1
|
Wang A, Xie M, Wu L. Spectroscopic and Molecular Docking Studies on the Influence of Inulin on the Interaction of Sophoricoside with Whey Protein Concentrate. Foods 2024; 13:3601. [PMID: 39594016 PMCID: PMC11593304 DOI: 10.3390/foods13223601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/13/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The influence of inulin on the interaction of sophoricoside (Sop) with whey protein concentrate (WPC) was investigated using various spectroscopic methods, including fluorescence spectroscopy (intrinsic fluorescence, synchronous fluorescence, and three-dimensional fluorescence), ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and molecular docking. Sop was found to quench the intrinsic fluorescence of WPC by a static mechanism, both with and without the addition of inulin, and to enhance the antioxidant capacity of the protein. The addition of inulin slightly increased the binding distance between WPC and Sop, while reducing the number of binding sites from two to one. Non-covalent interactions, predominantly van der Waals forces and hydrogen bonding, were maintained between Sop and the protein. Synchronous fluorescence spectroscopy revealed that Sop prevents the exposure of hydrophobic groups on tryptophan residues, leading to increased surface hydrophilicity of the WPC complex. This aligns with the decreased protein surface hydrophobicity measured by 8-Anilino-1-naphthalenesulfonic acid (ANS) binding assays. With inulin, the overall hydrophobicity of the protein was lower than in the system without inulin, suggesting that both inulin and Sop improve the solubility of WPC. Three-dimensional fluorescence spectral analysis showed a reduction in fluorescence intensity and a red shift in the presence of both Sop and inulin. FTIR spectroscopy indicated a slight increase in the secondary structure ordering of WPC following the addition of both Sop and inulin, suggesting structural stabilization under heating conditions. Molecular docking highlighted the potential for hydrogen bond formation between Sop and WPC.
Collapse
Affiliation(s)
- Anna Wang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (A.W.); (M.X.)
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China
| | - Mengyang Xie
- School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (A.W.); (M.X.)
| | - Ligen Wu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (A.W.); (M.X.)
| |
Collapse
|
2
|
Lu J, Dong C, Cheng Y, Zhang M, Pang Q, Zhou S, Yang B, Peng X, Wang C, Wu S. Ankaflavin and Monascin Prevent Fibrillogenesis of Hen Egg White Lysozyme: Focus on Noncovalent and Covalent Interactions. J Phys Chem B 2024; 128:10051-10062. [PMID: 39368112 DOI: 10.1021/acs.jpcb.4c04399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Misfolding and amyloid fibrillogenesis of proteins have close relationships with several neurodegenerative diseases. The present work investigates the inhibitive activities of ankaflavin (AK) and monascin (MS), two yellow pigments separated from Monascus-fermented rice, on hen egg white lysozyme (HEWL) fibrillation. The results demonstrated that AK/MS suppressed HEWL fibrillation through interfering with the nucleation period and AK was more potent. Fluorescence quenching and in silico docking studies revealed that AK/MS bond to HEWL by the formation of noncovalent forces with some critical amino acid residues that tend to form fibrils. Compared to those of AK, hydrogen bonding interactions between MS and Asn46, Trp62, and Trp63 residues in HEWL were slightly weaker. Besides, the covalent interaction between MS and HEWL with the binding site of Arg68 was found. These observations offered reasonable explanations for the difference in the mechanisms of AK and MS inhibiting HEWL fibrillogenesis. In a word, all data acquired herein indicated AK/MS as potent candidates for the improvement and treatment of neurological disorders.
