1
|
Nisha, Kohli S, Singh S, Sharma N, Chandra R. Fe 3O 4/PANI/CuI as a sustainable heterogeneous nanocatalyst for A 3 coupling. NANOSCALE ADVANCES 2024; 6:4842-4851. [PMID: 39323424 PMCID: PMC11421548 DOI: 10.1039/d4na00448e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/19/2024] [Indexed: 09/27/2024]
Abstract
The prepared copper iodide nanoparticles were impregnated on the support of ferrite nanoparticles functionalized with polyaniline, resulting in a magnetically recoverable heterogeneous nanocomposite. The activity of the prepared nanocomposite was investigated in the synthesis of propargylamine derivatives via A3 coupling under mild conditions. Techniques such as FESEM, EDAX, XRD, XPS, TEM, BET and FTIR were used to characterize the effective and unique heterogeneous Fe3O4/PANI/CuI nanocomposite developed in this work. This method used in the current study has several advantages, including a short reaction time, neat conditions, good product yield, ideal green matrices values, reusability for up to seven cycles, and magnetic retrievability.
Collapse
Affiliation(s)
- Nisha
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Sahil Kohli
- Department of Chemistry, School of Basic Sciences, Galgotias University Greater Noida-203201 Uttar Pradesh India
- Manav Rachna International Institute of Research & Studies Faridabad Haryana-121004 India
| | - Snigdha Singh
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Neera Sharma
- Department of Chemistry, Hindu College, University of Delhi Delhi-110019 India
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
- Dr. B. R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi Delhi-110007 India
- Institute of Nanomedical Science (INMS), University of Delhi Delhi-110007 India
- Maharaja Surajmal Brij University Bharatpur-321201 Rajasthan India
| |
Collapse
|
2
|
Manna K, Kumar R, Sundaresan A, Natarajan S. Fixing CO 2 under Atmospheric Conditions and Dual Functional Heterogeneous Catalysis Employing Cu MOFs: Polymorphism, Single-Crystal-to-Single-Crystal (SCSC) Transformation and Magnetic Studies. Inorg Chem 2023; 62:13738-13756. [PMID: 37586090 DOI: 10.1021/acs.inorgchem.3c01245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
New copper compounds, [Cu(C14H8O6)(C10H8N2)(H2O)] (1), [Cu(C14H8O6)(C10H8N2)(H2O)]·(C3H7ON)2 (2), [Cu(C14H8O6)(C10H8N2)(H2O)2]·(C3H7ON) (3), [Cu(C14H8O6)(C10H8N4)] (4), and [Cu(C14H8O6)(C10H8N4)]·(H2O) (5), were prepared employing 2,5-bis(prop-2-yn-1-yloxy)terephthalic acid (2,5-BPTA) as the primary ligand and 4,4'-bipyridine (1-3) and 4,4'-azopyridine (4-5) as the secondary ligands. Single-crystal studies indicated that compounds 1-4 have two-dimensional layer structures and compound 5 has a three-dimensional structure. Compounds 1-3 were isolated from the same reaction mixture but by varying the time of reaction. The framework structures of compounds 1-3 are similar and may be considered as polymorphic structures. Compounds 4 and 5 can also be considered polymorphic with a change in dimensionality of the structure. Compounds 1-3 can be formed through a single-crystal-to-single-crystal transformation under a suitable solvent mixture. The Cu center was explored for the Lewis acid-catalyzed cycloaddition reaction of epoxide and CO2 under ambient conditions in a solventless condition and also for the synthesis of propargylamine derivatives by three-component coupling reactions (A3 coupling) in a DCM medium. The Lewis basic functionality of the MOF (-N═N- group) has been explored for the Henry reaction (aldol condensation) in a solventless condition. In all of the catalytic reactions, good yields and recyclability were observed. The magnetic studies indicated that compounds 1 and 4 have antiferromagnetic interactions and compound 5 has ferromagnetic interactions. The present studies illustrated the rich diversity that the copper-containing compounds exhibit in extended framework structures.
Collapse
Affiliation(s)
- Krishna Manna
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit Indian Institute of Science, Bangalore 560012, India
| | - Rahul Kumar
- School of Advanced Materials and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Athinarayanan Sundaresan
- School of Advanced Materials and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Srinivasan Natarajan
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Sarkar FK, Kyndiah L, Gajurel S, Sarkar R, Jana S, Pal AK. A sustainable avenue for the synthesis of propargylamines and benzofurans using a Cu-functionalized MIL-101(Cr) as a reusable heterogeneous catalyst. Sci Rep 2023; 13:12908. [PMID: 37558730 PMCID: PMC10412598 DOI: 10.1038/s41598-023-40154-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023] Open
Abstract
A heterogeneous copper-catalyzed A3 coupling reaction of aldehydes, amines, and alkynes for the synthesis of propargylamines and benzofurans has been developed. Here, the modified metal-organic framework MIL-101(Cr)-SB-Cu complex was chosen as the heterogeneous copper catalyst and prepared via post-synthetic modification of amino-functionalized MIL-101(Cr). The structure, morphology, thermal stability, and copper content of the catalyst were determined by FT-IR, PXRD, SEM, TEM, EDX, TGA, XPS, and ICP-OES. The catalyst shows high catalytic activity for the aforementioned reactions under solvent-free reaction conditions. High yields, low catalyst loading, easy catalyst recovery and reusability with not much shrink in catalytic activity, and a good yield of 82% in gram-scale synthesis are some of the benefits of this protocol that drove it towards sustainability.
