1
|
Kosorn W, Pichaipanich P, Suktha P, Nampichai N, Thavornyutikarn B, Janvikul W. Ternary Blends of Polypropylene Copolymer, Polyethylene and Thermoplastic Polyurethane for Fused Deposition Modeling Three-Dimensional Printing Technology: Preparation, Printing and Properties. ACS OMEGA 2024; 9:35131-35143. [PMID: 39157081 PMCID: PMC11325508 DOI: 10.1021/acsomega.4c05502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024]
Abstract
A set of filaments for fused deposition modeling (FDM) three-dimensional (3D) printing was developed from the ternary blends of polypropylene random copolymer (PPR or P), high density polyethylene (HDPE or E), and thermoplastic polyurethane (TPU or T), formulated with different weight ratios of polymers, i.e., 80:20:0, 70:20:10, 60:20:20, and 50:20:30, respectively, and coded as P80E20T0, P70E20T10, P60E20T20, and P50E20T30, respectively. The blend composition was optimized to obtain both high-quality filaments with low ovality and FDM-fabricated objects with minimized warpage and good interlayer bonding. The crystallization and crystalline morphologies of individual polymers in the blend filaments were comprehensively analyzed by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and polarized light optical microscopy (PLOM). It was found that HDPE acted as crystalline nuclei for PPR crystallization; PPR appeared to crystallize more readily at a slightly higher T c with somewhat greater crystallinity. Meanwhile, TPU explicitly restricted the crystallization of both polyolefins; decreases in both the size and growth rate of their spherulites were observed. The PLOM and SEM results indicated that the surface morphology of the ternary blends was not absolutely phase-separated; an increasing number of TPU droplets inherently imbedded at the boundary of the polyolefin aggregate phase when a higher TPU quantity was integrated. Consequently, the warpage deformation and layer interfusion of the as-printed articles were most remarkably improved when P50E20T30 was used. Nonetheless, the incorporation of relatively flexible TPU material into the PPR-based filaments inevitably reduced their mechanical performance; the flexural strength and modulus of the highest-quality 3D-printed P50E20T30 object were fairly decreased by approximately 25% and 12%, respectively.
Collapse
Affiliation(s)
| | | | - Phansiri Suktha
- Biofunctional Materials and Devices
Research Group, National Metal and Materials Technology Center, National Science and Technology Development Agency, Khlong Luang, Pathum Thani 12120, Thailand
| | - Nutdanai Nampichai
- Biofunctional Materials and Devices
Research Group, National Metal and Materials Technology Center, National Science and Technology Development Agency, Khlong Luang, Pathum Thani 12120, Thailand
| | - Boonlom Thavornyutikarn
- Biofunctional Materials and Devices
Research Group, National Metal and Materials Technology Center, National Science and Technology Development Agency, Khlong Luang, Pathum Thani 12120, Thailand
| | - Wanida Janvikul
- Biofunctional Materials and Devices
Research Group, National Metal and Materials Technology Center, National Science and Technology Development Agency, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
2
|
Garwacki M, Cudnik I, Dziadowiec D, Szymczak P, Andrzejewski J. The Development of Sustainable Polyethylene Terephthalate Glycol-Based (PETG) Blends for Additive Manufacturing Processing-The Use of Multilayered Foil Waste as the Blend Component. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1083. [PMID: 38473555 DOI: 10.3390/ma17051083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
The polymer foil industry is one of the leading producers of plastic waste. The development of new recycling methods for packaging products is one of the biggest demands in today's engineering. The subject of this research was the melt processing of multilayered PET-based foil waste with PETG copolymer. The resulting blends were intended for additive manufacturing processing using the fused deposition modeling (FDM) method. In order to improve the properties of the developed materials, the blends compounding procedure was conducted with the addition of a reactive chain extender (CE) and elastomeric copolymer used as an impact modifier (IM). The samples were manufactured using the 3D printing technique and, for comparison, using the traditional injection molding method. The obtained samples were subjected to a detailed characterization procedure, including mechanical performance evaluation, thermal analysis, and rheological measurements. This research confirms that PET-based film waste can be successfully used for the production of filament, and for most samples, the FDM printing process can be conducted without any difficulties. Unfortunately, the unmodified blends are characterized by brittleness, which makes it necessary to use an elastomer additive (IM). The presence of a semicrystalline PET phase improves the thermal resistance of the prepared blends; however, an annealing procedure is required for this purpose.