Collapse
Affiliation(s)
- Jingwen Lu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Changyan Dong
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yi Cheng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Meihui Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Qianchan Pang
- Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Sumei Zhou
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, PR China
| | - Benxu Yang
- Tianjin Lida Food Technology Co., Ltd., Tianjin 300393, PR China
| | - Xin Peng
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Changlu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shufen Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| |
Collapse
|
3
|
Ordoudi SA, Ricci C, Imparato G, Chroni M, Nucara A, Gerardino A, Bertani FR. A non-invasive, sensor-based approach to exploit the autofluorescence of saffron (Crocus sativus L.) for on-site evaluation of aging. Food Chem 2024; 455:139822. [PMID: 38824730 DOI: 10.1016/j.foodchem.2024.139822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
So far, compliance with ISO 3632 standard specifications for top-quality saffron guarantees good agricultural and post-harvest production practices. Tracking early-stage oxidation remains challenging. Our study aims to address this issue by exploring the visible, fluorescence, and near-infrared spectra of category I saffron. Using a multi-spectral sensor, we tested fresh and artificially aged saffron in powder form. High autofluorescence intensities at 600-700 nm allowed calibration for the 'content of aged saffron'. Samples with minimum coloring strength (200-220 units) were classified as 70% aged, while those exceeding maximum aroma strength (50 units) as 100% aged. Consistent patterns across origin, age, and processing history indicated potential for objectively assessing early-oxidation markers. Further analyses uncovered multiple contributing fluorophores, including cis-apocarotenoids, correlated with FTIR-based aging markers. Our findings underscore that sensing autofluorescence of traded saffron presents an innovative quality diagnostic approach, paving new research pathways for assessing the remaining shelf-life along its supply chain.
Collapse
Affiliation(s)
- S A Ordoudi
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - C Ricci
- Institute for Photonics and Nanotechnologies, CNR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - G Imparato
- Department of Physics, Sapienza University, Rome, Piazzale Aldo Moro 5, 00184 Rome, Italy.
| | - M Chroni
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - A Nucara
- Department of Physics, Sapienza University, Rome, Piazzale Aldo Moro 5, 00184 Rome, Italy.
| | - A Gerardino
- Institute for Photonics and Nanotechnologies, CNR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - F R Bertani
- Institute for Photonics and Nanotechnologies, CNR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy.
| |
Collapse
|
4
|
Gil MV, Fernández-Rivera N, Gutiérrez-Díaz G, Parrón-Ballesteros J, Pastor-Vargas C, Betancor D, Nieto C, Cintas P. Antioxidant Activity and Hypoallergenicity of Egg Protein Matrices Containing Polyphenols from Citrus Waste. Antioxidants (Basel) 2024; 13:1154. [PMID: 39456407 PMCID: PMC11504875 DOI: 10.3390/antiox13101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
This study reports on the interactions of egg proteins, which represent a major health concern in food allergy, with polyphenols obtained from orange and lemon peels. The antioxidant properties of such citrus peel extracts prior to protein binding were evaluated. The resulting edible, and therefore inherently safe, matrices exhibit reduced IgE binding compared to pure proteins in indirect immunological assays (ELISA) using individual sera from patients allergic to ovalbumin and lysozyme. The reduced allergenicity could arise from the interactions with polyphenols, which alter the structure and functionality of the native proteins. It is hypothesized that the anti-inflammatory and antioxidant properties of the polyphenols, described as inhibitors of the allergic response, could add immunomodulatory features to the hypoallergenic complexes. A docking analysis using lysozyme was conducted to scrutinize the nature of the protein-polyphenol interactions. An in silico study unravelled the complexity of binding modes depending on the isoforms considered. Altogether, the presented results validate the antioxidant properties and reduced allergenicity of polyphenol-fortified proteins. Lastly, this study highlights the upgrading of vegetable wastes as a source of natural antioxidants, thus showing the benefits of a circular economy in agri-food science.
Collapse
Affiliation(s)
- María Victoria Gil
- Department of Organic and Inorganic Chemistry, IACYS-Green Chemistry and Sustainable Development Unit, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain; (N.F.-R.); (P.C.)
| | - Nuria Fernández-Rivera
- Department of Organic and Inorganic Chemistry, IACYS-Green Chemistry and Sustainable Development Unit, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain; (N.F.-R.); (P.C.)
| | - Gloria Gutiérrez-Díaz
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain; (G.G.-D.); (J.P.-B.); (C.P.-V.)
| | - Jorge Parrón-Ballesteros
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain; (G.G.-D.); (J.P.-B.); (C.P.-V.)
| | - Carlos Pastor-Vargas
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain; (G.G.-D.); (J.P.-B.); (C.P.-V.)