Collapse
Affiliation(s)
- Fillip Kumar Sarkar
- Department of Chemistry, Centre for Advanced Studies, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Lenida Kyndiah
- Department of Chemistry, Centre for Advanced Studies, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Sushmita Gajurel
- Department of Chemistry, Centre for Advanced Studies, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Rajib Sarkar
- Department of Chemistry, Centre for Advanced Studies, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Samaresh Jana
- Department of Chemistry, School of Applied Sciences, KIIT- Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Amarta Kumar Pal
- Department of Chemistry, Centre for Advanced Studies, North-Eastern Hill University, Shillong, Meghalaya, 793022, India.
| |
Collapse
|
4
|
Mohammadi L, Taghavi R, Hosseinifard M, Vaezi MR, Rostamnia S. Gold nanoparticle decorated post-synthesis modified UiO-66-NH 2 for A 3-coupling preparation of propargyl amines. Sci Rep 2023; 13:9051. [PMID: 37270660 DOI: 10.1038/s41598-023-35848-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 05/24/2023] [Indexed: 06/05/2023] Open
Abstract
In this report, the novel UiO‑66‑NH2 based-MOF(Zr) catalytic system which further modified with nitrogen-rich organic ligand (5-aminotetrazole) using post synthetic modification (PSM) approach has been prepared here as an efficient catalyst to promote the A3-coupling preparation of propargyl amines in green aquatic media. This newly highly efficient catalyst was synthesized upon Zr-based MOF (UiO‑66‑NH2) which successfully functionalized with 2,4,6‑trichloro‑1,3,5‑triazine (TCT) and 5‑aminotetrazole, following through stabilization of gold metal (Au) nanopartilces. The addition of N-rich organic ligand through post-synthesis modification which can be assisted to stabilize the bister and stable gold nanoparticles caused to unique structure of the final composite in favor of the progress of the A3 coupling reaction. Also several strategies comprising XRD, FT-IR, SEM, BET, TEM, TGA, ICP, EDS and elemental mapping analyzes, were used to indicate the successful preparation of the UiO-66-NH2@ Cyanuric Chloride@ 5-amino tetrazole/Au-NPs. The results of productivity catalyst are accomplished in good to excellent yields for all sort of reactions under mild conditions which is a proof of superior activity heterogeneous catalyst containing Au-nanoparticles. In addition, the suggested catalyst represented excellent reusability with no remarkable loss in activity up 9 sequential runs.
Collapse
Affiliation(s)
- Leila Mohammadi
- Department of Nano Technology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Reza Taghavi
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO BOX 16846-13114, Tehran, Iran
| | | | - Mohammad Reza Vaezi
- Department of Nano Technology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran.
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO BOX 16846-13114, Tehran, Iran
| |
Collapse
|
5
|
Zarei M, Mohammadzadeh I, Saidi K, Sheibani H. Synthesis of Ag-Cu-Ni Nanoparticles Stabilized on Functionalized g-C 3N 4 and Investigation of Its Catalytic Activity in the A 3-Coupling Reaction. ACS OMEGA 2023; 8:18685-18694. [PMID: 37273646 PMCID: PMC10233692 DOI: 10.1021/acsomega.3c00572] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/12/2023] [Indexed: 06/06/2023]
Abstract
In the present research, using ethylenediamine and hydrazine hydrate as the capping and reducing agents in this investigation, respectively, Ag-Cu-Ni NPs were immobilized on the functionalized g-C3N4 surface. This nanocatalyst was studied in terms of its catalytic activities for the A3-coupling reaction to synthesize propargylamine derivatives. According to the results, in the presence of 1 mL of toluene as the solvent and 20 mg of the g-C3N4-TCT-2AEDSEA-Ag-Cu-Ni nanocatalyst, the maximum efficiency of the nanocatalyst occurred at a temperature of 80 °C. Products were purified using thin-layer chromatography plates (silica gel) by employing n-hexane/ethyl acetate with a 90:10 ratio. In addition, the prominent benefits of the synthesized nanocatalyst include its high yields of the product, cost-effectiveness, recyclability, and easy separation. The novelty of the catalyst is due to the presence of Ag-Cu-Ni nanoparticles at the same time in the structure of the functionalized g-C3N4 substrate. So, Ag-Cu-Ni can be strongly connected to the substrate. The structure of the synthesized nanocatalyst was characterized using Fourier transformed infrared spectroscopy, X-ray powder diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, vibrating-sample magnetometry, and transmission electron microscopy.
Collapse
Affiliation(s)
- Mohammad Zarei
- Department
of Chemistry, Shahid Bahonar University
of Kerman, Kerman 76169, Iran
| | - Iman Mohammadzadeh
- Endodontology
Research Center, Kerman University of Medical
Sciences, Kerman 76188, Iran
- Social
Determinants on Oral Health Research Center, Kerman University of Medical Sciences, Kerman 76188, Iran
| | - Kazem Saidi
- Department
of Chemistry, Shahid Bahonar University
of Kerman, Kerman 76169, Iran
| | - Hassan Sheibani
- Department
of Chemistry, Shahid Bahonar University
of Kerman, Kerman 76169, Iran
| |
Collapse
|
6
|
Maheo A, Vithiya B SM, Arul Prasad T A, Mangesh VL, Perumal T, Al-Qahtani WH, Govindasamy M. Cytotoxic, Antidiabetic, and Antioxidant Study of Biogenically Improvised Elsholtzia blanda and Chitosan-Assisted Zinc Oxide Nanoparticles. ACS OMEGA 2023; 8:10954-10967. [PMID: 37008090 PMCID: PMC10061636 DOI: 10.1021/acsomega.2c07530] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/06/2023] [Indexed: 06/19/2023]
Abstract
In the present study, we have improvised a biogenic method to fabricate zinc oxide nanoparticles (ZnO NPs) using chitosan and an aqueous extract of the leaves of Elsholtzia blanda. Characterization of the fabricated products was carried out with the help of ultraviolet-visible, Fourier transform infrared, X-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, and energy-dispersive X-ray analyses. The size of the improvised ZnO NP measured between 20 and 70 nm and had a spherical and hexagonal shape. The ZnO NPs proved to be highly effective in the antidiabetic test as the sample showed the highest percentage of enzyme inhibition at 74% ± 3.7, while in the antioxidant test, 78% was the maximum percentage of 2,2-diphenyl-1-picrylhydrazyl hydrate scavenging activity. The cytotoxic effect was investigated against the human osteosarcoma (MG-63) cell line, and the IC50 value was 62.61 μg/mL. Photocatalytic efficiency was studied by the degradation of Congo red where 91% of dye degradation was observed. From the various analyses, it can be concluded that the as-synthesized NPs may be suitable for various biomedical applications as well as for environmental remediation.