Collapse
Affiliation(s)
- Mikołaj Garwacki
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3 Str, 60-965 Poznan, Poland
| | - Igor Cudnik
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3 Str, 60-965 Poznan, Poland
| | - Damian Dziadowiec
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3 Str, 61-138 Poznan, Poland
- Eurocast Sp. z o.o., Wejherowska 9 Str, 84-220 Strzebielino, Poland
| | - Piotr Szymczak
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3 Str, 61-138 Poznan, Poland
- Eurocast Sp. z o.o., Wejherowska 9 Str, 84-220 Strzebielino, Poland
| | - Jacek Andrzejewski
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3 Str, 61-138 Poznan, Poland
| |
Collapse
|
3
|
Ayob NAI, Mohammad Rawi NF, Abd Aziz A, Azahari B, Mohamad Kassim MH. The properties of 3D printed poly (lactic acid) (PLA)/poly (butylene-adipate-terephthalate) (PBAT) blend and oil palm empty fruit bunch (EFB) reinforced PLA/PBAT composites used in fused deposition modelling (FDM) 3D printing. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Poly (lactic acid) (PLA) is amongst the preferable materials used in 3D printing (3DP), especially in fused deposition modelling (FDM) technique because of its unique properties such as good appearance, higher transparency, less toxicity, and low thermal expansion that help reduce the internal stresses caused during cooling. However, PLA is brittle and has low toughness and thermal resistance that affect its printability and restricts its industrial applications. Therefore, PLA was blended with various content of polybutylene adipate terephthalate (PBAT) at 20, 50 and 80 wt% via twin-screw extruder to improve the ductility and impact properties of PLA. The addition of PBAT increased the elongation at break of PLA with a linear increasing amount of PBAT. However, 20 wt% PBAT was selected as the most promising and balance properties of PLA/PBAT because although it has a slight increment in its elongation at break but it exhibits higher impact strength than that of PLA. The tensile strength and tensile modulus of sample with 20 wt% PBAT is greater than 50 and 80 wt% PBAT. Then, PLA/PBAT (80/20, 50/50 and 20/80) and PLA/PBAT/EFB (80/20/10) were printed using FDM machine and were characterized in tensile, impact and morphological properties. The tensile result indicated that the addition of PBAT decreased the tensile strength and tensile modulus of PLA/PBAT-3DP. The terephthalate group in the PBAT affects the mechanical properties of PLA/PBAT-3DP, resulting in high elongation at break but relatively low tensile strength. Besides, the tensile strength and tensile modulus of PLA/PBAT/EFB-3DP decreased and lower than PLA-3DP and PLA/PBAT-3DP. The impact test resulted in high impact strength in PLA/PBAT-3DP, where 50/50-3DP and 20/80-3DP are unbreakable. The impact strength of PLA/PBAT/EFB-3DP is also increased from PLA-3DP but lower than PLA/PBAT-3DP. The scanning electron microscopy (SEM) results revealed that the filament layering on 80/20-3DP was oriented than 50/50-3DP and 20/80-3DP. Besides, the SEM images of PLA/PBAT/EFB-3DP revealed the inhomogeneous and large agglomeration of EFB particle in PLA/PBAT matrix. Therefore, in the future, the polymer blend and polymer blend composite from PLA, PBAT and EFB can be developed where the properties will be based on the study and this study also shed light on the importance of extrusion settings during the manufacture of filament for 3D printing.