| | - Diana Betancor
- Department of Allergy and Immunology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Carlos Nieto
- Department of Organic Chemistry, Faculty of Chemical Sciences, University of Salamanca, Pl. Caídos s/n, 37008 Salamanca, Spain;
| | - Pedro Cintas
- Department of Organic and Inorganic Chemistry, IACYS-Green Chemistry and Sustainable Development Unit, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain; (N.F.-R.); (P.C.)
| |
Collapse
|
5
|
Nath R, Zaheen A, Rajkhowa S, Kar R. Polyphenolic metacyclophane as a radical scavenger for therapeutic activation: a computational study. Free Radic Res 2024; 58:476-492. [PMID: 39158168 DOI: 10.1080/10715762.2024.2394121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Modeling antioxidants for improved human health is a prime area of research. Inclusion complexes exhibit antioxidant activity. Supramolecular scaffolds like calixtyrosol are anticipated to have considerable antioxidant and therapeutic activity. In this study, we have designed 30 polyphenolic metacyclophanes and investigated their antioxidant properties. Exceptional O─H bond dissociation energy of 44 kcal/mol is reported for a metacyclophane with acyl urea linkage. This may be explained through a cooperative effect of localization of spin density distribution and an intramolecular hydrogen bonding of the corresponding radical. Further, the pharmacokinetics and toxicity analysis screened eight drug-like candidates. The interaction of the eight screened molecules with the Lysozyme transport protein and SOD protein has been studied using the molecular docking approach. Lastly, the MD simulations are performed to analyze the conformational changes of the transport protein after complexation with the proposed molecules. Comprehensive analyses including density functional studies of physiological parameters, favorable pharmacokinetics, toxicity, molecular docking, and MD simulations affirmed polyphenolic metacyclophane XXI as a radical scavenging and drug-like candidate.
Collapse
Affiliation(s)
- Raktim Nath
- Department of Chemistry, Dibrugarh University, Dibrugarh, India
| | - Alaiha Zaheen
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, India
| | - Sanchaita Rajkhowa
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, India
| | - Rahul Kar
- Department of Chemistry, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
6
|
Ali MS, Teixeira LMC, Ramos MJ, Fernandes PA, Al-Lohedan HA. Interaction of major saffron constituent safranal with trypsin: An experimental and computational investigation. Int J Biol Macromol 2024; 274:133231. [PMID: 38897495 DOI: 10.1016/j.ijbiomac.2024.133231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Trypsin is a serine protease, an important digestive enzyme that digests the proteins in the small intestine. In the present study, we have investigated the interaction of safranal, a major saffron metabolite, with trypsin using spectroscopic and molecular docking analyses. Fluorescence emission spectra of trypsin were largely affected by the inner filter effect from safranal; that's why these were corrected using the standard procedure. The corrected fluorescence spectra have shown that the safranal quenched the intrinsic fluorescence of trypsin with a blue shift in the wavelength of emission maximum, which revealed that the microenvironment of the fluorophore became more hydrophobic. There was approximately 1: 1 fair binding between them, which increased with a rise in temperature. The interaction was favored, principally, by hydrophobic forces, and there was an efficient energy transfer from the fluorophore to the safranal. Synchronous fluorescence spectra suggested that the tryptophan residues were the major ones taking part in the fluorescence quenching of trypsin. Safranal also influenced the secondary structure of trypsin and caused partial unfolding. Molecular Docking and the Molecular Dynamics simulation of the free and complexed trypsin was also carried out. Safranal formed a stable, non-covalent complex within the S2'-S5' subsite. Moreover, two nearby tyrosine residues (Tyr39 and Tyr151) stabilized safranal through π-π interactions. Additionally, the presence of safranal led to changes in the protein flexibility and compactness, which could indicate changes in the surrounding of tryptophan residues, impacting their fluorescence. Furthermore, a loss in compactness is in line with the partial unfolding observed experimentally. Thus, both experimental and computational studies were in good agreement with each other.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia.
