1
|
Laosinwattana C, Manichart N, Wichittrakarn P, Yoneyama K, Teerarak M, Passara H. Impact of Nigrospora oryzae-Derived Natural Products on Photosynthesis and Oxidative Stress in Eichhornia crassipes. PHYSIOLOGIA PLANTARUM 2025; 177:e70104. [PMID: 39901629 PMCID: PMC11791469 DOI: 10.1111/ppl.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 02/05/2025]
Abstract
Interest in natural herbicides has been growing due to government policies restricting synthetic herbicide use in many countries. In that regard, this study investigates the potential of Nigrospora oryzae extract as a natural herbicide against the aquatic invasive weed Eichhornia crassipes. A stable formulation was developed with a droplet size of 36.44 ± 0.36 nm and a zeta potential of -62.59 mV. Pot-based experiments revealed the N. oryzae extract induced 38.33% phytotoxicity within 24 hours, increasing to 84.72% by 28 days post-treatment. Scanning electron microscopy demonstrated morphoanatomical changes in epidermal tissue and stroma of E. crassipes, such as erosion of epicuticular waxes and degeneration of epidermis cells. The treatment significantly reduced the photosynthetic pigment content while increasing hydrogen peroxide (46.26%), malondialdehyde (17.49%), and proline (19.16%) levels, causing cellular electrolyte leakage. Activities of superoxide dismutase, catalase, ascorbate peroxidase, and guaiacol peroxidase were significantly elevated (p<0.05), indicating oxidative damage. These findings demonstrate that N. oryzae extract can disrupt growth and photosynthesis and induce oxidative stress in E. crassipes, suggesting its potential as a source of natural herbicide for industrial application.
Collapse
Affiliation(s)
- Chamroon Laosinwattana
- School of Agricultural Technology, King Mongkut's Institute of Technology LadkrabangBangkokThailand
| | - Nutcha Manichart
- School of Agricultural Technology, King Mongkut's Institute of Technology LadkrabangBangkokThailand
| | - Pattharin Wichittrakarn
- International Academy of Aviation Industry, King Mongkut's Institute of Technology LadkrabangBangkokThailand
| | - Kaori Yoneyama
- Department of Biochemistry and Molecular BiologySaitama UniversitySaitamaJapan
| | - Montinee Teerarak
- School of Agricultural Technology, King Mongkut's Institute of Technology LadkrabangBangkokThailand
| | - Hataichanok Passara
- School of Agricultural Technology, King Mongkut's Institute of Technology LadkrabangBangkokThailand
| |
Collapse
|
2
|
Dziągwa-Becker M, Oleszek M, Zielińska S, Oleszek W. Chalcones-Features, Identification Techniques, Attributes, and Application in Agriculture. Molecules 2024; 29:2247. [PMID: 38792109 PMCID: PMC11124243 DOI: 10.3390/molecules29102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
This review article is a comprehensive and current overview on chalcones, covering their sources, identification methods, and properties with a particular focus on their applications in the agricultural sector. The widespread use of synthetic pesticides has not only led to increased resistance among weeds and pests, resulting in economic losses, but it has also raised significant health concerns due to the overuse of these chemicals. In line with the European Green Deal 2030 and its Farm to Fork strategy, there is a targeted 50% reduction in the use of chemical pesticides by 2030, emphasizing a shift towards natural alternatives that are more environmentally sustainable and help in the restoration of natural resources. Chalcones and their derivatives, with their herbicidal, fungicidal, bactericidal, and antiviral properties, appear to be ideal candidates. These naturally occurring compounds have been recognized for their beneficial health effects for many years and have applications across multiple areas. This review not only complements the previous literature on the agricultural use of chalcones but also provides updates and introduces methods of detection such as chromatography and MALDI technique.