Collapse
Affiliation(s)
- Nor Amira Izzati Ayob
- School of Industrial Technology , Universiti Sains Malaysia , Gelugor , 11800 Penang , Malaysia
| | | | - Azniwati Abd Aziz
- School of Industrial Technology , Universiti Sains Malaysia , Gelugor , 11800 Penang , Malaysia
| | - Baharin Azahari
- School of Industrial Technology , Universiti Sains Malaysia , Gelugor , 11800 Penang , Malaysia
| | | |
Collapse
|
4
|
Thermally Conductive Poly(lactic acid) Composites with Superior Electromagnetic Shielding Performances via 3D Printing Technology. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2673-9
expr 921341742 + 922448849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
5
|
Antony Samy A, Golbang A, Harkin-Jones E, Archer E, Dahale M, McIlhagger A. Influence of Ambient Temperature on Part Distortion: A Simulation Study on Amorphous and Semi-Crystalline Polymer. Polymers (Basel) 2022; 14:879. [PMID: 35267702 PMCID: PMC8912715 DOI: 10.3390/polym14050879] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 12/30/2022] Open
Abstract
Semi-crystalline polymers develop higher amounts of residual stress and part distortion (warpage) compared to amorphous polymers due to their crystalline nature. Additionally, the FDM processing parameters such as ambient temperature play an important role in the resulting residual stresses and part distortion of the printed part. Hence, in this study, the effect of ambient temperature on the in-built residual stresses and warpage of amorphous acrylonitrile-butadiene-styrene (ABS) and semi-crystalline polypropylene (PP) polymers was investigated. From the results, it was observed that increasing the ambient temperature from 50 °C to 75 °C and further to 120 °C resulted in 0.22-KPa and 0.37-KPa decreases in residual stress of ABS, but no significant change in the amount of warpage. For PP, increasing ambient temperature from 50 °C to 75 °C led to a more considerable decrease in residual stress (0.5 MPa) and about 3% increase in warpage. Further increasing to 120 °C resulted in a noticeable 2 MPa decrease in residual stress and a 3.4% increase in warpage. Reduction in residual stress in both ABS and PP as a result of increasing ambient temperature was due to the reduced thermal gradients. The enhanced warpage in PP with increase in ambient temperature, despite the reduction in residual stress, was ascribed to crystallization and shrinkage.
Collapse
Affiliation(s)
- Anto Antony Samy
- Engineering Research Institute, Ulster University, Shore Road, Newtownabbey BT37 0QB, Co. Antrim, UK; (E.H.-J.); (E.A.); (M.D.); (A.M.)
| | - Atefeh Golbang
- Engineering Research Institute, Ulster University, Shore Road, Newtownabbey BT37 0QB, Co. Antrim, UK; (E.H.-J.); (E.A.); (M.D.); (A.M.)
| | | | | | | | | |
Collapse
|
6
|
Kar A, Sharma G, Rai RN. A fuzzy Bayesian network-based approach for modeling and analyzing factors causing process variability. INTERNATIONAL JOURNAL OF QUALITY & RELIABILITY MANAGEMENT 2022. [DOI: 10.1108/ijqrm-08-2021-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeIn order to minimize the impact of variability on performance of the process, proper understanding of factors interdependencies and their impact on process variability (PV) is required. However, with insufficient/incomplete numerical data, it is not possible to carry out in-depth process analysis. This paper presents a qualitative framework for analyzing factors causing PV and estimating their influence on overall performance of the process.Design/methodology/approachFuzzy analytic hierarchy process is used to evaluate the weight of each factor and Bayesian network (BN) is utilized to address the uncertainty and conditional dependencies among factors in each step of the process. The weighted values are fed into the BN for evaluating the impact of each factor to the process. A three axiom-based approach is utilized to partially validate the proposed model.FindingsA case study is conducted on fused filament fabrication (FFF) process in order to demonstrate the applicability of the proposed technique. The result analysis indicates that the proposed model can determine the contribution of each factor and identify the critical factor causing variability in the FFF process. It can also helps in estimating the sigma level, one of the crucial performance measures of a process.Research limitations/implicationsThe proposed methodology is aimed to predict the process quality qualitatively due to limited historical quantitative data. Hence, the quality metric is required to be updated with the help of empirical/field data of PV over a period of operational time. Since the proposed method is based on qualitative analysis framework, the subjectivities of judgments in estimating factor weights are involved. Though a fuzzy-based approach has been used in this paper to minimize such subjectivity, however more advanced MCDM techniques can be developed for factor weight evaluation.Practical implicationsAs the proposed methodology uses qualitative data for analysis, it is extremely beneficial while dealing with the issue of scarcity of experimental data.Social implicationsThe prediction of the process quality and understanding of difference between product target and achieved reliability before the product fabrication will help the process designer in correcting/modifying the processes in advance hence preventing substantial amount of losses that may happen due to rework and scraping of the products at a later stage.Originality/valueThis qualitative analysis will deal with the issue of data unavailability across the industry. It will help the process designer in identifying root cause of the PV problem and improving performance of the process.
