1
|
Ren L, Liu Z, Ma Z, Ren K, Cui Z, Mu W. Stacking engineering induced Z-scheme MoSSe/WSSe heterostructure for photocatalytic water splitting. Front Chem 2024; 12:1425306. [PMID: 39006489 PMCID: PMC11239575 DOI: 10.3389/fchem.2024.1425306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/24/2024] [Indexed: 07/16/2024] Open
Abstract
Stacking engineering is a popular method to tune the performance of two-dimensional materials for advanced applications. In this work, Jansu MoSSe and WSSe monolayers are constructed as a van der Waals (vdWs) heterostructure by different stacking configurations. Using first-principle calculations, all the relaxed stacking configurations of the MoSSe/WSSe heterostructure present semiconductor properties while the direct type-II band structure can be obtained. Importantly, the Z-scheme charge transfer mode also can be addressed by band alignment, which shows the MoSSe/WSSe heterostructure is an efficient potential photocatalyst for water splitting. In addition, the built-in electric field of the MoSSe/WSSe vdWs heterostructure can be enhanced by the S-Se interface due to further asymmetric structures, which also results in considerable charge transfer comparing with the MoSSe/WSSe vdWs heterostructure built by the S-S interface. Furthermore, the excellent optical performances of the MoSSe/WSSe heterostructure with different stacking configurations are obtained. Our results provide a theoretical guidance for the design and control of the two-dimensional heterostructure as photocatalysts through structural stacking.
Collapse
Affiliation(s)
- Longjun Ren
- School of Mechanical Engineering, Wanjiang University of Technology, Maanshan, China
| | - Zongfa Liu
- School of Automotive Engineering, Weifang Vocational College, Weifang, China
| | - Zhen Ma
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | - Kai Ren
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China
- Medical Oncology, Luoyang Central Hospital, Luoyang, China
| | - Zhen Cui
- School of Automation and Information Engineering, Xi’an University of Technology, Xi’an, Shaanxi, China
| | - Weihua Mu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
2
|
Nguyen ST, Huong TTT, Ca NX, Nguyen CQ. Enhancing the electronic and optical properties of the metal/semiconductor NbS 2/BSe nanoheterostructure towards advanced electronics. NANOSCALE ADVANCES 2024; 6:1565-1572. [PMID: 38419869 PMCID: PMC10898431 DOI: 10.1039/d3na01086d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Metal-semiconductor (M-S) contacts play a vital role in advanced applications, serving as crucial components in ultracompact devices and exerting a significant impact on overall device performance. Here, in this work, we design a M-S nanoheterostructure between a metallic NbS2 monolayer and a semiconducting BSe monolayer using first-principles prediction. The stability of such an M-S nanoheterostructure is verified and its electronic and optical properties are also considered. Our results indicate that the NbS2/BSe nanoheterostructure is structurally, mechanically and thermally stable. The formation of the NbS2/BSe heterostructure leads to the generation of a Schottky contact with the Schottky barrier ranging from 0.36 to 0.51 eV, depending on the stacking configurations. In addition, the optical absorption coefficient of the NbS2/BSe heterostructure can reach up to 5 × 105 cm-1 at a photon energy of about 5 eV, which is still greater than that in the constituent NbS2 and BSe monolayers. This finding suggests that the formation of the M-S NbS2/BSe heterostructure gives rise to an enhancement in the optical absorption of both NbS2 and BSe monolayers. Notably, the tunneling probability and the contact tunneling-specific resistivity at the interface of the NbS2/BSe heterostructure are low, indicating its applicability in emerging nanoelectronic devices, such as Schottky diodes and field-effect transistors. Our findings offer valuable insights for the practical utilization of electronic devices based on the NbS2/BSe heterostructure.
Collapse
Affiliation(s)
- S T Nguyen
- Faculty of Electrical Engineering, Hanoi University of Industry Ha Noi 100000 Vietnam
| | - T T T Huong
- Institute of Science and Technology, TNU-University of Sciences Thai Nguyen Vietnam
- Department of Science and Technology, Ha Noi University of Industry Ha Noi 100000 Vietnam
| | - N X Ca
- Institute of Science and Technology, TNU-University of Sciences Thai Nguyen Vietnam
| | - C Q Nguyen
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| |
Collapse
|
3
|
Nguyen ST, Nguyen CQ, Hieu NN, Phuc HV, Nguyen CV. Tunable Electronic Properties, Carrier Mobility, and Contact Characteristics in Type-II BSe/Sc 2CF 2 Heterostructures toward Next-Generation Optoelectronic Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17251-17260. [PMID: 37972320 DOI: 10.1021/acs.langmuir.3c02329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Conducting heterostructures have emerged as a promising strategy to enhance physical properties and unlock the potential application of such materials. Herein, we conduct and investigate the electronic and transport properties of the BSe/Sc2CF2 heterostructure using first-principles calculations. The BSe/Sc2CF2 heterostructure is structurally and thermodynamically stable, indicating that it can be feasible for further experiments. The BSe/Sc2CF2 heterostructure exhibits a semiconducting behavior with an indirect band gap and possesses type-II band alignment. This unique alignment promotes efficient charge separation, making it highly promising for device applications, including solar cells and photodetectors. Furthermore, type-II band alignment in the BSe/Sc2CF2 heterostructure leads to a reduced band gap compared to the individual BSe and Sc2CF2 monolayers, leading to enhanced charge carrier mobility and light absorption. Additionally, the generation of the BSe/Sc2CF2 heterostructure enhances the transport properties of the BSe and Sc2CF2 monolayers. The electric fields and strains can modify the electronic properties, thus expanding the potential application possibilities. Both the electric fields and strains can tune the band gap and lead to the type-II to type-I conversion in the BSe/Sc2CF2 heterostructure. These findings shed light on the versatile nature of the BSe/Sc2CF2 heterostructure and its potential for advanced nanoelectronic and optoelectronic devices.
Collapse
Affiliation(s)
- Son-Tung Nguyen
- Faculty of Electrical Engineering, Hanoi University of Industry, Hanoi 100000, Vietnam
| | - Cuong Q Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Nguyen N Hieu
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Huynh V Phuc
- Division of Theoretical Physics, Dong Thap University, Cao Lanh 870000, Vietnam
| | - Chuong V Nguyen
- Department of Materials Science and Engineering, Le Quy Don Technical University, Hanoi 100000, Vietnam
| |
Collapse
|
4
|
Huang Z, Ren K, Zheng R, Wang L, Wang L. Ultrahigh Carrier Mobility in Two-Dimensional IV-VI Semiconductors for Photocatalytic Water Splitting. Molecules 2023; 28:molecules28104126. [PMID: 37241866 DOI: 10.3390/molecules28104126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Two-dimensional materials have been developed as novel photovoltaic and photocatalytic devices because of their excellent properties. In this work, four δ-IV-VI monolayers, GeS, GeSe, SiS and SiSe, are investigated as semiconductors with desirable bandgaps using the first-principles method. These δ-IV-VI monolayers exhibit exceptional toughness; in particular, the yield strength of the GeSe monolayer has no obvious deterioration at 30% strain. Interestingly, the GeSe monolayer also possesses ultrahigh electron mobility along the x direction of approximately 32,507 cm2·V-1·s-1, which is much higher than that of the other δ-IV-VI monolayers. Moreover, the calculated capacity for hydrogen evolution reaction of these δ-IV-VI monolayers further implies their potential for applications in photovoltaic and nano-devices.