Collapse
Affiliation(s)
- Athisa
Roselyn Maheo
- PG
and Research Department of Chemistry, Auxilium
College (Autonomous) (Affiliated to Thiruvalluvar University, Serkadu), Vellore 632006, India
| | - Scholastica Mary Vithiya B
- PG
and Research Department of Chemistry, Auxilium
College (Autonomous) (Affiliated to Thiruvalluvar University, Serkadu), Vellore 632006, India
| | - Augustine Arul Prasad T
- PG
and Research Department of Chemistry, Dwarakadoss
Goverdhandoss Vaishnav College (Autonomous) (Affiliated to University
of Madras), Chennai 600106, India
| | - V. L. Mangesh
- Department
of Mechanical Engineering, Koneru Lakshmaiah
Education Foundation, Vaddeswaram, Guntur 522502, Andhra
Pradesh, India
| | - Tamizhdurai Perumal
- PG
and Research Department of Chemistry, Dwarakadoss
Goverdhandoss Vaishnav College (Autonomous) (Affiliated to University
of Madras), Chennai 600106, India
| | - Wahidah H. Al-Qahtani
- Department
of Food Sciences & Nutrition, College of Food & Agriculture
Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mani Govindasamy
- Faculty,
International Ph.D. Program in Innovative Technology of Biomedical
Engineering and Medical Devices, Ming Chi
University of Technology, New Taipei
City 243303, Taiwan
- Adjunct
Faculty,
Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Thandalam, Chennai 602105, India
- Korea
University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
7
|
Dutta S, Kumar P, Yadav S, Sharma RD, Shivaprasad P, Vimaleswaran KS, Srivastava A, Sharma RK. Accelerating innovations in C H activation/functionalization through intricately designed magnetic nanomaterials: From genesis to applicability in liquid/regio/photo catalysis. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
8
|
Piranloo FG, Abharian MK, Kavousi F, Luque R. Copper nanoparticles decorated on boron nitride nanoflakes as an efficient catalyst for the synthesis of propargylamines under green conditions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Askari S, Khodaei MM, Jafarzadeh M, Mikaeili A. In-situ formation of Ag NPs on the ribonic γ-lactone-modified UiO-66-NH2: An effective catalyst for organic synthesis and antibacterial applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Huang T, AlSalem HS, Binkadem MS, Al-Goul ST, El-kott AF, Alsayegh AA, Majdou GJ, El-Saber Batiha G, Karmakar B. Green synthesis of Ag/Fe3O4 nanoparticles using Mentha extract: Preparation, characterization and investigation of its anti-human lung cancer application. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Bio-inspired Synthesis of Metal and Metal Oxide Nanoparticles: The Key Role of Phytochemicals. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02276-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Azarnier SG, Esmkhani M, Dolatkhah Z, Javanshir S. Collagen-coated superparamagnetic iron oxide nanoparticles as a sustainable catalyst for spirooxindole synthesis. Sci Rep 2022; 12:6104. [PMID: 35414646 PMCID: PMC9005729 DOI: 10.1038/s41598-022-10102-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 02/24/2022] [Indexed: 12/31/2022] Open
Abstract
In this work, a novel magnetic organic–inorganic hybrid catalyst was fabricated by encapsulating magnetite@silica (Fe3O4@SiO2) nanoparticles with Isinglass protein collagen (IGPC) using epichlorohydrin (ECH) as a crosslinking agent. Characterization studies of the prepared particles were accomplished by various analytical techniques specifically, Fourier transform infrared (FTIR) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), and Brunauer−Emmett−Teller (BET) analysis. The XRD results showed a crystalline and amorphous phase which contribute to magnetite and isinglass respectively. Moreover, the formation of the core/shell structure had been confirmed by TEM images. The synthesized Fe3O4@SiO2/ECH/IG was applied as a bifunctional heterogeneous catalyst in the synthesis of spirooxindole derivatives through the multicomponent reaction of isatin, malononitrile, and C-H acids which demonstrated its excellent catalytic properties. The advantages of this green approach were low catalyst loading, short reaction time, stability, and recyclability for at least four runs.
Collapse
Affiliation(s)
- Shima Ghanbari Azarnier
- Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Maryam Esmkhani
- Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Zahra Dolatkhah
- Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Shahrzad Javanshir
- Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran.
| |
Collapse
|
13
|
Shahriari M, Ali Hosseini Sedigh M, Shahriari M, Stenzel M, Mahdi Zangeneh M, Zangeneh A, Mahdavi B, Asadnia M, Gholami J, Karmakar B, Veisi H. Palladium nanoparticles decorated Chitosan-Pectin modified Kaolin: It’s catalytic activity for Suzuki-Miyaura coupling reaction, reduction of the 4-nitrophenol, and treatment of lung cancer. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Wei G, He W, Bai Y, Yu H. Design and evaluation of a novel Kaolin-chitosan/gold nanocomposite for the treatment of human lung cancer. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Cai Y, Karmakar B, Salem MA, Alzahrani AY, Bani-Fwaz MZ, Oyouni AAA, Al-Amer O, Batiha GES. Ag NPs supported chitosan-agarose modified Fe 3O 4 nanocomposite catalyzed synthesis of indazolo[2,1-b]phthalazines and anticancer studies against liver and lung cancer cells. Int J Biol Macromol 2022; 208:20-28. [PMID: 35259437 DOI: 10.1016/j.ijbiomac.2022.02.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 02/14/2022] [Accepted: 02/26/2022] [Indexed: 11/05/2022]
Abstract
In this article we report a novel Ag NPs fabricated chitosan-agarose composite functionalized core-shell type Fe3O4 nanoparticle (Ag/CS-Agar@Fe3O4). The biogenic material was analyzed over a number of physicochemical methods like, FT-IR, FE-SEM, TEM, EDX, XRD, VSM and ICP-OES. In catalytic exploration we aimed the synthesis of diverse 2H-indazolo0-b]phthalazine-trione derivatives via one-pot three component coupling of phathalalhydrazide, dimedone and different aldehydes. It afforded good to excellent yields under solvent-less conditions. Robustness of the catalyst was justified by catalyst recyclability for consecutive 10 times, hot filtration and leaching tests. Again, biological activity of the material was evaluated by studying the antioxidant and cytotoxicity properties over lung and liver cancer cell lines. Antioxidant potential of Ag/CS-Agar@Fe3O4 was assessed by DPPH radical scavenging studies and the corresponding IC50 was found to be 96.57 μg/mL. Liver and lung cancer studies over Ag/CS-Agar@Fe3O4 was carried out by MTT assay against HepG2 and A549 cell lines. The corresponding IC50 values were found as 192.35 and 365.28 μg/mL respectively. % Cell viability of the nanomaterial decreased dose dependently over both the cell lines without any cytotoxicity on normal cell line. The results demonstrates Ag/CS-Agar@Fe3O4 nanocomposite to be an efficient chemotherapeutic drug against the lung and hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Yi Cai
- Department of Medical Oncology, Chinese PLA General Hospital & Medical School, Beijing, 100853, China
| | - Bikash Karmakar
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, India.