Collapse
Affiliation(s)
- Magdalena Dziągwa-Becker
- Department of Weed Science and Tillage Systems, Institute of Soil Science and Plant Cultivation, State Research Institute, Orzechowa 61, 50-540 Wrocław, Poland
| | - Marta Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; (M.O.); (W.O.)
| | - Sylwia Zielińska
- Division of Pharmaceutical Biotechnology, Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland;
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; (M.O.); (W.O.)
| |
Collapse
|
3
|
de Pádua GMS, Pitteri TS, Ferreira Basso MA, de Vasconcelos LG, Ali A, Dall'Oglio EL, Sampaio OM, Curcino Vieira LC. Synthesis and Evaluation of New Phytotoxic Fluorinated Chalcones as Photosystem II and Seedling Growth Inhibitors. Chem Biodivers 2024; 21:e202301564. [PMID: 38373281 DOI: 10.1002/cbdv.202301564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/24/2024] [Accepted: 02/17/2024] [Indexed: 02/21/2024]
Abstract
The development of novel phytotoxic compounds has been an important aim of weed control research. In this study, we synthesized fluorinated chalcone derivatives featuring both electron-donating and electron-withdrawing groups. These compounds were evaluated both as inhibitors of the photosystem II (PSII) electron chain as well as inhibitors of the germination and seedling growth of Amaranthus plants. Chlorophyll a (Chl a) fluorescence assay was employed to evaluate their effects on PSII, while germination experiments were conducted to assess their impact on germination and seedling development. The results revealed promising herbicidal activity for (E)-3-(4-bromophenyl)-1-(4-fluorophenyl)prop-2-en-1-one (7 a) and (E)-1-(4-fluorophenyl)-3-phenylprop-2-en-1-one (7 e). Compounds 7 a and 7 e exhibited a reduction in Chl a parameters associated with performance indexes and electron transport per reaction center. This reduction suggests a decrease in PSII activity, attributed to the blockage of electron flow at the quinone pool. Molecular docking analyses of chalcone derivatives with the D1 protein of PSII revealed a stable binding conformation, wherein the carbonyl and fluorine groups interacted with Phe265 and His215 residues, respectively. Additionally, at a concentration of 100 μM, compound 7 e demonstrated pre- and post-emergent herbicidal activity, resulting in a reduction of the seed germination index, radicle and hypocotyl lengths of Amaranthus weeds.
Collapse
Affiliation(s)
| | - Taciane Santos Pitteri
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá-MT, 78060-900, Brazil
| | | | | | - Akbar Ali
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | | | - Olívia Moreira Sampaio
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá-MT, 78060-900, Brazil
| | | |
Collapse
|
4
|
Vieites-Álvarez Y, Reigosa MJ, Sánchez-Moreiras AM. A decade of advances in the study of buckwheat for organic farming and agroecology (2013-2023). FRONTIERS IN PLANT SCIENCE 2024; 15:1354672. [PMID: 38510443 PMCID: PMC10950947 DOI: 10.3389/fpls.2024.1354672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
During the last decade, research has shown the environment and human health benefits of growing buckwheat (Fagopyrum spp.). This comprehensive review aims to summarize the major advancements made in the study of buckwheat from 2013 to 2023, focusing on its agronomic characteristics, nutritional value, and potential applications in sustainable agriculture. The review examines the diverse applications of buckwheat in organic and agroecological farming systems, and discusses the ability of buckwheat to control weeds through allelopathy, competition, and other sustainable farming methods, such as crop rotation, intercropping and green manure, while improving soil health and biodiversity. The review also explores the nutritional value of buckwheat. It delves into the composition of buckwheat grains, emphasizing their high protein content, and the presence of essential amino acids and valuable micronutrients, which is linked to health benefits such as lowering cholesterol levels, controlling diabetes and acting against different types of cancer, among others. Finally, the review concludes by highlighting the gaps in current knowledge, and proposing future research directions to further optimize buckwheat production in organic or agroecological farming systems. It emphasizes the need for interdisciplinary collaboration, and the integration of traditional knowledge with modern scientific approaches to unlock the full potential of buckwheat as a sustainable crop.