Collapse
Affiliation(s)
- Zhaoming Huang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 211189, China
| | - Kai Ren
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 211189, China
- School of Mechanical Engineering, Wanjiang University of Technology, Ma'anshan 243031, China
| | - Ruxin Zheng
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Liangmo Wang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Li Wang
- School of Mechanical Engineering, Wanjiang University of Technology, Ma'anshan 243031, China
- Office of Academic Affairs, Xuancheng Vocational and Technical College, Xuancheng 242000, China
| |
Collapse
|
5
|
Nguyen ST, Nguyen CQ, Ang YS, Van Hoang N, Hung NM, Nguyen CV. Understanding Electronic Properties and Tunable Schottky Barriers in a Graphene/Boron Selenide van der Waals Heterostructure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6637-6645. [PMID: 37116116 DOI: 10.1021/acs.langmuir.3c00709] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
van der Waals heterostructures provide a powerful platform for engineering the electronic properties and for exploring exotic physical phenomena of two-dimensional materials. Here, we construct a graphene/BSe heterostructure and examine its electronic characteristics and the tunability of contact types under electric fields. Our results reveal that the graphene/BSe heterostructure is energetically, mechanically, and thermodynamically stable at room temperature. It forms a p-type Schottky contact and exhibits a high carrier mobility, making it a promising candidate for future Schottky field-effect transistors. Furthermore, applying an electric field not only reduces contact barriers but also induces a transition from a p-type to an n-type Schottky contact and from a Schottky to an ohmic contact, offering further potential for the control and manipulation of the heterostructure's electronic properties. Our findings offer a rational basis for the design of energy-efficient and tunable heterostructure devices based on the graphene/BSe heterostructure.
Collapse
Affiliation(s)
- Son-Tung Nguyen
- Faculty of Electrical Engineering, Hanoi University of Industry, Hanoi 100000, Vietnam
| | - Cuong Q Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Yee Sin Ang
- Science Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Nguyen Van Hoang
- Department of Materials Science and Engineering, Le Quy Don Technical University, Hanoi 100000, Vietnam
| | - Nguyen Manh Hung
- Department of Materials Science and Engineering, Le Quy Don Technical University, Hanoi 100000, Vietnam
| | - Chuong V Nguyen
- Department of Materials Science and Engineering, Le Quy Don Technical University, Hanoi 100000, Vietnam
| |
Collapse
|
6
|
Wang Z, Qin H, Chen J, Cai X, Kong P, Liu Z, Sun B, Wang H, Ni Y, Chen Y. A semiconductor Sc 2S 3 monolayer with ultrahigh carrier mobility for UV blocking filter application. Phys Chem Chem Phys 2023; 25:5550-5558. [PMID: 36723364 DOI: 10.1039/d2cp04973b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
For humans, ultraviolet (UV) light from sun is harmful to our eyes and eye-related cells. This detrimental fact requires scientists to search for a material that can efficiently absorb UV light while allowing lossless transmission of visible light. Using an unbiased first-principles swarm intelligence structure search, we explored two-dimensional (2D) Sc-S crystals and identified a novel Sc2S3 monolayer with good thermal and dynamical stability. The optoelectronic property simulations revealed that the Sc2S3 monolayer has a wide indirect bandgap (3.05 eV) and possesses an ultrahigh carrier mobility (2.8 × 103 cm2 V-1 s-1). Remarkably, it has almost transparent visible light absorption, while it exhibits an ultrahigh absorption coefficient up to × 105 cm-1 in the ultraviolet region. Via the application of biaxial strain and thickness modulation, the UV light absorption coefficients of Sc2S3 can be further improved. These findings manifest an attractive UV blocking optoelectronic characteristic of the Sc2S3 configuration as a prototypical nanomaterial for the potential application in UV blocking filters.
Collapse
Affiliation(s)
- Zheng Wang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China.
| | - Haifei Qin
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiao Chen
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China.
| | - Xinyong Cai
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China.
| | - Panlong Kong
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China.
| | - Zhen Liu
- Department of Physics, Beijing Normal University, Beijing 100875, China.
| | - Bai Sun
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Hongyan Wang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yuxiang Ni
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yuanzheng Chen
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
7
|
Theoretical study on the photocatalytic potential of BSe nanotubes for water splitting under visible light. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2022.111771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Islam MR, Hasan Khan MS, Hasan Mojumder MR, Ahmad S. Excellent photocatalytic properties in 2D ZnO/SiC van der Waals hetero-bilayers: water-splitting H 2-fuel production. RSC Adv 2023; 13:1943-1954. [PMID: 36712623 PMCID: PMC9832986 DOI: 10.1039/d2ra07365j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
This research unravels the photocatalytic properties of a 2D ZnO/SiC van der Waals hetero-bilayer for potential water-splitting applications by first-principles calculations. Four unique stacking patterns are considered in studying the electronic and optical properties in the presence and absence of biaxial external strain. For pattern-I and II, large negative binding energy and positive phonon frequencies are observed, denoting chemical and mechanical stabilities. Under the HSE-06 pseudo potential, the calculated bandgap value for pattern-I and II reaches 2.86 eV and 2.74 eV, respectively. 2D ZnO/SiC shows a high absorption coefficient (∼105 cm-1). The absorption peak under biaxial strain could reach ∼3.5 times the peak observed under unstrained conditions. Under strain, a shift from compressive to tensile biaxial strain (-6% to 6%) results in a bandgap decrease from 3.18 eV to 2.52 eV and 3.09 eV to 2.43 eV, for pattern-I and II, respectively. The observed strain-driven kinetic overpotential for 2D ZnO/SiC pattern-I and II easily engenders photocatalytic redox reactions. The excellent mechanical durability and strain-driven large kinetic overpotential suggest 2D ZnO/SiC heterobilayers as a prospective material for water-splitting H2-fuel production.