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science & Arts, King Khalid University, Mohail, Assir, Saudi Arabia; Department of Chemistry, Faculty of Science, Al-Azhar University, 11284 Nasr City, Cairo, Egypt
| | - Abdullah Y Alzahrani
- Department of Chemistry, Faculty of Science & Arts, King Khalid University, Mohail, Assir, Saudi Arabia
| | - Mutasem Z Bani-Fwaz
- Department of Chemistry, Faculty of Science, King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia
| | - Atif Abdulwahab A Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia; Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Osama Al-Amer
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| |
Collapse
|
16
|
Veisi H, Ebrahimi Z, Karmakar B, Tamoradi T, Ozturk T. A convenient green protocol for oxidative esterification of arylaldehydes over Pd NPs decorated polyplex encapsulated Fe 3O 4 microspheres. Int J Biol Macromol 2022; 200:132-138. [PMID: 34995652 DOI: 10.1016/j.ijbiomac.2021.12.152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022]
Abstract
A mild, competent and eco-friendly protocol has been developed for oxidative esterification of various aldehydes over a post-synthetically modified and Pd fabricated chitosan-starch dual functionalized Fe3O4 microspheres as a magnetically isolable heterogeneous and biocompatible nanocatalyst. Molecular O2 was used as an oxidant in the reaction. A series of aldehydes was directly esterified with MeOH in excellent yields without any pre-activation and involvement of harsh chemicals/conditions. Structural features of the catalyst were assessed through FT-IR, FE-SEM, TEM, EDX, molecular mapping, XRD, VSM and ICP-OES techniques. Due to magnetic core, the catalyst was easily isolated using an external magnet and reused for 8 times in succession, retaining its morphology and catalytic activity.
Collapse
Affiliation(s)
- Hojat Veisi
- Department of Chemistry, Payame Noor University, Tehran, Iran.
| | - Zahra Ebrahimi
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Bikash Karmakar
- Department of Chemistry, Gobardanga Hindu College, 24-Parganas (North), India.
| | - Taiebeh Tamoradi
- Department of Chemistry, Production Technology Research Institute-ACECR, Ahvaz, Iran
| | - Turan Ozturk
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; TUBITAK-UME, Chemistry Group Laboratories, PO Box 54, 41471, Gebze, Kocaeli, Turkey.
| |
Collapse
|
17
|
Wang X, Liu Z, Bani-Fwaz MZ, Marzouki R, Ali IH, El-kott AF, Alhomaid FA. Ag nanoparticles immobilized on guanidine modified-KIT-5 mesoporous nanostructure: Evaluation of its catalytic activity for synthesis of propargylamines and investigation of its antioxidant and anti-lung cancer effects. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
18
|
Kumar P, Tomar V, Kumar D, Joshi RK, Nemiwal M. Magnetically active iron oxide nanoparticles for catalysis of organic transformations: A review. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Pulmonary protective effects of ultrasonic green synthesis of gold nanoparticles mediated by pectin on Methotrexate-induced acute lung injury in lung BEAS-2B, WI-38, CCD-19Lu, IMR-90, MRC-5, and HEL 299 cell lines. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Liu Z, Wang K, Wang T, Wang Y, Ge Y. Copper nanoparticles supported on polyethylene glycol-modified magnetic Fe3O4 nanoparticles: Its anti-human gastric cancer investigation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
21
|
Inhibitory effect of Silica-Coated iron oxide polymer nanocomposite modified with Hibiscus sabdariffa L. Extract against Pseudomonas aeruginosa and Staphylococcus aureus with phenotypic and genotypic methods. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Elgorban AM, Marraiki N, Ansari SA, Syed A. Green synthesis of Cu/Fe3O4nanocomposite using Calendula extract and evaluation of its catalytic activity for chemoselective oxidation of sulfides to sulfoxides with aqueous hydrogen peroxide. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Chitosan-starch biopolymer modified kaolin supported Pd nanoparticles for the oxidative esterification of aryl aldehydes. Int J Biol Macromol 2021; 191:465-473. [PMID: 34563573 DOI: 10.1016/j.ijbiomac.2021.09.106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022]
Abstract
A mild and efficient green protocol has been disclosed for selective oxidative esterification of various aldehydes over a novel Pd fabricated chitosan-starch polyplex encapsulated Kaolin (Kaolin@CS-starch-Pd) as a heterogeneous and reusable biocompatible nanocatalyst. Molecular oxygen was used as an oxidizing agent to generate water as the sole by-product. A wide variety of aldehydes was converted to their methyl esters in high yields. The process involved gentle reaction conditions to avoid any type of pre-activation. Structural features of the catalyst were determined through FT-IR, FE-SEM, TEM, EDX, elemental mapping, XRD and ICP-OES analyses. The material was found to be stable enough toward Pd leaching. Durability of Kaolin@CS-starch-Pd was further justified by retaining its catalytic activity through successful reusability for several times.