| | - Luís M C Teixeira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências,Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Maria J Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências,Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências,Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Hamad A Al-Lohedan
- Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Singh D, Singh VK, Kumari N, Ojha H, Tiwari AK. Exploring the Binding Mechanism of 5-HT7 Specific Benzoxazolone alkyl Piperazinium Derivatives: A Comprehensive Analysis Using Spectroscopic and Computational Approaches. J Fluoresc 2024:10.1007/s10895-024-03846-y. [PMID: 39037679 DOI: 10.1007/s10895-024-03846-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024]
Abstract
Recently, the 5-HT7 receptor has achieved greater attention in research fraternity due to the involvement of neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) in several neurological disorders. Targeting this neuroreceptor, we have synthesized six compounds named as butyl-benzoxazolone substituted piperazinium derivatives (BBOP) derivatives, abbreviated as L1-L6. These compounds have been evaluated for their binding interaction with BSA through photophysical and in-silico approaches. The UV absorption of these compounds with BSA at λmax = 280 nm, showed an optical density (O.D.) in the range of 0.5-0.9, i.e., 21%-53% (L1max = 1.4, L5min = 0.7385) at varied concentrations (17 μM-114 μM). For fluorescence studies, the Ksv value varied inversely with temperature, which confirmed the static mechanism of quenching with L1 showing maximum quenching. The parameters (ΔH, ΔS) obtained from the thermodynamic study for interaction between BSA and L1-L6 were correlated with in-silico (molecular docking) data. The in-silico docking study showed hydrophobic and the Van der Waals forces were the most significant forces. Amino acid residues ARG 217 & TRP 213 (Sudlow Site I) and LYS 116 & GLU 125 (Sudlow Site II) of BSA were primarily involved in H-bonding.Furthermore, the catalytic activity of BSA for hydrolyzingdifferent chemical entities have monitored in the presence of L1-L6 through esterase-like assay with p-NPA as a substrate, to get more insight about the interaction with catalytic residues (LYS 414, LYS 413, and TYR 411) in BSA at site II. These findings showed the potential of these 5-HT7 markers as promising ligands with appropriate drug likeliness characteristics.
Collapse
Affiliation(s)
- Deepika Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Uttar Pradesh, Lucknow, 226025, India
| | - Vijay Kumar Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Uttar Pradesh, Lucknow, 226025, India
| | - Neelam Kumari
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S K Mazumdar Road, Timarpur, Delhi, 110054, India
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Benito Juarez Marg, New Delhi, 110021, India
| | - Himanshu Ojha
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S K Mazumdar Road, Timarpur, Delhi, 110054, India.
| | - Anjani Kumar Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Uttar Pradesh, Lucknow, 226025, India.
| |
Collapse
|
8
|
Ali MS, Al-Lohedan HA. Spectroscopic and Molecular Docking Studies of the Interaction of Non-steroidal Anti-inflammatory Drugs with a Carrier Protein: an Interesting Case of Inner Filter Effect and Intensity Enhancement in Protein Fluorescence. J Fluoresc 2024; 34:1893-1901. [PMID: 37665513 DOI: 10.1007/s10895-023-03422-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Interaction of diclofenac and indomethacin with lysozyme was studied using several spectroscopic and molecular docking methods. Difference UV-visible spectra showed that the absorption profile of lysozyme changed when both diclofenac and indomethacin were mixed with the former. The sequential addition of both drugs to the lysozyme solution caused the decrease of the intrinsic fluorescence of the latter, however, when the data were corrected for inner filter effect, an enhancement in the fluorescence of lysozyme was detected. Accordingly, the fluorescence enhancement data were analyzed using Benesi-Hildebrand equation. Both, diclofenac and indomethacin showed good interaction with lysozyme, although, the association constants of indomethacin were nearly two-fold higher as compared to that of diclofenac. The binding was slightly more spontaneous in case of indomethacin and the major forces involved in the binding of both drugs with lysozyme were hydrogen bonding and hydrophobic interactions. Secondary structural analysis revealed that both drugs partially unfolded lysozyme. Results obtained through molecular docking were also in good agreement with the experimental outcomes. Both, diclofenac and indomethacin, are bounded at the same site inside lysozyme which is located in the big hydrophobic cavity of the protein.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia.