Collapse
Affiliation(s)
- Md. Rasidul Islam
- Department of Electrical and Electronic Engineering, Bangamata Sheikh Fojilatunnesa Mujib Science & Technology UniversityJamalpur-2012Bangladesh
| | - Md. Sakib Hasan Khan
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & TechnologyKhulna-9203Bangladesh
| | - Md. Rayid Hasan Mojumder
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & TechnologyKhulna-9203Bangladesh,Department of Electrical and Electronic Engineering, Daffodil International UniversityDhaka-1341Bangladesh
| | - Sohail Ahmad
- Department of Physics, College of Science, King Khalid UniversityP O Box 9004AbhaSaudi Arabia
| |
Collapse
|
9
|
Ayele ST, Obodo KO, Asres GA. First-principles investigation of potential water-splitting photocatalysts and photovoltaic materials based on Janus transition-metal dichalcogenide/WSe 2 heterostructures. RSC Adv 2022; 12:31518-31524. [PMID: 36380918 PMCID: PMC9631714 DOI: 10.1039/d2ra04964c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/26/2022] [Indexed: 09/08/2024] Open
Abstract
Two-dimensional materials have been shown to exhibit exotic properties that make them very interesting for both photo-catalytic and photo-voltaic applications. In this study, van der Waals corrected density functional theory calculations were carried out on heterostructures of MoSSe/WSe2, WSSe/WSe2, and WSeTe/WSe2. The heterostructures are semiconductors with type II band alignments which are advantageous for electron-hole pair separation. The HSE06 level electronic band gap was found to be 1.093 eV, 1.427 eV and 1.603 eV for MoSSe/WSe2, WSSe/WSe2, and WSeTe/WSe2 respectively. We have considered eight high symmetry stacking patterns for each of the heterostructures, and among them the most stable stacking orders were ascertained based on the interlayer binding energies. The binding energies of the most stable MoSSe/WSe2, WSSe/WSe2, and WSeTe/WSe2 heterostructures were found to be -0.0604 eV, -0.1721 eV, and -0.3296 eV with an equilibrium interlayer space of 5.75 Å, 4.05 Å, and 4.76 Å respectively. The Power Conversion Efficiency (PCE) was found to be 20, 19.98, and 18.24 percent for the MoSSe/WSe2, WSSe/WSe2, and WSeTe/WSe2 heterostructures, respectively. The results show that they can serve as suitable photovoltaic materials with high efficiency, thus, opening the possibilities of developing solar cells based on 2D Janus/TMD heterostructures. The most stable heterostructures are also tested for photocatalytic water splitting applications and WSeTe/WSe2 shows excellent photocatalytic activity by being active for full water splitting at pH = 7 and pH = 14, the MoSSe/WSe2 heterostructure is good for the oxygen evolution reaction and WSSe/WSe2 is active for the hydrogen evolution reaction.
Collapse
Affiliation(s)
- Samuel Tilahun Ayele
- Center for Materials Engineering, Addis Ababa Institute of Technology, Addis Ababa University, School of Multi-disciplinary Engineering Addis Ababa 1000 Ethiopia +251 902639816
- Space Science and Geospatial Institute Addis Ababa Ethiopia
| | - Kingsley O Obodo
- HySA Infrastructure Centre of Competence, Faculty of Engineering, North-West University, South Africa (NWU) 2531 South Africa
- National Institute of Theoretical and Computational Sciences Johannesburg 2000 South Africa
| | - Georgies Alene Asres
- Center for Materials Engineering, Addis Ababa Institute of Technology, Addis Ababa University, School of Multi-disciplinary Engineering Addis Ababa 1000 Ethiopia +251 902639816
| |
Collapse
|
10
|
Mohan H, Ha GH, Oh HS, Kim G, Shin T. Zinc iron selenide nanoflowers anchored g-C 3N 4 as advanced catalyst for photocatalytic water splitting and dye degradation. CHEMOSPHERE 2022; 307:135937. [PMID: 35934097 DOI: 10.1016/j.chemosphere.2022.135937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/26/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen has been considered as a promising clean energy source owing to its renewability and zero carbon emission. Accordingly, photocatalytic water splitting has drawn much attention as a key green technology of producing hydrogen. However, it has remained as a great challenge due to the low production rate and expensive constituents of photocatalytic systems. Herein, we synthesised nanostructures consisting of transition metal selenide and g-C3N4 for photocatalytic water splitting reaction. They include ZnSe, FeSe2, Zn/FeSe2 and ZnFeSe2 nanoflowers and a nanocomposite made of Zn/FeSe2 and g-C3N4. Hydrogen evolution rates in the presence of ZnSe, FeSe2, Zn/FeSe2 and ZnFeSe2 photocatalysts were measured as 60.03, 128.02, 155.11 and 83.59 μmolg-1 min-1, respectively. On the other hand, with the nanocomposite consisting of Zn/FeSe2 and g-C3N4, the hydrogen and oxygen evolution rates were significantly enhanced up to 202.94 μmol g-1min-1 and 90.92 μmol g-1min-1, respectively. The nanocomposite was also examined as a photocatalyst for degradation of rhodamine B showing that it photodegrades the compound two times faster compared to pristine Zn/FeSe2 nanoflowers without g-C3N4. Our study suggests the nanocomposite of Zn/FeSe2 and g-C3N4 as a promising photocatalyst for energy and environmental applications.
Collapse
Affiliation(s)
- Harshavardhan Mohan
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Ga Hyeon Ha
- Department of Carbon Composites Convergence Materials Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyeon Seung Oh
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Gitae Kim
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Taeho Shin
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of Carbon Composites Convergence Materials Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
11
|
Tu J, Wu W, Lei X, Li P. The SWSe-BP vdW Heterostructure as a Promising Photocatalyst for Water Splitting with Power Conversion Efficiency of 19.4. ACS OMEGA 2022; 7:37061-37069. [PMID: 36312328 PMCID: PMC9609072 DOI: 10.1021/acsomega.2c01977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen generation by photocatalytic water splitting has drawn enormous research attention for converting sunlight and water into clean and green hydrogen fuel. However, the search for a high efficiency photocatalyst for water splitting is a key challenge. Two dimensional (2D) van der Waals (vdW) heterostructures as photocatalysts exhibit many advantages over the stacked original materials. In this article, we designed two novel 2D vdW heterostructures composed of WSSe and blue phosphorene (BP) monolayers, SWSe-BP and SeWS-BP, which are thermodynamically stable at room temperature. Using first-principles calculations, we found that the SWSe-BP vdW heterostructure can act as a potential photocatalyst for water splitting due to its robust stabilities, type-II band alignment, moderate bandgap, and suitable band edge positions for the redox reactions of water splitting, strong optical absorption, and excellent power conversion efficiency (PCE). Remarkably, the PCE of the SWSe-BP vdW heterostructure can achieve approximately 19.4% under a 3% biaxial tensile strain.