Collapse
|
24
|
Aluminium‐based ruthenium/diamine catalysts for produce aliphatic polycarbonates from carbon dioxide and oxetanes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Esmati M, Zeynizadeh B. Introducing rGO@Fe
3
O
4
@Ni as an efficient magnetic nanocatalyst for the synthesis of tetrahydrobenzopyranes via multicomponent coupling reactions of dimedone, malononitrile, and aromatic aldehydes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Chaudhary G, Singh AP. BODIPY immobilized MCM-41 based material: A reusable solid optical sensor for selective detection and removal of Hg(II) in water. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
Abstract
Over the past few decades, the use of transition metal nanoparticles (NPs) in catalysis has attracted much attention and their use in C–C bond forming reactions constitutes one of their most important applications. A huge variety of metal NPs, which have showed high catalytic activity for C–C bond forming reactions, have been developed up to now. Many kinds of stabilizers, such as inorganic materials, magnetically recoverable materials, porous materials, organic–inorganic composites, carbon materials, polymers, and surfactants have been utilized to develop metal NPs catalysts. This review classified and outlined the categories of metal NPs by the type of support.
Collapse
|
28
|
Sharma RK, Yadav S, Dutta S, Kale HB, Warkad IR, Zbořil R, Varma RS, Gawande MB. Silver nanomaterials: synthesis and (electro/photo) catalytic applications. Chem Soc Rev 2021; 50:11293-11380. [PMID: 34661205 PMCID: PMC8942099 DOI: 10.1039/d0cs00912a] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In view of their unique characteristics and properties, silver nanomaterials (Ag NMs) have been used not only in the field of nanomedicine but also for diverse advanced catalytic technologies. In this comprehensive review, light is shed on general synthetic approaches encompassing chemical reduction, sonochemical, microwave, and thermal treatment among the preparative methods for the syntheses of Ag-based NMs and their catalytic applications. Additionally, some of the latest innovative approaches such as continuous flow integrated with MW and other benign approaches have been emphasized that ultimately pave the way for sustainability. Moreover, the potential applications of emerging Ag NMs, including sub nanomaterials and single atoms, in the field of liquid-phase catalysis, photocatalysis, and electrocatalysis as well as a positive role of Ag NMs in catalytic reactions are meticulously summarized. The scientific interest in the synthesis and applications of Ag NMs lies in the integrated benefits of their catalytic activity, selectivity, stability, and recovery. Therefore, the rise and journey of Ag NM-based catalysts will inspire a new generation of chemists to tailor and design robust catalysts that can effectively tackle major environmental challenges and help to replace noble metals in advanced catalytic applications. This overview concludes by providing future perspectives on the research into Ag NMs in the arena of electrocatalysis and photocatalysis.
Collapse
Affiliation(s)
- Rakesh Kumar Sharma
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Sneha Yadav
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Sriparna Dutta
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Hanumant B Kale
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| | - Indrajeet R Warkad
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- Nanotechnology Centre, CEET, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- U. S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response Water Infrastructure Division/Chemical Methods and Treatment Branch, 26 West Martin Luther King Drive, MS 483 Cincinnati, Ohio 45268, USA.
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| |
Collapse
|
29
|
Kalhor M, Dadras A. Pd Doped on TCH@SBA-15 Nanocomposites: Fabrication and Application as a New Organometallic Catalyst in the Three-Component Synthesis of N-Benzo-imidazo- or -thiazole-1,3-thiazolidinones. Front Chem 2021; 9:723207. [PMID: 34676197 PMCID: PMC8524445 DOI: 10.3389/fchem.2021.723207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, Pd(II)/TCH@SBA-15 nanocomposites were synthesized by the grafting of 3-chloropropyltriethoxysilane and thiocarbohydrazide on SBA-15 and subsequent deposition of palladium acetates through the ligand-metal coordination method. The structure and morphology of this nanoporous nanocomposite was thoroughly identified by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetric analysis, atomic absorption spectroscopy, and Brunauer-Emmett-Teller instrumental analyses. Furthermore, the catalytic activity of this nanocomposite was investigated in the three-component synthesis of 3-benzimidazolyl or benzothiazoleyl-1,3-thiazolidin-4-ones via a reaction of 2-aminobenzimidazole or 2-aminobenzothiazole, aromatic aldehydes, and thioglycolic acid in an acetone-H2O mixture under green conditions. The Pd/TCH@SBA-15 nanocatalyst is demonstrated to exhibit a high catalyzing activity in the three-component reaction of the synthesis of N-heterocyclic thiazolidinones with good to excellent yields. One of the advantages of the suggested method is the direct application of the thiocarbohydrazide ligand to stabilize Pd nanoparticles through formation of a stable ring complex without creating an additional Schiff base step. Moreover, this organometallic nanocatalyst can be recycled several times with no notable leaching or loss of performance.
Collapse
Affiliation(s)
- Mehdi Kalhor
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | | |
Collapse
|
30
|
Janani M, Senejani MA, Isfahani TM. Superparamagnetic core‐shell metal–organic framework Fe
3
O
4
@Ni‐MOF as efficient catalyst for oxidation of 1,4‐dihydropyridines using hydrogen peroxide. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marzieh Janani
- Department of Chemistry, Arak Branch Islamic Azad University Arak Iran
| | | | | |
Collapse
|
31
|
Baroliya PK, Chopra J, Pal T, Maiti S, Al‐Thabaiti SA, Mokhtar M, Maiti D. Supported Metal Nanoparticles Assisted Catalysis: A Broad Concept in Functionalization of Ubiquitous C−H Bonds. ChemCatChem 2021. [DOI: 10.1002/cctc.202100755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Prabhat Kumar Baroliya
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
- Department of Chemistry Mohanlal Sukhadia University Udaipur 313001 India
| | - Jaishri Chopra
- Department of Chemistry Mohanlal Sukhadia University Udaipur 313001 India
| | - Tanay Pal
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Siddhartha Maiti
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
- VIT Bhopal University Bhopal-Indore Highway, Kothrikalan Sehore Madhya Pradesh 466114 India
| | | | - Mohamed Mokhtar
- Department of Chemistry Faculty of Sciences King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
32
|
Tang T, Xia Q, Guo J, Chinnathambi A, Alrashood ST, Alharbi SA, Zhang J. In situ supported of silver nanoparticles on Thymbra spicata extract coated magnetic nanoparticles under the ultrasonic condition: Its catalytic activity in the synthesis of Propargylamines and their anti-human colorectal properties in the in vitro condition. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Liu C. Based on MCM nanomaterials: Recoverable metallic nanocatalysts in oxidation of sulfides and oxidative coupling of thiols. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1912769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Can Liu
- School of Electronic Engineering, Xi’an Shiyou University, Xi’an, PR China
| |
Collapse
|
34
|
Valentini F, Piermatti O, Vaccaro L. Metal Nanoparticles as Sustainable Tools for C-N Bond Formation via C-H Activation. Molecules 2021; 26:molecules26134106. [PMID: 34279446 PMCID: PMC8272244 DOI: 10.3390/molecules26134106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
The design of highly active metal nanoparticles to be employed as efficient heterogeneous catalysts is a key tool for the construction of complex organic molecules and the minimization of their environmental costs. The formation of novel C-N bonds via C-H activation is an effective atom-economical strategy to access high value materials in pharmaceuticals, polymers, and natural product production. In this contribution, the literature of the last ten years on the use of metal nanoparticles in the processes involving direct C-N bond formation will be discussed. Where possible, a discussion on the role and influence of the support used for the immobilization and/or the metal chosen is reported. Particular attention was given to the description of the experiments performed to elucidate the active mechanism.
