cell-derived biomimetic nanotechnology for cancer immunotherapy.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Hajra Zafar
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Shulei Zhang
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zul Kamal
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
- Department of Pharmacy Shaheed Benazir Bhutto University Sheringal Dir (Upper) Khyber Pakhtunkhwa 18000 Pakistan
| | - Jing Su
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Wei‐En Yuan
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Qiu Mingfeng
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
26
|
Sanmartín I, Sendra L, Moret I, Herrero MJ, Aliño SF. Multicompartmental Lipopolyplex as Vehicle for Antigens and Genes Delivery in Vaccine Formulations. Pharmaceutics 2021; 13:pharmaceutics13020281. [PMID: 33669785 PMCID: PMC7922173 DOI: 10.3390/pharmaceutics13020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
Vector design and its characterization is an area of great interest in current vaccine research. In this article, we have formulated and characterized a multicompartmental lipopolyplex, which associates multiple liposomes and polyplexes in the same complex. These particles allow the simultaneous delivery of lipid or water-soluble antigens associated with genes to the same cell, in much higher amounts than conventional lipopolyplexes. The vector characterization and optimization were carried out using liposomes with entrapped carboxyfluorescein and adapted electrophoretic assays. Two types of lipopolyplexes (containing hydrophilic or lipophilic antigens) were employed to evaluate their interest in vaccination. The lipopolyplex loaded with an extract of water-soluble melanoma proteins proved to efficiently induce humoral response in murine melanoma model, increasing the levels of IgM and IgG. The specificity of the immune response induced by the lipopolyplex was demonstrated in mice with the lipopolyplex containing the GD3 ganglioside lipid antigen, abundant in melanoma cells. The levels of anti-GD3 IgG increased markedly without modifying the expression of humoral antibodies against other gangliosides.
Collapse
Affiliation(s)
- Isaías Sanmartín
- Faculty of Veterinary and Experimental Sciences, Universidad Católica de Valencia, 46001 Valencia, Spain;
- Pharmacology Department, Faculty of Medicine, Universidad de Valencia, 46010 Valencia, Spain; (L.S.); (I.M.); (M.J.H.)
| | - Luis Sendra
- Pharmacology Department, Faculty of Medicine, Universidad de Valencia, 46010 Valencia, Spain; (L.S.); (I.M.); (M.J.H.)
- Pharmacogenetics Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Inés Moret
- Pharmacology Department, Faculty of Medicine, Universidad de Valencia, 46010 Valencia, Spain; (L.S.); (I.M.); (M.J.H.)
- Inflammatory Bowel Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - María José Herrero
- Pharmacology Department, Faculty of Medicine, Universidad de Valencia, 46010 Valencia, Spain; (L.S.); (I.M.); (M.J.H.)
- Pharmacogenetics Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Salvador F. Aliño
- Pharmacology Department, Faculty of Medicine, Universidad de Valencia, 46010 Valencia, Spain; (L.S.); (I.M.); (M.J.H.)
- Pharmacogenetics Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Clinical Pharmacology Unit, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Correspondence: ; Tel.: +34-963-864-972
| |
Collapse
|
27
|
Cuzzubbo S, Mangsbo S, Nagarajan D, Habra K, Pockley AG, McArdle SEB. Cancer Vaccines: Adjuvant Potency, Importance of Age, Lifestyle, and Treatments. Front Immunol 2021; 11:615240. [PMID: 33679703 PMCID: PMC7927599 DOI: 10.3389/fimmu.2020.615240] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Although the discovery and characterization of multiple tumor antigens have sparked the development of many antigen/derived cancer vaccines, many are poorly immunogenic and thus, lack clinical efficacy. Adjuvants are therefore incorporated into vaccine formulations to trigger strong and long-lasting immune responses. Adjuvants have generally been classified into two categories: those that ‘depot’ antigens (e.g. mineral salts such as aluminum hydroxide, emulsions, liposomes) and those that act as immunostimulants (Toll Like Receptor agonists, saponins, cytokines). In addition, several novel technologies using vector-based delivery of antigens have been used. Unfortunately, the immune system declines with age, a phenomenon known as immunosenescence, and this is characterized by functional changes in both innate and adaptive cellular immunity systems as well as in lymph node architecture. While many of the immune functions decline over time, others paradoxically increase. Indeed, aging is known to be associated with a low level of chronic inflammation—inflamm-aging. Given that the median age of cancer diagnosis is 66 years and that immunotherapeutic interventions such as cancer vaccines are currently given in combination with or after other forms of treatments which themselves have immune-modulating potential such as surgery, chemotherapy and radiotherapy, the choice of adjuvants requires careful consideration in order to achieve the maximum immune response in a compromised environment. In addition, more clinical trials need to be performed to carefully assess how less conventional form of immune adjuvants, such as exercise, diet and psychological care which have all be shown to influence immune responses can be incorporated to improve the efficacy of cancer vaccines. In this review, adjuvants will be discussed with respect to the above-mentioned important elements.