Collapse
Affiliation(s)
- Yedra Vieites-Álvarez
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Vigo, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Ourense, Spain
| | - Manuel J. Reigosa
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Vigo, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Ourense, Spain
| | - Adela M. Sánchez-Moreiras
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Vigo, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Ourense, Spain
| |
Collapse
|
5
|
Somala N, Laosinwattana C, Chotsaeng N, Teerarak M. Citronella essential oil-based nanoemulsion as a post-emergence natural herbicide. Sci Rep 2023; 13:20851. [PMID: 38012328 PMCID: PMC10682385 DOI: 10.1038/s41598-023-48328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
A natural herbicide nanoemulsion was fabricated from citronella (Cymbopogon nardus L.) essential oil (CEO) and a nonionic surfactant Tween 60 mixed with Span 60 at hydrophilic-lipophilic balance 14 using a microfluidization method. The main constituents of CEO were citronellol (35.244%), geraniol (21.906%), and citronellal (13.632%). CEO nanoemulsion droplet size and polydispersity index (PI) were evaluated by dynamic light scattering (DLS). The smallest droplet size (33.2 nm, PI 0.135) was obtained from a microfluidizer at 20,000 psi, 7 cycles. Nanoemulsion droplet in transmission electron microscopy correlated with DLS confirmed CEO to successfully produce nanoemulsion. The herbicidal activity of the nanoemulsion as a foliar spray was evaluated against Echinochloa cruss-galli and Amaranthus tricolor as representative narrow- and broadleaf weed plants, both of which presented visual toxicity symptoms. The modes of action of the nanoemulsion were then determined in terms of membrane integrity (relative electrolyte leakage; REL), malondialdehyde (MDA), and photosynthetic pigment contents. The results showed increase in REL and MDA which indicated the destruction of the treated plants; additionally, chlorophylls and carotenoid contents were decreased. Consequently, CEO nanoemulsion may have the possibility to act as a natural herbicide resource, and natural herbicides from citronella nanoemulsions could be good alternatives for use in sustainable agriculture.
Collapse
Affiliation(s)
- Naphat Somala
- School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Chamroon Laosinwattana
- School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| | - Nawasit Chotsaeng
- Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
- Advanced Pure and Applied Chemistry Research Unit (APAC), School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Montinee Teerarak
- School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| |
Collapse
|
6
|
Luo B, Zhang C, Liang S, Zhou W, Hu Y, Li Y, Hu J, Qu L. Design, Synthesis, and Antifungal Activities of Novel Carboxamides Derivatives Bearing a Chalcone Scaffold as Potential SDHIs. Chem Biodivers 2023; 20:e202300958. [PMID: 37492004 DOI: 10.1002/cbdv.202300958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
In search for SDHIs fungicides, twenty-five novel carboxamides containing a chalcone scaffold were designed, synthesized, and evaluated for antifungal activities against five pathogenic fungi. The results showed that compound 5 k exhibited outstanding antifungal activity against R. solani with an EC50 value of 0.20 μg/mL, which was much better than that of commercial SDHIs Boscalid (EC50 =0.74 μg/mL). Moreover, compound 5 k also displayed promising antifungal activities against S. sclerotiorum, B. cinerea, and A. alternate (IC50 =2.53-4.06 μg/mL), indicating that 5 k had broad-spectrum antifungal activity. Additionally, in vivo antifungal activities results showed that 5 k could significantly inhibit the growth of R. solani in rice leaves with good protective efficacy (57.78 %) and curative efficacy (58.45 %) at 100 μg/mL, both of which were much better than those of Boscalid, indicating a promising application prospect. Moreover, SEM analysis showed that compound 5 k could remarkably disrupt the typical structure and morphology of R. solani hyphae. Further SDH enzyme inhibition assay and molecular docking study revealed that lead compound 5 k had a similar mechanism of action as commercial SDHI Boscalid. These results indicated that compound 5 k showed potential as a SDHIs fungicide and deserved further investigation.
Collapse
Affiliation(s)
- Bo Luo
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang, 464000, China
| | - Chongchong Zhang
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang, 464000, China
| | - Suya Liang
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang, 464000, China
| | - Wei Zhou
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang, 464000, China
| | - Yihan Hu
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang, 464000, China
| | - Yulin Li
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang, 464000, China
| | - Jiayi Hu
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang, 464000, China
| | - Lailiang Qu
- College of Medicine, Xinyang Normal University, Xinyang, 464000, China
| |
Collapse
|
7
|
Chotsaeng N. Design, Synthesis, and Structure-Activity Relationship (SAR) Studies of Ketone-Isobenzofuranone Hybrid Herbicides. Chem Biodivers 2023; 20:e202200932. [PMID: 36565431 DOI: 10.1002/cbdv.202200932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Thirty-five ketone-isobenzofuranone hybrids (1-35) were designed, synthesized, and evaluated for their herbicidal activity against Chinese amaranth (Amaranthus tricolor) and barnyard grass (Echinochloa crus-galli). The structure-activity relationship (SAR) results revealed that the position and type of substituent were crucial for activity. The o-substituted derivatives outperformed the m- and p-substituted derivatives. Compounds with strong electron-donating groups (OH, OMe) had low activity, while those with heterocycles (N-methylpyrrole, furan, and thiophene) had a moderate herbicidal effect. Compounds with a weak electron-donating group (Me) and weak, moderate, and strong electron-withdrawing groups (F, Cl, Br, and NO2 ) showed promising herbicidal activity. Among these, the o-F substituted compound (20) was the most effective against Chinese amaranth, and the o-Cl substituted compound (23) was the most potent against barnyard grass. This is the first time the herbicidal potential of ketone-isobenzofuranone hybrids has been studied. The discovery of current chemical clues would be beneficial for the development of novel herbicides.