| | - Hamad A Al-Lohedan
- Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
9
|
Ali MS, Al-Lohedan HA, Bhati R, Muthukumaran J. Interaction of the lysozyme with anticoagulant drug warfarin: Spectroscopic and computational analyses. Heliyon 2024; 10:e30818. [PMID: 38784535 PMCID: PMC11112289 DOI: 10.1016/j.heliyon.2024.e30818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Warfarin is a cardiovascular drug, used to treat or inhibit the coagulation of the blood. In this paper, we have studied the interaction of lysozyme with warfarin using several experimental (fluorescence, UV-visible and circular dichroism spectroscopies) and computational (molecular docking, molecular dynamics and DFT) approaches. Experimental studies have suggested that there was a strong interaction between lysozyme and warfarin. Inner filter effect played important role in fluorescence experimental data which show that the emission intensity of lysozyme decreased on the addition of warfarin, however, after inner filter effect correction the actual outcome turned out be the fluorescence enhancement. The extent of binding, increased with temperature rise. The interaction was primarily taken place via the dominance of hydrophobic forces. Small amount of warfarin didn't influence the secondary structure of lysozyme; however, the higher concentration of warfarin caused a decrease in the helicity of the protein and a consequent partial unfolding. Molecular docking studies were also performed which revealed that warfarin binds with lysozyme mainly with hydrophobic forces along with a significant contribution of hydrogen bonding. The flexibility of warfarin played important role in fitting the molecule into the binding pocket of lysozyme. Frontier molecular orbitals of warfarin, using DFT, in free as well as complexed form have also been calculated and discussed. Molecular dynamics simulations of unbound and warfarin bound lysozyme reveal a stable complex with slightly higher RMSD values in the presence of warfarin. Despite slightly increased RMSF values, the overall compactness and folding properties remain consistent, emphasizing strong binding towards lysozyme through the results obtained from intermolecular hydrogen bonding analysis. Essential dynamics analysis suggests warfarin induces slight structural changes without significantly altering the conformation, additionally supported by SASA patterns. Aside from the examination of global and essential motion, the MM/PBSA-based analysis of binding free energy elucidates the significant binding of warfarin to lysozyme, indicating a binding free energy of -13.3471 kcal/mol.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Hamad A. Al-Lohedan
- Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Rittik Bhati
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| |
Collapse
|
10
|
Duan X, Liu W, Liang J, Jing T, Liu Y, Wang X, Liu B. Modulation of protein-ligand interactions in the presence of ZIF-8: Spectroscopy and molecular dynamics simulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124053. [PMID: 38422930 DOI: 10.1016/j.saa.2024.124053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/17/2023] [Accepted: 02/17/2024] [Indexed: 03/02/2024]
Abstract
In this paper, we investigated the protein-ligand interactions in the presence of ZIF-8 using multi-spectroscopic approaches and molecular dynamics simulation. Fluorescence experiments and molecular docking results showed that ZIF-8 did not change the type of quenching and interaction force between ciprofloxacin (CIP) and human serum albumin (HSA), but made the binding constant of HSA-CIP to be smaller, suggesting that ZIF-8 maybe accelerate the dissociation of CIP from HSA-CIP complex. Moreover, the effect of ZIF-8 on the physiological function of HSA was explored. Multi-spectroscopic methods revealed that ZIF-8 did not significantly alter the microenvironment of amino acid groups, but cause a slight decrease in the content of α-helical conformation, and a sparse and flexible structure of the protein backbone. These peculiarities might lead to the diminution of HSA's ability to control drugs. In short, ZIF-8 might enhance drug effect due to affecting the binding of drugs to proteins. However, the present study is only a preliminary investigation of the suitability of ZIF-8 as a drug carrier in vitro, and subsequent in vivo experimental studies will be required to further confirm the idea.
Collapse
Affiliation(s)
- Xinyue Duan
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Jiaqi Liang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Tingyu Jing
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Yu Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Xiao Wang
- Department of Gastroenterology, Central Hospital Affiliated to Shenyang Medical College, Shenyang 110075, China.