Collapse
Affiliation(s)
- Jiarui Tu
- Department
of Physics, Jiangxi Normal University, Nanchang, Jiangxi330022, China
| | - Wenjun Wu
- Department
of Physics, Jiangxi Normal University, Nanchang, Jiangxi330022, China
| | - Xueling Lei
- Department
of Physics, Jiangxi Normal University, Nanchang, Jiangxi330022, China
| | - Pengfei Li
- Key
Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials
and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei230031, China
| |
Collapse
|
12
|
Zhang L, Ren K, Cheng H, Cui Z, Li J. The First-Principles Study of External Strain Tuning the Electronic and Optical Properties of the 2D MoTe2/PtS2 van der Waals Heterostructure. Front Chem 2022; 10:934048. [PMID: 35958236 PMCID: PMC9357909 DOI: 10.3389/fchem.2022.934048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/24/2022] [Indexed: 11/20/2022] Open
Abstract
Two-dimensional van der Waals (vdW) heterostructures reveal novel properties due to their unique interface, which have attracted extensive focus. In this work, the first-principles methods are explored to investigate the electronic and the optical abilities of the heterostructure constructed by monolayered MoTe2 and PtS2. Then, the external biaxial strain is employed on the MoTe2/PtS2 heterostructure, which can persist in the intrinsic type-II band structure and decrease the bandgap. In particular, the MoTe2/PtS2 vdW heterostructure exhibits a suitable band edge energy for the redox reaction for water splitting at pH 0, while it is also desirable for that at pH 7 under decent compressive stress. More importantly, the MoTe2/PtS2 vdW heterostructure shows a classy solar-to-hydrogen efficiency, and the light absorption properties can further be enhanced by the strain. Our results showed an effective theoretical strategy to tune the electronic and optical performances of the 2D heterostructure, which can be used in energy conversion such as the automotive battery system.
Collapse
Affiliation(s)
- Li Zhang
- Department of Application & Engineering, Zhejiang Institute of Economics and Trade, Hangzhou, China
| | - Kai Ren
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China
- School of Mechanical Engineering, Wanjiang University of Technology, Maanshan, China
| | - Haiyan Cheng
- School of Foreign Languages, Zhejiang University of Finance & Economics Dongfang College, Zhejiang, China
| | - Zhen Cui
- School of Automation and Information Engineering, Xi’an University of Technology, Xi’an, China
| | - Jianping Li
- School of Automotive & Transportation Engineering, Shenzhen Polytechnic, Shenzhen, China
- *Correspondence: Jianping Li,
| |
Collapse
|
13
|
Zhang Q, Ren K, Zheng R, Huang Z, An Z, Cui Z. First-Principles Calculations of Two-Dimensional CdO/HfS2 Van der Waals Heterostructure: Direct Z-Scheme Photocatalytic Water Splitting. Front Chem 2022; 10:879402. [PMID: 35464209 PMCID: PMC9021922 DOI: 10.3389/fchem.2022.879402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/07/2022] [Indexed: 01/09/2023] Open
Abstract
Using two-dimensional (2D) heterostructure as photocatalyst for water splitting is a popular strategy for the generation of hydrogen. In this investigation, the first-principles calculations are explored to address the electronic performances of the 2D CdO/HfS2 heterostructure formed by van der Waals (vdW) forces. The CdO/HfS2 vdW heterostructure has a 1.19 eV indirect bandgap with type-II band alignment. Importantly, the CdO/HfS2 vdW heterostructure possesses an intrinsic Z-scheme photocatalytic characteristic for water splitting by obtaining decent band edge positions. CdO donates 0.017 electrons to the HfS2 layer in the heterostructure, inducing a potential drop to further separate the photogenerated electrons and holes across the interface. The CdO/HfS2 vdW heterostructure also has excellent optical absorption capacity, showing a promising role as a photocatalyst to decompose the water.
Collapse
Affiliation(s)
- Qiuhua Zhang
- School of Automobile and Aviation, Wuhu Institute of Technology, Wuhu, China
| | - Kai Ren
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China
| | - Ruxing Zheng
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhaoming Huang
- School of Mechanical Engineering, Wanjiang University of Technology, Ma’anshan, China
- *Correspondence: Zhaoming Huang, ; Zongquan An,
| | - Zongquan An
- School of Automobile and Aviation, Wuhu Institute of Technology, Wuhu, China
- *Correspondence: Zhaoming Huang, ; Zongquan An,
| | - Zhen Cui
- School of Automation and Information Engineering, Xi’an University of Technology, Xi’an, China
| |
Collapse
|
14
|
Stacking-Mediated Type-I/Type-II Transition in Two-Dimensional MoTe2/PtS2 Heterostructure: A First-Principles Simulation. CRYSTALS 2022. [DOI: 10.3390/cryst12030425] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recently, a two-dimensional (2D) heterostructure has been widely investigated as a photocatalyst to decompose water using the extraordinary type-II band structure. In this work, the MoTe2/PtS2 van der Waals heterostructure (vdWH) is constructed with different stacking structures. Based on density functional calculations, the stacking-dependent electronic characteristic is explored, so that the MoTe2/PtS2 vdWH possesses type-I and type-II band structures for the light-emitting device and photocatalyst, respectively, with decent stacking configurations. The band alignment of the MoTe2/PtS2 vdWH is also addressed to obtain suitable band edge positions for water-splitting at pH 0. Furthermore, the potential drop is investigated, resulting from charge transfer between the MoTe2 and PtS2, which is another critical promotion to prevent the recombination of the photogenerated charges. Additionally, the MoTe2/PtS2 vdWH also demonstrates a novel and excellent optical absorption capacity in the visible wavelength range. Our work suggests a theoretical guide to designing and tuning the 2D heterostructure using photocatalytic and photovoltaic devices.
Collapse
|
15
|
Adsorption studies of SF6 and decomposed constituents on 4-8 arsenene nanotubes – a first-principles study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Opoku F, Osei-Bonsu Oppong S, Aniagyei A, Akoto O, Adimado AA. Boosting the photocatalytic H 2 evolution activity of type-II g-GaN/Sc 2CO 2 van der Waals heterostructure using applied biaxial strain and external electric field. RSC Adv 2022; 12:7391-7402. [PMID: 35424662 PMCID: PMC8982186 DOI: 10.1039/d2ra00419d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/26/2022] [Indexed: 01/17/2023] Open
Abstract
Two-dimensional (2D) van der Waals (vdW) heterostructures are a new class of materials with highly tunable bandgap transition type, bandgap energy and band alignment. Herein, we have designed a novel 2D g-GaN/Sc2CO2 heterostructure as a potential solar-driven photocatalyst for the water splitting process and investigate its catalytic stability, interfacial interactions, and optical and electronic properties, as well as the effects of applying an electric field and biaxial strain using first-principles calculation. The calculated lattice mismatch and binding energy showed that g-GaN and Sc2CO2 are in contact and may form a stable vdW heterostructure. Ab initio molecular dynamics and phonon dispersion simulations show thermal and dynamic stability. g-GaN/Sc2CO2 has an indirect bandgap energy with appropriate type-II band alignment relative to the water redox potentials. Meanwhile, the interfacial charge transfer from g-GaN to Sc2CO2 can effectively separate electron-hole pairs. Moreover, a potential drop of 3.78 eV is observed across the interface, inducing a built-in electric field pointing from g-GaN to Sc2CO2. The heterostructure shows improved visible-light optical absorption compared to the isolated g-GaN and Sc2CO2 monolayers. Our study demonstrates that tunable electronic and structural properties can be realised in the g-GaN/Sc2CO2 heterostructure by varying the electric field and biaxial strain. In particular, the compressive strain and negative electric field are more effective for promoting hydrogen production performance. Since it is challenging to tune the electric field and biaxial strain experimentally, our research provides strategies to boost the performance of MXene-based heterojunction photocatalysts in solar harvesting and optoelectronic devices.