Collapse
|
7
|
Ma TB, Ma H, Ruan KP, Shi XT, Qiu H, Gao SY, Gu JW. Thermally Conductive Poly(lactic acid) Composites with Superior Electromagnetic Shielding Performances via 3D Printing Technology. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2673-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Pal AK, Mohanty AK, Misra M. Additive manufacturing technology of polymeric materials for customized products: recent developments and future prospective. RSC Adv 2021; 11:36398-36438. [PMID: 35494368 PMCID: PMC9043570 DOI: 10.1039/d1ra04060j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
The worldwide demand for additive manufacturing (AM) is increasing due to its ability to produce more challenging customized objects based on the process parameters for engineering applications. The processing of conventional materials by AM processes is a critically demanded research stream, which has generated a path-breaking scenario in the rapid manufacturing and upcycling of plastics. The exponential growth of AM in the worldwide polymer market is expected to exceed 20 billion US dollars by 2021 in areas of automotive, medical, aerospace, energy and customized consumer products. The development of functional polymers and composites by 3D printing-based technologies has been explored significantly due to its cost-effective, easier integration into customized geometries, higher efficacy, higher precision, freedom of material utilization as compared to traditional injection molding, and thermoforming techniques. Since polymers are the most explored class of materials in AM to overcome the limitations, this review describes the latest research conducted on petroleum-based polymers and their composites using various AM techniques such as fused filament fabrication (FFF), selective laser sintering (SLS), and stereolithography (SLA) related to 3D printing in engineering applications such as biomedical, automotive, aerospace and electronics.
Collapse
Affiliation(s)
- Akhilesh Kumar Pal
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, University of Guelph Crop Science Building, 50 Stone Road East Guelph Ontario N1G 2W1 Canada
| | - Amar K Mohanty
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, University of Guelph Crop Science Building, 50 Stone Road East Guelph Ontario N1G 2W1 Canada
- School of Engineering, University of Guelph Thornbrough Building, 50 Stone Road East Guelph Ontario N1G 2W1 Canada
| | - Manjusri Misra
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, University of Guelph Crop Science Building, 50 Stone Road East Guelph Ontario N1G 2W1 Canada
- School of Engineering, University of Guelph Thornbrough Building, 50 Stone Road East Guelph Ontario N1G 2W1 Canada
| |
Collapse
|
9
|
Diederichs E, Picard M, Chang BP, Misra M, Mohanty A. Extrusion Based 3D Printing of Sustainable Biocomposites from Biocarbon and Poly(trimethylene terephthalate). Molecules 2021; 26:4164. [PMID: 34299439 PMCID: PMC8305183 DOI: 10.3390/molecules26144164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional (3D) printing manufactures intricate computer aided designs without time and resource spent for mold creation. The rapid growth of this industry has led to its extensive use in the automotive, biomedical, and electrical industries. In this work, biobased poly(trimethylene terephthalate) (PTT) blends were combined with pyrolyzed biomass to create sustainable and novel printing materials. The Miscanthus biocarbon (BC), generated from pyrolysis at 650 °C, was combined with an optimized PTT blend at 5 and 10 wt % to generate filaments for extrusion 3D printing. Samples were printed and analyzed according to their thermal, mechanical, and morphological properties. Although there were no significant differences seen in the mechanical properties between the two BC composites, the optimal quantity of BC was 5 wt % based upon dimensional stability, ease of printing, and surface finish. These printable materials show great promise for implementation into customizable, non-structural components in the electrical and automotive industries.
Collapse
Affiliation(s)
- Elizabeth Diederichs
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, University of Guelph, Crop Science Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (E.D.); (M.P.); (B.P.C.)
- School of Engineering, University of Guelph, Thornbrough Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Maisyn Picard
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, University of Guelph, Crop Science Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (E.D.); (M.P.); (B.P.C.)