Collapse
|
35
|
Darroudi M, Ziarani GM, Ghasemi JB, Badiei A. Synthesis of Ag(I)@Fum−Pr−Pyr−Benzimidazole and Its Optical and Catalytic Activities in Click Reactions. ChemistrySelect 2021. [DOI: 10.1002/slct.202100492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Mahdieh Darroudi
- Department of Chemistry Faculty of Physic and Chemistry Alzahra University Tehran Iran, P.O. Box 1993893973
| | - Ghodsi Mohammadi Ziarani
- Department of Chemistry Faculty of Physic and Chemistry Alzahra University Tehran Iran, P.O. Box 1993893973
| | - Jahan B. Ghasemi
- School of Chemistry College of Science University of Tehran Tehran Iran
| | - Alireza Badiei
- School of Chemistry College of Science University of Tehran Tehran Iran
| |
Collapse
|
36
|
Hemmati S, Heravi MM, Karmakar B, Veisi H. In situ decoration of Au NPs over polydopamine encapsulated GO/Fe 3O 4 nanoparticles as a recyclable nanocatalyst for the reduction of nitroarenes. Sci Rep 2021; 11:12362. [PMID: 34117274 PMCID: PMC8196164 DOI: 10.1038/s41598-021-90514-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/15/2021] [Indexed: 02/05/2023] Open
Abstract
A new and efficient catalyst has been designed and prepared via in situ immobilization of Au NPs fabricated polydopamine (PDA)-shelled Fe3O4 nanoparticle anchored over graphene oxide (GO) (GO/Fe3O4@PDA/Au). This novel, architecturally interesting magnetic nanocomposite was fully characterized using different analytical techniques such as Field Emission Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, elemental mapping, Transmission Electron Microscopy, Fourier Transformed Infrared Spectroscopy, X-ray Diffraction and Inductively Coupled Plasma-Atomic Electron Spectroscopy. Catalytic activity of this material was successfully explored in the reduction of nitroarenes to their corresponding substituted anilines, using NaBH4 as reducing agent at ambient conditions. The most significant merits for this protocol were smooth and clean catalysis at room temperature with excellent productivity, sustainable conditions, ease of separation of catalyst from the reaction mixture by using a magnetic bar and most importantly reusability of the catalyst at least 8 times without any pre-activation, minimum loss of activity and considerable leaching.
Collapse
Affiliation(s)
- Saba Hemmati
- Department of Chemistry, School of Science, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran
| | - Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran.
| | - Bikash Karmakar
- Department of Chemistry, Gobardanga Hindu College, Gobardanga, India
| | - Hojat Veisi
- Department of Chemistry, Payame Noor University, Tehran, Iran.
| |
Collapse
|
37
|
Esmati M, Zeynizadeh B. Synthesis of GO and rGO@Fe
3
O
4
@Ni as remarkable nanocatalyst systems for solvent‐free and chemoselective coupling reactions of dimedone with aromatic aldehydes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mozhgan Esmati
- Faculty of Chemistry Urmia University Urmia 5756151818 Iran
| | | |
Collapse
|
38
|
Neshat A, Gholinejad M, Afrasi M, Mastrorilli P, Todisco S, Gilanchi S, Osanlou F. Heterocyclic thiolates and phosphine ligands in copper‐catalyzed synthesis of propargylamines in water. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Abdollah Neshat
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Mohammad Gholinejad
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Mahmoud Afrasi
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | | | | | - Shirin Gilanchi
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Farzane Osanlou
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| |
Collapse
|
39
|
Bagherzade A, Nemati F. Solvent-free coupling of aldehyde, alkyne, and amine over a versatile catalyst: Ag-functionalized mesoporous S, P-doped g-C3N4. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04453-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
40
|
Ghorbani-Vaghei R, Veisi H, Aliani MH, Mohammadi P, Karmakar B. Alginate modified magnetic nanoparticles to immobilization of gold nanoparticles as an efficient magnetic nanocatalyst for reduction of 4-nitrophenol in water. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114868] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Veisi H, Karmakar B, Tamoradi T, Tayebee R, Sajjadifar S, Lotfi S, Maleki B, Hemmati S. Bio-inspired synthesis of palladium nanoparticles fabricated magnetic Fe 3O 4 nanocomposite over Fritillaria imperialis flower extract as an efficient recyclable catalyst for the reduction of nitroarenes. Sci Rep 2021; 11:4515. [PMID: 33633123 PMCID: PMC7907383 DOI: 10.1038/s41598-021-83854-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/04/2021] [Indexed: 11/14/2022] Open
Abstract
This current research is based on a bio-inspired procedure for the synthesis of biomolecule functionalized hybrid magnetic nanocomposite with the Fe3O4 NPs at core and Pd NPs at outer shell. The central idea was the initial modification of magnetic NP by the phytochemicals from Fritillaria imperialis flower extract, which was further exploited in the green reduction of Pd2+ ions into Pd NPs, in situ. The flower extract also acted as a capping agent for the obtained Pd/Fe3O4 composite without the need of additional toxic reagents. The as-synthesized Fe3O4@Fritillaria/Pd nanocomposite was methodically characterized over different physicochemical measures like FT-IR, ICP-AES, FESEM, EDX, TEM, XPS and VSM analysis. Thereafter, its catalytic potential was evaluated in the reduction of various nitrobenzenes to arylamines applying hydrazine hydrate as reductant in ethanol/water (1:2) medium under mild conditions. Furthermore, the nanocatalyst was retrieved using a bar magnet and recycled several times without considerable leaching or loss of activity. This green, bio-inspired ligand-free protocol has remarkable advantages like environmental friendliness, high yields, easy workup and reusability of the catalyst.