Collapse
Affiliation(s)
- Francis Opoku
- Department of Chemistry, Kwame Nkrumah University of Science and Technology Kumasi Ghana
| | | | - Albert Aniagyei
- Department of Basic Sciences, University of Health and Allied Sciences Ho Ghana
| | - Osei Akoto
- Department of Chemistry, Kwame Nkrumah University of Science and Technology Kumasi Ghana
| | - Anthony Apeke Adimado
- Department of Chemistry, Kwame Nkrumah University of Science and Technology Kumasi Ghana
| |
Collapse
|
17
|
Liu Y, Fang Y, Yang D, Pi X, Wang P. Recent progress of heterostructures based on two dimensional materials and wide bandgap semiconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:183001. [PMID: 35134786 DOI: 10.1088/1361-648x/ac5310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Recent progress in the synthesis and assembly of two-dimensional (2D) materials has laid the foundation for various applications of atomically thin layer films. These 2D materials possess rich and diverse properties such as layer-dependent band gaps, interesting spin degrees of freedom, and variable crystal structures. They exhibit broad application prospects in micro-nano devices. In the meantime, the wide bandgap semiconductors (WBS) with an elevated breakdown voltage, high mobility, and high thermal conductivity have shown important applications in high-frequency microwave devices, high-temperature and high-power electronic devices. Beyond the study on single 2D materials or WBS materials, the multi-functional 2D/WBS heterostructures can promote the carrier transport at the interface, potentially providing novel physical phenomena and applications, and improving the performance of electronic and optoelectronic devices. In this review, we overview the advantages of the heterostructures of 2D materials and WBS materials, and introduce the construction methods of 2D/WBS heterostructures. Then, we present the diversity and recent progress in the applications of 2D/WBS heterostructures, including photodetectors, photocatalysis, sensors, and energy related devices. Finally, we put forward the current challenges of 2D/WBS heterostructures and propose the promising research directions in the future.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Silicon Materials and School of Materials, Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310007, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, People's Republic of China
| | - Yanjun Fang
- State Key Laboratory of Silicon Materials and School of Materials, Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310007, People's Republic of China
| | - Deren Yang
- State Key Laboratory of Silicon Materials and School of Materials, Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310007, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, People's Republic of China
| | - Xiaodong Pi
- State Key Laboratory of Silicon Materials and School of Materials, Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310007, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, People's Republic of China
| | - Peijian Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, People's Republic of China
| |
Collapse
|
18
|
Haas J, Ulrich F, Hofer C, Wang X, Braun K, Meyer JC. Aligned Stacking of Nanopatterned 2D Materials for High-Resolution 3D Device Fabrication. ACS NANO 2022; 16:1836-1846. [PMID: 35104934 DOI: 10.1021/acsnano.1c09122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional materials can be combined by placing individual layers on top of each other, so that they are bound only by their van der Waals interaction. The sequence of layers can be chosen arbitrarily, enabling an essentially atomic-level control of the material and thereby a wide choice of properties along one dimension. However, simultaneous control over the structure in the in-plane directions is so far still rather limited. Here, we combine spatially controlled modifications of 2D materials, using focused electron irradiation or electron beam induced etching, with the layer-by-layer assembly of van der Waals heterostructures. The presented assembly process makes it possible to structure each layer with an arbitrary pattern prior to the assembly into the heterostructure. Moreover, it enables a stacking of the layers with accurate lateral alignment, with an accuracy of currently 10 nm, under observation in an electron microscope. Together, this enables the fabrication of almost arbitrary 3D structures with highest spatial resolution.
Collapse
Affiliation(s)
- Jonas Haas
- Institute of Applied Physics, Eberhard Karls University of Tuebingen, Auf der Morgenstelle 10, D-72076, Tuebingen, Germany
- Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstr. 55, D-72770 Reutlingen, Germany
| | - Finn Ulrich
- Institute of Applied Physics, Eberhard Karls University of Tuebingen, Auf der Morgenstelle 10, D-72076, Tuebingen, Germany
- Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstr. 55, D-72770 Reutlingen, Germany
| | - Christoph Hofer
- Institute of Applied Physics, Eberhard Karls University of Tuebingen, Auf der Morgenstelle 10, D-72076, Tuebingen, Germany
- Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstr. 55, D-72770 Reutlingen, Germany
| | - Xiao Wang
- School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, China
| | - Kai Braun
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University of Tuebingen, Auf der Morgenstelle 18, D-72076, Tuebingen, Germany
| | - Jannik C Meyer
- Institute of Applied Physics, Eberhard Karls University of Tuebingen, Auf der Morgenstelle 10, D-72076, Tuebingen, Germany
- Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstr. 55, D-72770 Reutlingen, Germany
| |
Collapse
|
19
|
Ren K, Zheng R, Lou J, Yu J, Sun Q, Li J. Ab Initio Calculations for the Electronic, Interfacial and Optical Properties of Two-Dimensional AlN/Zr 2CO 2 Heterostructure. Front Chem 2021; 9:796695. [PMID: 34869240 PMCID: PMC8632821 DOI: 10.3389/fchem.2021.796695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Recently, expanding the applications of two-dimensional (2D) materials by constructing van der Waals (vdW) heterostructures has become very popular. In this work, the structural, electronic and optical absorption performances of the heterostructure based on AlN and Zr2CO2 monolayers are studied by first-principles simulation. It is found that AlN/Zr2CO2 heterostructure is a semiconductor with a band gap of 1.790 eV. In the meanwhile, a type-I band structure is constructed in AlN/Zr2CO2 heterostructure, which can provide a potential application of light emitting devices. The electron transfer between AlN and Zr2CO2 monolayer is calculated as 0.1603 |e| in the heterostructure, and the potential of AlN/Zr2CO2 heterostructure decreased by 0.663 eV from AlN layer to Zr2CO2 layer. Beisdes, the AlN/Zr2CO2 vdW heterostructure possesses excellent light absorption ability of in visible light region. Our research provides a theoretical guidance for the designing of advanced functional heterostructures.