| | - Bin Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
11
|
Zohreh Vahedi S, Farhadian S, Shareghi B, Asgharzadeh S. Interaction between the antioxidant compound safranal and α-chymotrypsin in spectroscopic fields and molecular modeling approaches. J Biomol Struct Dyn 2024; 42:4097-4109. [PMID: 37969053 DOI: 10.1080/07391102.2023.2272186] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/21/2023] [Indexed: 11/17/2023]
Abstract
Among various herbal plants, saffron has been the subject of study in various medical and food fields. Among the compounds of saffron, safranal is one of them. Safranal is a monoterpene aldehyde. The precursor of safranal is called picrocrocin, whose hydrolysis leads to the production of safranal. picrocrocin has two sugar components and aglycone. sugar component was separated during the drying process of saffron and safranal is produced. Saffron is the cause of the saffron aroma. Previous studies have shown that safranal offers many benefits such as antioxidants, blood pressure regulation and anti-tumor qualities. On the other hand, α-Chy is an enzyme secreted by the pancreas into the intestine and then acts as an efficient protease. In this study, various methods, such as molecular dynamics (MD) simulation and molecular binding, and different spectroscopic techniques, as well as protein stability techniques, were used to investigate the possible interactions between safranal and α-Chy. UV spectroscopic studies were showing that the existence of safranal decreased α-Chy absorption intensity. safranal caused the intrinsic fluorescence of α-Chy to be quenched too. According to the Stern-Volmer equation, the interaction between safranal and α-Chy was of the static type. In thermodynamic calculations, the interaction between safranal and α-Chy was stabilized by hydrophobic forces. And it was found that this interaction continued spontaneously. These results were, thus, consistent with the Docking data simulation (with the negative ΔG° number and positive changes in enthalpy and entropy). The thermal stability of α-Chy was also measured, showing that its melting point was shifted to a higher threshold as a result of the interaction. also, MD simulation indicated that α-Chy became more stable in the presence of safranal. In this paper, all the results of the laboratory techniques were confirmed by molecular dynamic simulations, so the correctness of the results was confirmed. From this research, we hope to carefully observe the possible changes in the behavior and structure of the enzyme in the presence of safranal.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Sanaz Asgharzadeh
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
12
|
Fatima S, Hussain I, Ahmed S, Afaq MA, Tabish M. Insight into the interaction of isochroman with bovine serum albumin: extensive experimental and computational investigations. J Biomol Struct Dyn 2024:1-15. [PMID: 38319026 DOI: 10.1080/07391102.2024.2310203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Abstract
The way therapeutic compounds interact with serum protein provides valuable information on their pharmacokinetics, toxicity, effectiveness, and even their structural-related information. Isochroman (IC) is a phytochemical compound obtained from the leaves of Olea europea plant. The derivatives of IC have various pharmacological properties including antidepressants, antihistamines, antiinflammation, anticonvulsants, appetite depressants, etc. The binding of small molecules to bovine serum albumin (BSA) is useful to ensure their efficacy. Thus, in this study, we have found out the binding mode of IC with BSA using several spectroscopic and in silico studies. UV and fluorescence spectroscopy suggested the complex formation between IC and BSA with a binding constant of 103 M-1. IC resulted in fluorescence quenching in BSA through static mechanism. The microenvironmental and conformational changes in BSA were confirmed using synchronous and three-dimensional studies. Site marker experiment revealed the IC binding in site-III of BSA. The influence of vitamins, metals and β-cyclodextrin (β-CD) on binding constant of IC-BSA complex was also examined. Circular dichroism spectra showed that α-helical of BSA decreased upon interaction with IC. Computational and experimental results were complimentary with one another and assisted in determining the binding sites, nature of bonds and amino acids included in the IC-BSA complex formation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sana Fatima
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Irfan Hussain
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shahbaz Ahmed
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Abuzar Afaq
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
13
|
Ali MS, Al-Lohedan HA, Bhati R, Muthukumaran J. Probing the interaction of lysozyme with cardiac glycoside digitoxin: experimental and in silico analyses. Front Mol Biosci 2023; 10:1327740. [PMID: 38187092 PMCID: PMC10770834 DOI: 10.3389/fmolb.2023.1327740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Digitoxin is a cardiac glycoside used to treat heart failure and heart arrhythmia. However, its therapeutic concentration range is very narrow. High doses of digitoxin are associated with severe side effects; therefore, it is necessary to develop the delivery system which can control the plasma levels of it. In this context, the binding of lysozyme, an important protein having many applications, with digitoxin has been studied to see the ability of the former as a carrier. The studies were carried out using both experimental and computational methods. The intrinsic