Collapse
Affiliation(s)
- Stefania Cuzzubbo
- Université de Paris, PARCC, INSERM U970, 75015, Paris, France.,Laboratoire de Recherches Biochirurgicales (Fondation Carpentier), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
| | - Sara Mangsbo
- Ultimovacs AB, Uppsala, Sweden.,Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Divya Nagarajan
- Department of Immunology, Genetics and Clinical pathology Rudbeck laboratories, Uppsala University, Uppsala, Sweden
| | - Kinana Habra
- The School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Alan Graham Pockley
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Stephanie E B McArdle
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
28
|
Lin G, Revia RA, Zhang M. Inorganic Nanomaterial-Mediated Gene Therapy in Combination with Other Antitumor Treatment Modalities. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007096. [PMID: 34366761 PMCID: PMC8336227 DOI: 10.1002/adfm.202007096] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 05/05/2023]
Abstract
Cancer is a genetic disease originating from the accumulation of gene mutations in a cellular subpopulation. Although many therapeutic approaches have been developed to treat cancer, recent studies have revealed an irrefutable challenge that tumors evolve defenses against some therapies. Gene therapy may prove to be the ultimate panacea for cancer by correcting the fundamental genetic errors in tumors. The engineering of nanoscale inorganic carriers of cancer therapeutics has shown promising results in the efficacious and safe delivery of nucleic acids to treat oncological diseases in small-animal models. When these nanocarriers are used for co-delivery of gene therapeutics along with auxiliary treatments, the synergistic combination of therapies often leads to an amplified health benefit. In this review, an overview of the inorganic nanomaterials developed for combinatorial therapies of gene and other treatment modalities is presented. First, the main principles of using nucleic acids as therapeutics, inorganic nanocarriers for medical applications and delivery of gene/drug payloads are introduced. Next, the utility of recently developed inorganic nanomaterials in different combinations of gene therapy with each of chemo, immune, hyperthermal, and radio therapy is examined. Finally, current challenges in the clinical translation of inorganic nanomaterial-mediated therapies are presented and outlooks for the field are provided.
Collapse
Affiliation(s)
- Guanyou Lin
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Richard A Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
29
|
Nanoparticles as Adjuvants and Nanodelivery Systems for mRNA-Based Vaccines. Pharmaceutics 2020; 13:pharmaceutics13010045. [PMID: 33396817 PMCID: PMC7823281 DOI: 10.3390/pharmaceutics13010045] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Messenger RNA (mRNA)-based vaccines have shown promise against infectious diseases and several types of cancer in the last two decades. Their promise can be attributed to their safety profiles, high potency, and ability to be rapidly and affordably manufactured. Now, many RNA-based vaccines are being evaluated in clinical trials as prophylactic and therapeutic vaccines. However, until recently, their development has been limited by their instability and inefficient in vivo transfection. The nanodelivery system plays a dual function in RNA-based vaccination by acting as a carrier system and as an adjuvant. That is due to its similarity to microorganisms structurally and size-wise; the nanodelivery system can augment the response by the immune system via simulating the natural infection process. Nanodelivery systems allow non-invasive mucosal administration, targeted immune cell delivery, and controlled delivery, reducing the need for multiple administrations. They also allow co-encapsulating with immunostimulators to improve the overall adjuvant capacity. The aim of this review is to discuss the recent developments and applications of biodegradable nanodelivery systems that improve RNA-based vaccine delivery and enhance the immunological response against targeted diseases.
Collapse
|
30
|
Guevara ML, Persano F, Persano S. Advances in Lipid Nanoparticles for mRNA-Based Cancer Immunotherapy. Front Chem 2020; 8:589959. [PMID: 33195094 PMCID: PMC7645050 DOI: 10.3389/fchem.2020.589959] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/16/2020] [Indexed: 12/29/2022] Open
Abstract
Over the past decade, messenger RNA (mRNA) has emerged as potent and flexible platform for the development of novel effective cancer immunotherapies. Advances in non-viral gene delivery technologies, especially the tremendous progress in lipid nanoparticles' manufacturing, have made possible the implementation of mRNA-based antitumor treatments. Several mRNA-based immunotherapies have demonstrated antitumor effect in preclinical and clinical studies, and marked successes have been achieved most notably by its implementation in therapeutic vaccines, cytokines therapies, checkpoint blockade and chimeric antigen receptor (CAR) cell therapy. In this review, we summarize recent advances in the development of lipid nanoparticles for mRNA-based immunotherapies and their applications in cancer treatment. Finally, we also highlight the variety of immunotherapeutic approaches through mRNA delivery and discuss the main factors affecting transfection efficiency and tropism of mRNA-loaded lipid nanoparticles in vivo.