Collapse
Affiliation(s)
- Nawasit Chotsaeng
- Department of Chemistry and Integrated Applied Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| |
Collapse
|
8
|
Design, synthesis, and antiviral activities of chalcone derivatives containing pyrimidine. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Chotpatiwetchkul W, Chotsaeng N, Laosinwattana C, Charoenying P. Structure-Activity Relationship Study of Xanthoxyline and Related Small Methyl Ketone Herbicides. ACS OMEGA 2022; 7:29002-29012. [PMID: 36033657 PMCID: PMC9404509 DOI: 10.1021/acsomega.2c02704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/29/2022] [Indexed: 05/26/2023]
Abstract
Xanthoxyline (1), a small natural methyl ketone, was previously reported as a plant growth inhibitor. In this research, related methyl ketones bearing electron-donating and electron-withdrawing groups, together with heteroaromatics, were investigated against seed germination and seedling growth of Chinese amaranth (Amaranthus tricolor L.) and barnyard grass [Echinochloa crus-galli (L.) Beauv]. The structure-activity relationships (SARs) of methyl ketone herbicides were clarified, and which types and positions of substituents were crucially important for activity were also clarified. Indole derivatives, namely, 3-acetylindole (43) and 3-acetyl-7-azaindole (44) were found to be the most active methyl ketones that highly suppressed plant growth at low concentrations. The molecular docking on the 4-hydroxyphenylpyruvate dioxygenase (HPPD) enzyme indicated that carbonyl, aromatic, and azaindole were key interactions of HPPD inhibitors. This finding would be useful for the development of small ketone herbicides.
Collapse
Affiliation(s)
- Warot Chotpatiwetchkul
- Department
of Chemistry, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Nawasit Chotsaeng
- Department
of Chemistry, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- Integrated
Applied Chemistry Research Unit, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Chamroon Laosinwattana
- Department
of Plant Production Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Patchanee Charoenying
- Department
of Chemistry, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
10
|
The Phytotoxin Myrigalone A Triggers a Phased Detoxification Programme and Inhibits Lepidium sativum Seed Germination via Multiple Mechanisms including Interference with Auxin Homeostasis. Int J Mol Sci 2022; 23:ijms23094618. [PMID: 35563008 PMCID: PMC9104956 DOI: 10.3390/ijms23094618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
Molecular responses of plants to natural phytotoxins comprise more general and compound-specific mechanisms. How phytotoxic chalcones and other flavonoids inhibit seedling growth was widely studied, but how they interfere with seed germination is largely unknown. The dihydrochalcone and putative allelochemical myrigalone A (MyA) inhibits seed germination and seedling growth. Transcriptome (RNAseq) and hormone analyses of Lepidium sativum seed responses to MyA were compared to other bioactive and inactive compounds. MyA treatment of imbibed seeds triggered the phased induction of a detoxification programme, altered gibberellin, cis-(+)-12-oxophytodienoic acid and jasmonate metabolism, and affected the expression of hormone transporter genes. The MyA-mediated inhibition involved interference with the antioxidant system, oxidative signalling, aquaporins and water uptake, but not uncoupling of oxidative phosphorylation or p-hydroxyphenylpyruvate dioxygenase expression/activity. MyA specifically affected the expression of auxin-related signalling genes, and various transporter genes, including for auxin transport (PIN7, ABCG37, ABCG4, WAT1). Responses to auxin-specific inhibitors further supported the conclusion that MyA interferes with auxin homeostasis during seed germination. Comparative analysis of MyA and other phytotoxins revealed differences in the specific regulatory mechanisms and auxin transporter genes targeted to interfere with auxin homestasis. We conclude that MyA exerts its phytotoxic activity by multiple auxin-dependent and independent molecular mechanisms.