- School of Engineering, University of Guelph, Thornbrough Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Boon Peng Chang
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, University of Guelph, Crop Science Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (E.D.); (M.P.); (B.P.C.)
| | - Manjusri Misra
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, University of Guelph, Crop Science Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (E.D.); (M.P.); (B.P.C.)
- School of Engineering, University of Guelph, Thornbrough Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Amar Mohanty
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, University of Guelph, Crop Science Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (E.D.); (M.P.); (B.P.C.)
- School of Engineering, University of Guelph, Thornbrough Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
10
|
|
11
|
Ebers LS, Arya A, Bowland CC, Glasser WG, Chmely SC, Naskar AK, Laborie MP. 3D printing of lignin: Challenges, opportunities and roads onward. Biopolymers 2021; 112:e23431. [PMID: 33974275 DOI: 10.1002/bip.23431] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022]
Abstract
As the second most abundant biopolymer on earth, and as a resource recently becoming more available in separated and purified form on an industrial scale due to the development of new isolation technologies, lignin has a key role to play in transitioning our material industry towards sustainability. Additive manufacturing (AM), the most efficient-material processing technology to date, has likewise made great strides to promote sustainable industrial solutions to our needs in engineered products. Bringing lignin research to AM has prompted the emergence of the nascent "lignin 3D printing" field. This review presents the recent state of art of this promising field and highlights its challenges and opportunities. Following a review of the industrial availability, molecular attributes, and associated properties of technical lignins, we review R&D efforts at implementing lignin systems in extrusion-based and stereolithography (SLA) printing technologies. Doing so underlines the adage of lignin research that "all lignins are not created equal," and stresses the opportunity nested in this chemical diversity created mostly by differences in isolation conditions to molecularly select and tune the attributes of technical lignin systems towards desirable properties, be it by modification or polymer blending. Considering the AM design process in its entirety, we finally propose onward routes to bring the full potential to this emerging field. We hope that this review can help promote the unique value and overdue industrial role of lignin in sustainable engineered materials and products.
Collapse
Affiliation(s)
- L-S Ebers
- Chair of Forest Biomaterials, Faculty of Environment and Natural Resources, Albert Ludwig University of Freiburg, Freiburg im Br., Germany.,Freiburg Materials Research Center, Albert Ludwig University of Freiburg, Freiburg im Br., Germany
| | - Aditi Arya
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - C C Bowland
- Carbon and Composites Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - W G Glasser
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia, USA
| | - S C Chmely
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - A K Naskar
- Carbon and Composites Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - M-P Laborie
- Chair of Forest Biomaterials, Faculty of Environment and Natural Resources, Albert Ludwig University of Freiburg, Freiburg im Br., Germany.,Freiburg Materials Research Center, Albert Ludwig University of Freiburg, Freiburg im Br., Germany
| |
Collapse
|
12
|
Influence of Reactive Chain Extension on the Properties of 3D Printed Poly(Lactic Acid) Constructs. Polymers (Basel) 2021; 13:polym13091381. [PMID: 33922696 PMCID: PMC8123025 DOI: 10.3390/polym13091381] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Fused deposition modeling (FDM) is currently the most popular 3D printing method, where thermoplastic polymers are predominantly used. Among them, the biobased poly(lactic acid) (PLA) governs the FDM filament market, with demand higher than supply, since not all grades of PLA are suitable for FDM filament production. In this work, the effect of a food grade chain extender (Joncryl ADR® 4400) on the physicochemical properties and printability of PLA marketed for injection molding was examined. All samples were characterized in terms of their mechanical and thermal properties. The microstructure of the filaments and 3D-printed fractured surfaces following tensile testing were examined with optical and scanning electron microscopy, respectively. Molecular weight and complex viscosity increased, while the melt flow index decreased after the incorporation of Joncryl, which resulted in filaments of improved quality and 3D-printed constructs with enhanced mechanical properties. Dielectric spectroscopy revealed that the bulk properties of PLA with respect to molecular mobility, both local and segmental, were, interestingly, not affected by the modifier. Indirectly, this may suggest that the major effects of the extender are on chain length, without inducing chain branching, at least not to a significant extent.