Collapse
Affiliation(s)
- Maria L Guevara
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Francesca Persano
- Department Matematica e Fisica 'Ennio De Giorgi', Università del Salento, Lecce, Italy
| | - Stefano Persano
- Nanomaterials for Biomedical Applications, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| |
Collapse
|
31
|
Faghfuri E, Pourfarzi F, Faghfouri AH, Abdoli Shadbad M, Hajiasgharzadeh K, Baradaran B. Recent developments of RNA-based vaccines in cancer immunotherapy. Expert Opin Biol Ther 2020; 21:201-218. [PMID: 32842798 DOI: 10.1080/14712598.2020.1815704] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cancer immunotherapy is more dependent on monoclonal antibodies, proteins, and cells, as therapeutic agents, to attain prominent outcomes. However, cancer immunotherapy's clinical benefits need to be enhanced, as many patients still do not respond well to existing treatments, or their diseases may relapse after temporary control. RNA-based approaches have provided new options for advancing cancer immunotherapy. Moreover, considerable efforts have been made to utilize RNA for vaccine production. RNA vaccines, which encode tumor-associated or specific epitopes, stimulate adaptive immunity. This adaptive immune response is capable of elimination or reduction of tumor burden. It is crucial to develop effective RNA transfer technologies that penetrate the lipid bilayer to reach the cytoplasm for translation into functional proteins. Two important delivery methods include the loading of mRNA into dendritic cells ex vivo; and direct injection of naked RNA with or without a carrier. AREAS COVERED The latest results of pre-clinical and clinical studies with RNA vaccines in cancer immunotherapy are summarized in this review. EXPERT OPINION RNA vaccines are now in early clinical development with promising safety and efficacy outcomes. Also, the translation capacity and durability of these vaccines can be increased with chemical modifications and sequence engineering.
Collapse
Affiliation(s)
- Elnaz Faghfuri
- Digestive Disease Research Center, Ardabil University of Medical Sciences , Ardabil, Iran
| | - Farhad Pourfarzi
- Digestive Disease Research Center, Ardabil University of Medical Sciences , Ardabil, Iran
| | - Amir Hossein Faghfouri
- Student's Research Committee, Department of Nutrition, Tabriz University of Medical Science , Tabriz, Iran
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
| |
Collapse
|
32
|
Affiliation(s)
- Chaoyang Meng
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Xiangya Hospital of Central South University Changsha Hunan 410000 China
| | - Zhe Chen
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Xiangya Hospital of Central South University Changsha Hunan 410000 China
| | - Gang Li
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Thomas Welte
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Haifa Shen
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Cancer Center Houston Methodist Hospital Houston TX 77030 USA
- Department of Cell and Developmental Biology Weill Cornell Medical College New York NY 10065 USA
| |
Collapse
|
33
|
Guevara ML, Persano F, Persano S. Nano-immunotherapy: Overcoming tumour immune evasion. Semin Cancer Biol 2019; 69:238-248. [PMID: 31883449 DOI: 10.1016/j.semcancer.2019.11.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022]
Abstract
Immunotherapy is emerging as a groundbreaking cancer treatment, offering the unprecedented opportunity to effectively treat and in several cases, even cure previously untreatable malignancies. Anti-tumour immunotherapies designed to amplify T cell responses against defined tumour antigens have long been considered effective approaches for cancer treatment. Despite a clear rationale behind such immunotherapies, extensive past efforts were unsuccessful in mediating clinically relevant anti-tumour activity in humans. This is mainly because tumours adopt specific mechanisms to circumvent the host´s immunity. Emerging data suggest that the full potential of cancer immunotherapy will be only achieved by combining immunotherapies designed to generate or amplify anti-tumour T cell responses with strategies able to impair key tumour immune-evasion mechanisms. However, many approaches aimed to re-shape the tumour immune microenvironment (TIME) are commonly associated with severe systemic toxicity, require frequent administration, and only show modest efficacy in clinical settings. The use of nanodelivery systems is revealing as a valid means to overcome these limitations by improving the targeting efficiency, minimising systemic exposure of immunomodulatory agents, and enabling the development of novel combinatorial immunotherapies. In this review, we examine the emerging field of therapeutic modulation of TIME by the use of nanoparticle-based immunomodulators and potential future directions for TIME-targeting nanotherapies.
Collapse
Affiliation(s)
- Maria L Guevara
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Francesca Persano
- Department of Mathematics and Physics, University of Salento, Lecce, Italy
| | - Stefano Persano
- Formulation Testing & Discovery, BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany.
| |
Collapse
|