Collapse
Affiliation(s)
- Kai Ren
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China
| | - Ruxin Zheng
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China
| | - Junbin Lou
- School of Information Science and Engineering, Jiaxing University, Jiaxing, China
| | - Jin Yu
- School of Materials Science and Engineering, Southeast University, Nanjing, China
| | - Qingyun Sun
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China
| | - Jianping Li
- School of Automotive and Transportation Engineering, Shenzhen Polytechnic, Shenzhen, China
| |
Collapse
|
20
|
Ren K, Shu H, Huo W, Cui Z, Yu J, Xu Y. Mechanical, electronic and optical properties of a novel B 2P 6 monolayer: ultrahigh carrier mobility and strong optical absorption. Phys Chem Chem Phys 2021; 23:24915-24921. [PMID: 34726209 DOI: 10.1039/d1cp03838a] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two-dimensional (2D) materials with a moderate bandgap and high carrier mobility are useful for applications in optoelectronics. In this work, we present a systematic investigation of the mechanical, electronic and optical properties of a B2P6 monolayer using first-principles calculations. Monolayer B2P6 was estimated to be an anisotropic material from direction-dependent in-plane Young's moduli and Poisson's ratios. Also, B2P6 exhibits an ultrahigh electron mobility of ∼5888 cm2 V-1 s-1, showing advantages for application in high-speed optoelectronic devices. More importantly, for the B2P6 monolayer, a desirable transformation from an indirect to direct band gap was observed at a biaxial tensile strain of ∼4%. Increasing the biaxial strain reduces the gap and preserves the suitable band edge positions for photocatalytic water splitting in the observed strain range of 1-8%. The decreased gap also enhances the visible light absorption of the B2P6 monolayer. These findings indicate that the B2P6 monolayer has promising applications in photocatalytic and photovoltaic devices.
Collapse
Affiliation(s)
- Kai Ren
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210042, China.
| | - Huabing Shu
- School of Science, Jiangsu University of Science and Technology, Zhenjiang 212001, China
| | - Wenyi Huo
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210042, China.
| | - Zhen Cui
- School of Automation and Information Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Jin Yu
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu 211189, China
| | | |
Collapse
|
21
|
Islam MR, Islam MS, Mitul AF, Mojumder MRH, Islam ASMJ, Stampfl C, Park J. Superior tunable photocatalytic properties for water splitting in two dimensional GeC/SiC van der Waals heterobilayers. Sci Rep 2021; 11:17739. [PMID: 34489541 PMCID: PMC8421365 DOI: 10.1038/s41598-021-97251-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
The photocatalytic characteristics of two-dimensional (2D) GeC-based van der Waals heterobilayers (vdW-HBL) are systematically investigated to determine the amount of hydrogen (H2) fuel generated by water splitting. We propose several vdW-HBL structures consisting of 2D-GeC and 2D-SiC with exceptional and tunable optoelectronic properties. The structures exhibit a negative interlayer binding energy and non-negative phonon frequencies, showing that the structures are dynamically stable. The electronic properties of the HBLs depend on the stacking configuration, where the HBLs exhibit direct bandgap values of 1.978 eV, 2.278 eV, and 2.686 eV. The measured absorption coefficients for the HBLs are over ~ 105 cm-1, surpassing the prevalent conversion efficiency of optoelectronic materials. In the absence of external strain, the absorption coefficient for the HBLs reaches around 1 × 106 cm-1. With applied strain, absorption peaks are increased to ~ 3.5 times greater in value than the unstrained HBLs. Furthermore, the HBLs exhibit dynamically controllable bandgaps via the application of biaxial strain. A decrease in the bandgap occurs for both the HBLs when applied biaxial strain changes from the compressive to tensile strain. For + 4% tensile strain, the structure I become unsuitable for photocatalytic water splitting. However, in the biaxial strain range of - 6% to + 6%, both structure II and structure III have a sufficiently higher kinetic potential for demonstrating photocatalytic water-splitting activity in the region of UV to the visible in the light spectrum. These promising properties obtained for the GeC/SiC vdW heterobilayers suggest an application of the structures could boost H2 fuel production via water splitting.
Collapse
Affiliation(s)
- Md Rasidul Islam
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- Department of Electrical and Electronic Engineering, Green University of Bangladesh, Dhaka, 1207, Bangladesh
| | - Md Sherajul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh.
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV, 89557, USA.
| | - Abu Farzan Mitul
- Electrical and Computer Engineering Department, Michigan State University, East Lansing, MI, 48824, USA
| | - Md Rayid Hasan Mojumder
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - A S M Jannatul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Catherine Stampfl
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jeongwon Park
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|
22
|
Lou J, Ren K, Huang Z, Huo W, Zhu Z, Yu J. Electronic and optical properties of two-dimensional heterostructures based on Janus XSSe (X = Mo, W) and Mg(OH) 2: a first principles investigation. RSC Adv 2021; 11:29576-29584. [PMID: 35479544 PMCID: PMC9040575 DOI: 10.1039/d1ra05521f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Two-dimensional (2D) materials have attracted numerous investigations after the discovery of graphene. 2D van der Waals (vdW) heterostructures are a new generation of layered materials, which can provide more desirable applications. In this study, the first principles calculation was implemented to study the heterostructures based on Janus TMDs (MoSSe and WSSe) and Mg(OH)2 monolayers, which were constructed by vdW interactions. Both MoSSe/Mg(OH)2 and WSSe/Mg(OH)2 vdW heterostructures have thermal and dynamic stability. Besides, XSSe/Mg(OH)2 (X = Mo, W) possesses a direct bandgap with a type-I band alignment, which provides promising applications for light-emitting devices. The charge density difference was investigated, and 0.003 (or 0.0042) |e| were transferred from MoSSe (or WSSe) layer to Mg(OH)2 layer, and the potential drops were calculated to be 11.59 and 11.44 eV across the interface of the MoSSe/Mg(OH)2 and WSSe/Mg(OH)2 vdW heterostructures, respectively. Furthermore, the MoSSe/Mg(OH)2 and WSSe/Mg(OH)2 vdW heterostructures have excellent optical absorption wave. Our studies exhibit an effective method to construct new heterostructures based on Janus TMDs and develop their applications for future light emitting devices. Two-dimensional (2D) materials have attracted numerous investigations after the discovery of graphene.![]()
Collapse
Affiliation(s)
- Junbin Lou
- School of Information Science and Engineering, Jiaxing University Jiaxing Zhejiang China
| | - Kai Ren
- School of Mechanical and Electronic Engineering, Nanjing Forestry University Nanjing Jiangsu China
| | - Zhaoming Huang
- School of Mechanical Engineering, Wanjiang University of Technology Maanshan Anhui China
| | - Wenyi Huo
- School of Mechanical and Electronic Engineering, Nanjing Forestry University Nanjing Jiangsu China
| | - Zhengyang Zhu
- School of Mechanical Engineering, Wanjiang University of Technology Maanshan Anhui China
| | - Jin Yu
- School of Materials Science and Engineering, Southeast University Nanjing Jiangsu China
| |
Collapse
|
23
|
First-Principles Study of Electronic and Optical Properties of Two-Dimensional WSSe/BSe van der Waals Heterostructure with High Solar-to-Hydrogen Efficiency. Catalysts 2021. [DOI: 10.3390/catal11080991] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this paper, the optical and electronic properties of WSSe/BSe heterostructure are investigated by first-principles calculations. The most stable stacking pattern of the WSSe/BSe compounds is formed by van der Waals interaction with a thermal stability proved by ab initio molecular dynamics simulation. The WSSe/BSe heterostructure exhibits a type-I band alignment with direct bandgap of 2.151 eV, which can improve the effective recombination of photoexcited holes and electrons. Furthermore, the band alignment of the WSSe/BSe heterostructure can straddle the water redox potential at pH 0–8, and it has a wide absorption range for visible light. In particular, the solar-to-hydrogen efficiency of the WSSe/BSe heterostructure is obtained at as high as 44.9% at pH 4 and 5. All these investigations show that the WSSe/BSe heterostructure has potential application in photocatalysts to decompose water.