fluorescence of lysozyme increased on the addition of digitoxin. Fluorescence results suggested that there was a strong interaction between lysozyme and digitoxin which was favored, mainly, by hydrophobic forces. Further, digitoxin affected the secondary structure of lysozyme slightly by causing the partial unfolding of lysozyme. The preferred binding site of digitoxin within lysozyme was the large cavity of the protein. Molecular docking studies also established the principal role of hydrophobic forces in the binding with a significant support of hydrogen bonding. Frontier molecular orbitals of free digitoxin and in complexation with lysozyme were also computed and discussed. The findings from molecular dynamics simulation studies elucidate that, when contrasted with the first and third conformations of the digitoxin-bound lysozyme complex, the second conformation promotes structural stability, reduces flexibility, and enhances the compactness and folding properties of lysozyme. The overall study shows that lysozyme could act as a potential carrier for digitoxin in pharmaceutical formulations.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hamad A. Al-Lohedan
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rittik Bhati
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| |
Collapse
|
14
|
Ali MS, Waseem M, Subbarao N, Alahamed AN, Al-Lohedan HA. Probing the interaction of cephalosporin antibiotic "cefoperazone" with lysozyme using spectroscopic and in silico methods: Effect of paracetamol on binding. Int J Biol Macromol 2023; 252:126568. [PMID: 37640184 DOI: 10.1016/j.ijbiomac.2023.126568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
The interaction of lysozyme with cefoperazone was studied by means of spectroscopic and computational approaches. The change in the UV-visible spectrum of lysozyme in presence of cefoperazone was an indication of the complex formation between them. Fluorescence spectroscopy suggested that there was a fair interaction between the protein and drug which was taken place via dynamic quenching mechanism and the binding ratio was approximately 1:1. The binding was energetically feasible and principally supported by the hydrophobic forces. CD spectroscopic studies have shown that cefoperazone induced the secondary structure of lysozyme by increasing the α-helical contents of the latter. In silico studies revealed that the large nonpolar cavity was the preferred binding site of cefoperazone within lysozyme and the interaction was taken place mainly through hydrophobic forces with small involvement of hydrogen bonding and electrostatic interactions which is in good agreement with the experimental analyses. Effect of paracetamol was also seen on the binding and it was found that paracetamol had a negative influence on the binding between cefoperazone and lysozyme.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia.
| | - Mohd Waseem
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi, India
| | - Abdullah Nasser Alahamed
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - Hamad A Al-Lohedan
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
15
|
Agarwala P, Ghosh A, Hazarika P, Acharjee D, Ghosh S, Rout D, Sasmal DK. Unraveling the Interaction of Diflunisal with Cyclodextrin and Lysozyme by Fluorescence Spectroscopy. J Phys Chem B 2023; 127:9710-9723. [PMID: 37917720 DOI: 10.1021/acs.jpcb.3c04295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Understanding the interaction between the drug:carrier complex and protein is essential for the development of a new drug-delivery system. However, the majority of reports are based on an understanding of interactions between the drug and protein. Here, we present our findings on the interaction of the anti-inflammatory drug diflunisal with the drug carrier cyclodextrin (CD) and the protein lysozyme, utilizing steady-state and time-resolved fluorescence spectroscopy. Our findings reveal a different pattern of molecular interaction between the inclusion complex of β-CD (β-CD) or hydroxypropyl-β-CD (HP-β-CD) (as the host) and diflunisal (as the guest) in the presence of protein lysozyme. The quantum yield for the 1:2 guest:host complex is twice that of the 1:1 guest:host complex, indicating a more stable hydrophobic microenvironment created in the 1:2 complex. Consequently, the nonradiative decay pathway is significantly reduced. The interaction is characterized by ultrafast solvation dynamics and time-resolved fluorescence resonance energy transfer. The solvation dynamics of the lysozyme becomes 10% faster under the condition of binding with the drug, indicating a negligible change in the polar environment after binding. In addition, the fluorescence lifetime of diflunisal (acceptor) is increased by 50% in the presence of the lysozyme (donor), which indicates that the drug molecule is bound to the binding pocket on the surface of the protein, and the average distance between active tryptophan in the hydrophobic region and diflunisal is calculated to be approximately 50 Å. Excitation and emission matrix spectroscopy reveals that the tryptophan emission increases 3-5 times in the presence of both diflunisal and CD. This indicates that the tryptophan of lysozyme may be present in a more hydrophobic environment in the presence of both diflunisal and CD. Our observations on the interaction of diflunisal with β-CD and lysozyme are well supported by molecular dynamics simulation. Results from this study may have an impact on the development of a better drug-delivery system in the future. It also reveals a fundamental molecular mechanism of interaction of the drug-carrier complex with the protein.