Collapse
Affiliation(s)
- Hojat Veisi
- Department of Chemistry, Payame Noor University, Tehran, Iran.
| | - Bikash Karmakar
- Department of Chemistry, Gobardanga Hindu College, North 24, Parganas, India.
| | | | - Reza Tayebee
- Department of Chemistry, Hakim Sabzevari University, 96179-76487, Sabzevar, Iran
| | - Sami Sajjadifar
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Shahram Lotfi
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Behrooz Maleki
- Department of Chemistry, Hakim Sabzevari University, 96179-76487, Sabzevar, Iran
| | - Saba Hemmati
- Department of Chemistry, Payame Noor University, Tehran, Iran
| |
Collapse
|
42
|
Veisi H, Abassi P, Mohammadi P, Tamoradi T, Karmakar B. Gold nanoparticles decorated biguanidine modified mesoporous silica KIT-5 as recoverable heterogeneous catalyst for the reductive degradation of environmental contaminants. Sci Rep 2021; 11:2734. [PMID: 33531532 PMCID: PMC7854642 DOI: 10.1038/s41598-021-82242-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
This current study involves the novel synthesis of Au nanoparticles (Au NPs) decorated biguanidine modified mesoporous silica KIT-5 following post-functionalization approach. The tiny Au NPs were being stabilized over the in situ prepared biguanidine ligand. The high surface area material was characterized using analytical techniques like Fourier Transformed infrared (FT-IR) spectroscopy, N2-adsorption-desorption isotherm, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Spectroscopy (EDS), and X-ray Diffraction study (XRD). Our material was found to be an efficient catalyst in the reductive degradation of harmful water contaminating organic dyes like Methylene blue (MB), Methyl Orange (MO) and Rhodamin B (RhB) in presence of NaBH4 at room temperature. The whole procedure was followed up with the help of time dependant UV-Vis spectroscopy. All the reactions followed pseudo-unimolecular kinetics and corresponding rate constant were determined. The reduction rate becomes high in presence of higher load of catalysts.
Collapse
Affiliation(s)
- Hojat Veisi
- Department of Chemistry, Payame Noor University, 19395-4697, Tehran, Iran.
| | - Parasto Abassi
- Department of Chemistry, Payame Noor University, 19395-4697, Tehran, Iran
| | - Pourya Mohammadi
- Department of Chemistry, Payame Noor University, 19395-4697, Tehran, Iran
| | - Taiebeh Tamoradi
- Department of Chemistry, Payame Noor University, 19395-4697, Tehran, Iran
| | - Bikash Karmakar
- Department of Chemistry, Gobardanga Hindu College, 24-Parganas (North), India.
| |
Collapse
|
43
|
Abstract
Abstract
The gel type microscopic polymer beads bearing epoxy functionalities were modified using the two-stage procedures in order to decorate their surface with the moieties of the zeroth order PAMAM type dendrimer and different heterocyclic aldehydes (2-pyridinecarboxaldehyde, 2-pyrrolidinecarboxaldehyde, furfural or 2-thiophenecarboxaldehyde). The polymeric supports provided in this manner were then used for the immobilization of copper(II) ions. The resulting materials were characterized using different instrumental techniques (optical microscopy, SEM, FTIR microscopy, DR UV–Vis, ICP-OES, and thermal analysis). They were also used as catalysts in the model A3 coupling reaction of benzaldehyde, morpholine and phenylacetylene. The best catalytic activity was found for the polymeric catalyst bearing 2-pyridinecarboxaldehyde moieties. It turned out to be effective in the A3 coupling reactions included different benzaldehyde, alkyne, and secondary amine derivatives, as well. It could also be recycled several times without a significant decrease in its activity in the model A3 coupling reaction.
Graphic Abstract
Collapse
|
44
|
Krishnaveni T, Kaveri MV, Kadirvelu K. The first PdO nanoparticle catalyzed one pot synthesis of propargylamine through A 3-coupling of an aldehyde, alkyne and amine. NEW J CHEM 2021. [DOI: 10.1039/d1nj02994k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Palladium(ii) oxide (PdO) nanoparticles (Nps) were prepared by an environmentally benign hydrothermal method with a new capping agent quercetin.
Collapse
Affiliation(s)
- T. Krishnaveni
- Department of Chemistry, Bharathiar University Coimbatore, 641046, India
| | - M. V. Kaveri
- Department of Chemistry, Bharathiar University Coimbatore, 641046, India
| | - K. Kadirvelu
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore – 641046, India
| |
Collapse
|
45
|
Ghasemi K, Darroudi M, Rahimi M, Rouh H, Gupta AR, Cheng C, Amini A. Magnetic AgNPs/Fe 3O 4@chitosan/PVA nanocatalyst for fast one-pot green synthesis of propargylamine and triazole derivatives. NEW J CHEM 2021. [DOI: 10.1039/d1nj02354c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A new green magnetic nanocatalyst was introduced for one-pot fast synthesis of propargylamine and triazole derivatives.