Collapse
|
24
|
Ali A, Zhang JM, Muhammad I, Shahid I, Huang YH, Wei XM, Kabir F. Theoretical perspective on the electronic structure and optoelectronic properties of type-II SiC/CrS 2van der Waals heterostructure with high carrier mobilities. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:215302. [PMID: 33684897 DOI: 10.1088/1361-648x/abeca6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Two-dimensional heterostructures formed by stacking layered materials play a significant role in condensed matter physics and materials science due to their potential applications in high-efficiency nanoelectronic and optoelectronic devices. In this paper, the structural, electronic, and optical properties of SiC/CrS2van der Waals heterostructure (vdWHs) have been investigated by means of density functional theory calculations. It is confirmed that the SiC/CrS2vdWHs is energetically and thermodynamically stable indicating its great promise for experimental realization. We find that the SiC/CrS2vdWHs has a direct-band gap and type-II (staggered) band alignment, which can effectively separate the photo-induced electrons and holes pairs and extend their life time. The carrier mobilities of electrons and holes along the armchair and zigzag directions are as high as 6.621 × 103and 6.182 × 104 cm2 V-1 s-1, respectively. Besides, the charge difference and potential drop across the interface can induce a large built-in electric field across the heterojunction, which will further hinder the electron and hole recombination. The SiC/CrS2vdWHs has enhanced optical absorption capability compared to individual monolayers. This study demonstrates that the SiC/CrS2vdWHs is a good candidate for application in the nanoelectronic and optoelectronic devices.
Collapse
Affiliation(s)
- Anwar Ali
- College of Physics and Information Technology, Shaanxi Normal University, Xian 710119, Shaanxi, People's Republic of China
| | - Jian-Min Zhang
- College of Physics and Information Technology, Shaanxi Normal University, Xian 710119, Shaanxi, People's Republic of China
| | - Iltaf Muhammad
- School of Microelectronics, Northwestern Polytechnical University, Xian 710072, Shaanxi, People's Republic of China
| | - Ismail Shahid
- School of Materials Science and Engineering, Computational Centre for Molecular Science, Institute of New Energy Material Chemistry, Nankai University, Tianjin 300350, People's Republic of China
| | - Yu-Hong Huang
- College of Physics and Information Technology, Shaanxi Normal University, Xian 710119, Shaanxi, People's Republic of China
| | - Xiu-Mei Wei
- College of Physics and Information Technology, Shaanxi Normal University, Xian 710119, Shaanxi, People's Republic of China
| | - Fazal Kabir
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xian Jiaotong University, Xian 710049, Shaanxi, People's Republic of China
| |
Collapse
|
25
|
Ab initio calculation of electronic and optical properties of CaNiN nitride and the signature of topological properties. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01543-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Do TN, Idrees M, Binh NTT, Phuc HV, Hieu NN, Hoa LT, Amin B, Van H. Type-I band alignment of BX-ZnO (X = As, P) van der Waals heterostructures as high-efficiency water splitting photocatalysts: a first-principles study. RSC Adv 2020; 10:44545-44550. [PMID: 35517160 PMCID: PMC9058505 DOI: 10.1039/d0ra09701b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/06/2023] Open
Abstract
In this work, we perform first-principles calculations to examine the electronic, optical and photocatalytic properties of the BX–ZnO (X = As, P) heterostructures. The interlayer distance and binding energy of the most energetically favorable stacking configuration are 3.31 Å and −0.30 eV for the BAs–ZnO heterostructure and 3.30 Å and −0.25 eV for the BP–ZnO heterostructure. All the stacking patterns of the BX–ZnO heterostructures are proved to have thermal stability by performing AIMD simulations. The BAs–ZnO and BP–ZnO heterostructures are semiconductors with direct band gaps of 1.43 eV and 2.35 eV, respectively, and they exhibit type-I band alignment, which make them suitable for light emission applications with the ultra-fast recombination between electrons and holes. Both the BAs–ZnO and BP–ZnO heterostructures can exhibit a wider optical absorption range for visible-light owing to their reduced band gaps compared with the isolated BAs, BP and ZnO monolayers. The band alignment of both the BAs–ZnO and BP–ZnO heterostructures can straddle the water redox potential and they would have better performances owing to the direct band gap and the reduced band gap. All these findings demonstrate that the BX–ZnO heterostructures can be considered as potential photocatalysts for water splitting. In this work, we perform first-principles calculations to examine the electronic, optical and photocatalytic properties of the BX–ZnO (X = As, P) heterostructures.![]()
Collapse
Affiliation(s)
- Thi-Nga Do
- Laboratory of Magnetism and Magnetic Materials, Advanced Institute of Materials Science, Ton Duc Thang University Ho Chi Minh City Vietnam .,Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - M Idrees
- Department of Physics, Hazara University Mansehra 21300 Pakistan
| | - Nguyen T T Binh
- Department of Fundamental Sciences, Quang Binh University Quang Binh Vietnam
| | - Huynh V Phuc
- Division of Theoretical Physics, Dong Thap University Cao Lanh 870000 Vietnam
| | - Nguyen N Hieu
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam .,Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Le T Hoa
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam .,Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Bin Amin
- Abbottabad University of Science and Technology Abbottabad 22010 Pakistan
| | - Hieu Van
- Department of Physics, University of Education, The University of Da Nang Da Nang Vietnam
| |
Collapse
|
27
|
Investigation on adsorption properties of HCN and ClCN blood agents on θ–phosphorene nanosheets – A first–principles insight. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110896] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Ren K, Tang W, Sun M, Cai Y, Cheng Y, Zhang G. A direct Z-scheme PtS 2/arsenene van der Waals heterostructure with high photocatalytic water splitting efficiency. NANOSCALE 2020; 12:17281-17289. [PMID: 32633304 DOI: 10.1039/d0nr02286a] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To overcome current serious energy and environmental issues, photocatalytic water splitting holds great promise because it requires only solar energy as an energy input to produce hydrogen. In this work, based on first-principle calculations, we studied the van der Waals heterostructure formed by PtS2 and arsenene (Are) monolayers that were successfully synthesized on a large scale at high quality. From an analysis of the migration paths of photoinduced electrons and holes, a direct Z-scheme photocatalytic mechanism is demonstrated in this heterostructure. Furthermore, the PtS2/Are direct Z-scheme heterostructure has decent band edge positions to promote the redox reaction to decompose water at pH 0. The interfacial charge difference and potential drop are presented, which further support the formation of a direct Z-scheme photocatalyst. More importantly, the PtS2/Are heterostructure has quite high solar-to-hydrogen (STH) efficiency (49.32%), significantly enhanced compared with isolated PtS2 (12.67%) or Are (10.34%) monolayers. This direct Z-scheme PtS2/Are heterostructure with excellent STH efficiency suggests its promising application as a photocatalyst for water splitting.