Collapse
|
11
|
Liu X, Chen Y, Deng Y, Xiao C, Luan S, Huang Q. Novel Galactosyl Moiety-Conjugated Furylchalcones Synthesized Facilely Display Significant Regulatory Effect on Plant Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1766-1775. [PMID: 35107011 DOI: 10.1021/acs.jafc.1c05240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The expansion of weed infestation has increased the demand on new herbicides. A series of novel galactosyl moiety-conjugated furylchalcones was facilely synthesized in which the furyl group (A ring) was combined with the substituted benzene group (B ring), and a galactosyl moiety was introduced. All these galactosyl furylchalcones were predicted to be phloem-mobile. Most of the galactosyl furylchalcones significantly promoted early seedling growth of sorghum and barnyardgrass under dark conditions, but all of them revealed considerable anti-growth ability on illuminated pot plants; especially, 1-(3'-(4″-O-β-d-galactopyranosyl)furyl)-3-(4″-nitrophenyl)-2-en-1-one (B11) had a better herbicidal activity against rapeseed and Chinese amaranth than haloxyfop-R-methyl. The median efficient concentrations (EC50) of compound B11 against cucumber and wheat were 9.55 and 26.97 mg/L, respectively, also showing a stronger suppressing capacity than 2,4-D. Molecular docking with phosphoenolpyruvate carboxylase protein showed a stable binding conformation in which the galactosyl group interacted with LYS363 and GLU369, the furan ring and carbonyl bound with ARG184, and the crosslink of the nitro group with GLU240 formed a salt bridge. The results demonstrate that galactosyl furylchalcones possess the great potential as new herbicides for weed management, and further evaluations on more weeds are required for practical application.
Collapse
Affiliation(s)
- Xuefeng Liu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yongjun Chen
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yunfei Deng
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ciying Xiao
- School of Biochemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shaorong Luan
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
12
|
Hu J, Ji X, Su F, Zhao Q, Zhang G, Zhao M, Lai M. Synthesis, odor characteristics and biological evaluation of N-substituted pyrrolyl chalcones. Org Biomol Chem 2022; 20:8747-8755. [DOI: 10.1039/d2ob01561g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Base-mediated transition-metal free α-functionalization of N-substituted acetylpyrroles with commercial alcohols to generate various pyrrolyl chalcones is reported, and several prominent bioactive and flavor molecules were obtained.
Collapse
Affiliation(s)
- Jingyi Hu
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Xiaoming Ji
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Fangyao Su
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Qianrui Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Ganlin Zhang
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Mingqin Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Miao Lai
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| |
Collapse
|
13
|
Enantioselective and Synergistic Herbicidal Activities of Common Amino Acids Against Amaranthus tricolor and Echinochloa crus-galli. Molecules 2021; 26:molecules26072071. [PMID: 33916510 PMCID: PMC8038461 DOI: 10.3390/molecules26072071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022] Open
Abstract
Amino acids have a wide range of biological activities, which usually rely on the stereoisomer presented. In this study, glycine and 21 common α-amino acids were investigated for their herbicidal property against Chinese amaranth (Amaranthus tricolor L.) and barnyard grass (Echinochloa crus-galli (L.) Beauv.). Both d- and l-isomers, as well as a racemic mixture, were tested and found that most compounds barely inhibited germination but moderately suppressed seedling growth. Various ratios of d:l-mixture were studied and synergy between enantiomers was found. For Chinese amaranth, the most toxic d:l-mixtures were at 3:7 (for glutamine), 8:2 (for methionine), and 5:5 (for tryptophan). For barnyard grass, rac-glutamine was more toxic than the pure forms; however, d-tryptophan exhibited greater activity than racemate and l-isomer, indicating the sign of enantioselective toxicity. The mode of action was unclear, but d-tryptophan caused bleaching of leaves, indicating pigment synthesis of the grass was inhibited. The results highlighted the enantioselective and synergistic toxicity of some amino acids, which relied upon plant species, chemical structures, and concentrations. Overall, our finding clarifies the effect of stereoisomers, and provides a chemical clue of amino acid herbicides, which may be useful in the development of herbicides from natural substances.
Collapse
|