Collapse
Affiliation(s)
- Kousar Ghasemi
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Mahdieh Darroudi
- Department of Energy Science and Technology, Faculty of Science, Turkish-Germen University, Istanbul, Turkey
- Department of Medical Biotechnology and Nanotechnology, School of Science, Mashhad University of Medical Science, Mashhad, Iran
| | - Marjan Rahimi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hossein Rouh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Anju R. Gupta
- Department of Mechanical Engineering, Industrial and Manufacturing Engineering, The University of Toledo, Ohio, USA
| | - Chun Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Abbas Amini
- Department of Mechanical Engineering, Australian College of Kuwait, Safat 13015, Kuwait
- Centre for Infrastructure Engineering, Western Sydney University, Kingswood Campus, Bld Z, Locked Bag 1797, Penrith, Penrith 2751, NSW, Australia
| |
Collapse
|
46
|
Similarities and differences in the mechanisms alkyne and isonitrile transformations catalyzed by silver ions and nanoparticles. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Taghavi S, Amoozadeh A, Nemati F. Deep eutectic solvent‐assisted synthesis of highly efficient nanocatalyst (n‐TiO
2
@TDI@DES (ZnCl
2
:urea)) for chemoselective oxidation of sulfides to sulfoxides. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Shaghayegh Taghavi
- Department of Organic Chemistry, Faculty of Chemistry Semnan University Semnan Iran
| | - Ali Amoozadeh
- Department of Organic Chemistry, Faculty of Chemistry Semnan University Semnan Iran
| | - Firouzeh Nemati
- Department of Organic Chemistry, Faculty of Chemistry Semnan University Semnan Iran
| |
Collapse
|
48
|
Hemmati S, Heravi MM, Karmakar B, Veisi H. Green fabrication of reduced graphene oxide decorated with Ag nanoparticles (rGO/Ag NPs) nanocomposite: A reusable catalyst for the degradation of environmental pollutants in aqueous medium. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114302] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Khajone VB, Balinge KR, Bhagat PR. Polymer-Supported Fe-Phthalocyanine Derived Heterogeneous Photo-Catalyst for the Synthesis of Tetrazoles Under Visible Light Irradiation. Catal Letters 2020. [DOI: 10.1007/s10562-020-03461-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Petrov DA, Lin CR, Ivantsov RD, Ovchinnikov SG, Zharkov SM, Yurkin GY, Velikanov DA, Knyazev YV, Molokeev MS, Tseng YT, Lin ES, Edelman IS, Baskakov AO, Starchikov SS, Lyubutin IS. Characterization of the iron oxide phases formed during the synthesis of core-shell Fe xO y@C nanoparticles modified with Ag. NANOTECHNOLOGY 2020; 31:395703. [PMID: 32516763 DOI: 10.1088/1361-6528/ab9af2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Core-shell FexOy@C nanoparticles (NPs) modified with Ag were studied with x-ray diffraction, transmission electron microscopy, energy dispersive elemental mapping, Mössbauer spectroscopy, static magnetic measurements, and optical magnetic circular dichroism (MCD). FexOy@C NPs synthesized by the pyrolysis process of the mixture of Fe(NO3)3 · 9H2O with oleylamine and oleic acid were added to a heated mixture of oleylamine and AgNO3 in different concentrations. The final product was a mixture of iron oxide crystalline NPs in an amorphous carbon shell and Ag crystalline NPs. The iron oxide NPs were presented by two magnetic phases with extremely close crystal structures: Fe3O4 and γ-Fe2O3. Ag is shown to form crystalline NPs located very close to the iron oxide NPs. An assumption is made about the formation of hybrid FexOy@C-Ag NPs. Correlations were obtained between the Ag concentration in the fabricated samples, their magnetic properties and the MCD spectrum shape. Introducing Ag led to a approximately linear decrease of the NPs saturation magnetization depending upon the Ag concentration, it also resulted into the MCD spectrum shift to the lower light wave energies. MCD was also studied for the Fe3O4@C NPs synthesized earlier with the same one-step process using different heat treatment temperatures, and MCD spectra were compared for two series of NPs. A possible contribution of the surface plasmon excitation in Ag NPs to the MCD spectrum of the FexOy@C-Ag NPs is discussed.
Collapse
Affiliation(s)
- D A Petrov
- Kirensky Institute of Physics, FRC, KSC, SB RAS, Krasnoyarsk 660036, Russia
| | - C-R Lin
- National Pingtung University, Pingtung City, Pingtung County 90003, Taiwan
| | - R D Ivantsov
- Kirensky Institute of Physics, FRC, KSC, SB RAS, Krasnoyarsk 660036, Russia
| | - S G Ovchinnikov
- Kirensky Institute of Physics, FRC, KSC, SB RAS, Krasnoyarsk 660036, Russia
- Siberian Federal University, Svobodny Av., 79, Krasnoyarsk 660041, Russia
| | - S M Zharkov
- Kirensky Institute of Physics, FRC, KSC, SB RAS, Krasnoyarsk 660036, Russia
- Siberian Federal University, Svobodny Av., 79, Krasnoyarsk 660041, Russia
| | - G Y Yurkin
- Kirensky Institute of Physics, FRC, KSC, SB RAS, Krasnoyarsk 660036, Russia
- Siberian Federal University, Svobodny Av., 79, Krasnoyarsk 660041, Russia
| | - D A Velikanov
- Kirensky Institute of Physics, FRC, KSC, SB RAS, Krasnoyarsk 660036, Russia
| | - Y V Knyazev
- Kirensky Institute of Physics, FRC, KSC, SB RAS, Krasnoyarsk 660036, Russia
- Siberian Federal University, Svobodny Av., 79, Krasnoyarsk 660041, Russia
| | - M S Molokeev
- Kirensky Institute of Physics, FRC, KSC, SB RAS, Krasnoyarsk 660036, Russia
- Siberian Federal University, Svobodny Av., 79, Krasnoyarsk 660041, Russia
| | - Y-T Tseng
- National Pingtung University, Pingtung City, Pingtung County 90003, Taiwan
| | - E-S Lin
- National Pingtung University, Pingtung City, Pingtung County 90003, Taiwan
| | - I S Edelman
- Kirensky Institute of Physics, FRC, KSC, SB RAS, Krasnoyarsk 660036, Russia
| | - A O Baskakov
- Shubnikov Institute of Crystallography of FSRC 'Crystallography and Photonics' RAS, Moscow 119333, Russia
| | - S S Starchikov
- Shubnikov Institute of Crystallography of FSRC 'Crystallography and Photonics' RAS, Moscow 119333, Russia
| | - I S Lyubutin
- Shubnikov Institute of Crystallography of FSRC 'Crystallography and Photonics' RAS, Moscow 119333, Russia
| |
Collapse
|