Collapse
Affiliation(s)
- Kai Ren
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu 211189, China.
| | | | | | | | | | | |
Collapse
|
29
|
Yu X, Zhao G, Gong S, Liu C, Wu C, Lyu P, Maurin G, Zhang N. Design of MoS 2/Graphene van der Waals Heterostructure as Highly Efficient and Stable Electrocatalyst for Hydrogen Evolution in Acidic and Alkaline Media. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24777-24785. [PMID: 32392037 DOI: 10.1021/acsami.0c04838] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The thermodynamically stable phase of molybdenum disulfide (MoS2) is evaluated as a promising and durable nonprecious-metal electrocatalyst toward the hydrogen evolution reaction (HER); however, its actual catalytic activity is restricted by an inert basal plane, low electronic conductivity, low density, and using efficiency of edged atoms. Moreover, 2D/2D van der Waals (vdws) heterostructures (HSs) with face-to-face contact can construct a highly coupled interface and are demonstrated to have immense potential for catalytic applications. In the present work, a 2D/2D hetero-layered architecture of an electrocatalyst, based on the alternate arrangement of ultrasmall monolayer MoS2 nanosheets (approximately 5-10 nm) and ultrathin graphene (G) sheets, is prepared by a facilely chemical process, which is named as MoS2/G HS. The unique structural characteristic of MoS2/G HS is in favor of accommodating more active sites as the centers of ad/desorption hydrogen and transferring and separating the charges at a coupled interface to improve the electronic conductivity and durability. The density functional theory calculation results further confirm that the alternately arranged G layers and MoS2 monolayers, as well as the expanded interplanar distance of 1.104 nm for MoS2/G HS, can exhibit a superior HER performance in both 0.5 M H2SO4 and 1.0 M KOH.
Collapse
Affiliation(s)
- Xianbo Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Guangyu Zhao
- Interdisciplinary Science Research Center, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Shan Gong
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Chao Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Canlong Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Pengbo Lyu
- ICGM, CNRS, ENSCM, Univ. Montpellier, Montpellier 34095, France
| | | | - Naiqing Zhang
- Interdisciplinary Science Research Center, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| |
Collapse
|
30
|
Pham KD, Tan LV, Idrees M, Amin B, Hieu NN, Phuc HV, Hoa LT, Chuong NV. Electronic structures, and optical and photocatalytic properties of the BP–BSe van der Waals heterostructures. NEW J CHEM 2020. [DOI: 10.1039/d0nj03236k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The combination of two-dimensional materials in the form of van der Waals (vdW) heterostructures has been shown to be an effective method for designing electronic and optoelectronic equipment.
Collapse
Affiliation(s)
- Khang D. Pham
- Laboratory of Applied Physics
- Advanced Institute of Materials Science
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
| | - Lam V. Tan
- NTT Hi-Tech Institute
- Nguyen Tat Thanh University
- Ho Chi Minh City
- Vietnam
| | - M. Idrees
- Department of Physics
- Hazara University
- Mansehra 21300
- Pakistan
| | - Bin Amin
- Department of Physics
- Abbottabad University of Science and Technology
- Abbottabad 22010
- Pakistan
| | - Nguyen N. Hieu
- Institute of Research and Development
- Duy Tan University
- Da Nang 550000
- Vietnam
- Faculty of Natural Sciences
| | - Huynh V. Phuc
- Division of Theoretical Physics
- Dong Thap University
- Cao Lanh 870000
- Vietnam
| | - Le T. Hoa
- Institute of Research and Development
- Duy Tan University
- Da Nang 550000
- Vietnam
- Faculty of Natural Sciences
| | - Nguyen V. Chuong
- Department of Materials Science and Engineering
- Le Quy Don Technical University
- Ha Noi
- Vietnam
| |
Collapse
|
31
|
Do TN, Idrees M, Amin B, Hieu NN, Phuc HV, Hieu NV, Hoa LT, Nguyen CV. Electronic and photocatalytic properties of two-dimensional boron phosphide/SiC van der Waals heterostructure with direct type-II band alignment: a first principles study. RSC Adv 2020; 10:32027-32033. [PMID: 35518182 PMCID: PMC9056599 DOI: 10.1039/d0ra05579d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/13/2020] [Indexed: 11/21/2022] Open
Abstract
Designing van der Waals (vdW) heterostructures of two-dimensional materials is an efficient way to realize amazing properties as well as opening opportunities for applications in solar energy conversion and nanoelectronic and optoelectronic devices. In this work, we investigate the electronic, optical, and photocatalytic properties of a boron phosphide–SiC (BP–SiC) vdW heterostructure using first-principles calculations. The relaxed configuration is obtained from the binding energies, inter-layer distance, and thermal stability. We show that the BP–SiC vdW heterostructure has a direct band gap with type-II band alignment, which separates the free electrons and holes at the interface. Furthermore, the calculated absorption spectra demonstrate that the optical properties of the BP–SiC heterostructure are enhanced compared with those of the constituent monolayers. The intensity of optical absorption can reach up to about 105 cm−1. The band edges of the BP–SiC heterostructure are located at energetically favourable positions, indicating that the BP–SiC heterostructure is able to split water under working conditions of pH = 0–3. Our theoretical results provide not only a fascinating insight into the essential properties of the BP–SiC vdW heterostructure, but also helpful information for the experimental design of new vdW heterostructures. We investigate the structural, electronic, optical and photocatalytic properties of boron phosphide and SiC monolayers and their corresponding van der Waals heterostructure by density functional theory.![]()
Collapse
Affiliation(s)
- Thi-Nga Do
- Laboratory of Magnetism and Magnetic Materials
- Advanced Institute of Materials Science
- Ton Duc Thang University
- Ho Chi Minh City
- VietNam
| | - M. Idrees
- Department of Physics
- Hazara University
- Mansehra 21300
- Pakistan
| | - Bin Amin
- Department of Physics
- Abbottabad University of Science and Technology
- Abbottabad 22010
- Pakistan
| | - Nguyen N. Hieu
- Institute of Research and Development
- Duy Tan University
- Da Nang 550000
- Vietnam
- Faculty of Natural Sciences
| | - Huynh V. Phuc
- Division of Theoretical Physics
- Dong Thap University
- Cao Lanh 870000
- Vietnam
| | - Nguyen V. Hieu
- Department of Physics
- The University of Da Nang
- University of Science and Education
- Da Nang
- Vietnam
| | - Le T. Hoa
- Institute of Research and Development
- Duy Tan University
- Da Nang 550000
- Vietnam
- Faculty of Natural Sciences
| | - Chuong V. Nguyen
- Department of Materials Science and Engineering
- Le Quy Don Technical University
- Ha Noi
- Vietnam
| |
Collapse
|