Collapse
|
13
|
Printability, Mechanical and Thermal Properties of Poly(3-Hydroxybutyrate)-Poly(Lactic Acid)-Plasticizer Blends for Three-Dimensional (3D) Printing. MATERIALS 2020; 13:ma13214736. [PMID: 33114009 PMCID: PMC7660351 DOI: 10.3390/ma13214736] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 12/25/2022]
Abstract
This paper investigates the effect of plasticizer structure on especially the printability and mechanical and thermal properties of poly(3-hydroxybutyrate)-poly(lactic acid)-plasticizer biodegradable blends. Three plasticizers, acetyl tris(2-ethylhexyl) citrate, tris(2-ethylhexyl) citrate, and poly(ethylene glycol)bis(2-ethylhexanoate), were first checked whether they were miscible with poly(3-hydroxybutyrate)-poly(lactic acid) (PHB-PLA) blends using a kneading machine. PHB-PLA-plasticizer blends of 60-25-15 (wt.%) were then prepared using a corotating meshing twin-screw extruder, and a single screw extruder was used for filament preparation for further three-dimensional (3D) fused deposition modeling (FDM) printing. These innovative eco-friendly PHB-PLA-plasticizer blends were created with a majority of PHB, and therefore, poor mechanical properties and thermal properties of neat PHB-PLA blends were improved by adding appropriate plasticizer. The plasticizer also influences the printability of blends, which was investigated, based on our new specific printability tests developed for the optimization of printing conditions (especially printing temperature). Three-dimensional printed test samples were used for heat deflection temperature measurements and Charpy and tensile-impact tests. Plasticizer migration was also investigated. The macrostructure of 3D printed samples was observed using an optical microscope to check the printing quality and printing conditions. Tensile tests of 3D printed samples (dogbones), as well as extruded filaments, showed that measured elongation at break raised, from 21% for non-plasticized PHB-PLA reference blends to 84% for some plasticized blends in the form of filaments and from 10% (reference) to 32% for plasticized blends in the form of printed dogbones. Measurements of thermal properties (using modulated differential scanning calorimetry and oscillation rheometry) also confirmed the plasticizing effect on blends. The thermal and mechanical properties of PHB-PLA blends were improved by the addition of appropriate plasticizer. In contrast, the printability of the PHB-PLA reference seems to be slightly better than the printability of the plasticized blends.
Collapse
|
14
|
Andrzejewski J, Marciniak-Podsadna L. Development of Thermal Resistant FDM Printed Blends. The Preparation of GPET/PC Blends and Evaluation of Material Performance. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2057. [PMID: 32365536 PMCID: PMC7254323 DOI: 10.3390/ma13092057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022]
Abstract
The paper discusses the preparation of polymer blends based on the polyethylene terephthalate copolymer/polycarbonate (GPET/PC). Materials have been prepared in order to assess their applicability in the fused deposition modeling (FDM) 3D printing process. The tested key feature was the thermomechanical resistance, measured by head deflection temperature (HDT) and Vicat softening temperature (VST), the mechanical tests and dynamic mechanical thermal analysis (DMTA) were also performed. A clear relationship between the increasing content of PC in the blend properties was observed. DMTA analysis revealed significant changes in the glass transition temperature, which indicates the miscibility of this type of polymer system. The mechanical tests indicate a clear trend of stiffness and strength improvement along with the increasing share of PC phase in the structure. The increase in impact strength is also clear, however, compared to the results for a pure PC, the results obtained for GPET/PC blends are significantly lower. As part of the research, reference samples based on polyethylene terephthalate homopolymer (PET) and composite samples with addition of 10% talc were also prepared. The structure analysis for PET/PC(50/50) samples did not show miscibility. However, due to the formation of the PET crystalline phase, the thermomechanical resistance of these materials was visibly higher. Scanning electron microscopy (SEM) analysis confirmed a high degree of compatibility of the GPET/PC blend structure as indicated by the lack of visible signs of phase separation. This phenomenon is not observed for PET/PC blends, which confirms the different thermomechanical interactions of both tested polymer systems.
Collapse
Affiliation(s)
- Jacek Andrzejewski
- Institute of Materials Technology, Polymer Processing Division, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3 Street, 61-138 Poznan, Poland
| | - Lidia Marciniak-Podsadna
- Institute of Mechanical Technology, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3 Street, 61-138 Poznan, Poland;
| |
Collapse
|