Collapse
Affiliation(s)
- Pratibha Agarwala
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
| | - Arabinda Ghosh
- Department of Computational Biology and Biotechnology, Mahapurusha Srimanta Sankaradeva Viswavidyalaya, Guwahati Unit, Guwahati, Assam 781032, India
| | - Priyanka Hazarika
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
| | - Debopam Acharjee
- School of Chemical Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India
| | - Shirsendu Ghosh
- Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), Hyderabad Campus, Hyderabad 502329, India
| | - Debasish Rout
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
| | - Dibyendu K Sasmal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
| |
Collapse
|
16
|
Kaur L, Singh A, Datta A, Ojha H. Multispectroscopic studies of binding interaction of phosmet with bovine hemoglobin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122630. [PMID: 37001261 DOI: 10.1016/j.saa.2023.122630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Phosmet is a phthalimide derived broad spectrum organophosphate pesticide which is vastly used across the globe to protect several ornamental or horticulture crops. The toxicity of phosmet is of utmost concern because of its direct effect on the nervous system of the victim after exposure. The mechanism of phosmet toxicity was explored by the interaction with the model blood protein which is hemoglobin. Bovine Hemoglobin (BHb) is a major protein of red blood cells (RBCs) that plays an important role in the exchange of gases for respiration and ensures adequate oxygen supply to tissues for oxygenation. In the current study, the interaction of BHb with phosmet was revealed using various spectroscopic techniques. Circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) studies of BHb in the presence of phosmet showed secondary structural changes in the protein post binding, Fluorescence study shows the involvement of the dynamic quenching predominantly, Van't Hoffs thermodynamic study showed negative enthalpy value and free energy change and negative entropy change that revealed the involvement of hydrogen bonding and van der Waal forces predominantly further revealing spontaneous nature of binding interaction. The shift in Ultraviolet-visible spectra also revealed the nature of the interaction. In-silico study finally deduced the involvement of hydrogen bonding and polar interaction. The study inferred the moderate interaction of BHb with phosmet.
Collapse
Affiliation(s)
- Lajpreet Kaur
- Division of RNAIS, Institute of Nuclear Medicine and Allied Sciences, DRDO, Timarpur, Delhi 110054, India
| | - Anju Singh
- Department of Chemistry, Ramjas College, University of Delhi, Delhi 110007, India
| | - Anupama Datta
- Division of RNAIS, Institute of Nuclear Medicine and Allied Sciences, DRDO, Timarpur, Delhi 110054, India
| | - Himanshu Ojha
- Division of RNAIS, Institute of Nuclear Medicine and Allied Sciences, DRDO, Timarpur, Delhi 110054, India.
| |
Collapse
|
17
|
Jiang SL, Hu ZY, Wang WJ, Hu L, Li L, Kou SB, Shi JH. Investigation on the binding behavior of human α1-acid glycoprotein with Janus Kinase inhibitor baricitinib: Multi-spectroscopic and molecular simulation methodologies. Int J Biol Macromol 2023:125096. [PMID: 37285878 DOI: 10.1016/j.ijbiomac.2023.125096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
Baricitinib is a Janus Kinase (JAK) inhibitor that is primarily used to treat moderately to severely active rheumatoid arthritis in adults and has recently been reported for the treatment of patients with severe COVID-19. This paper describes the investigation of the binding behavior of baricitinib to human α1-acid glycoprotein (HAG) employing a variety of spectroscopic techniques, molecular docking and dynamics simulations. Baricitinib can quench the fluorescence from amino acids in HAG through a mix of dynamic and static quenching, according to steady-state fluorescence and UV spectra observations, but it is mainly static quenching at low concentration. The binding constant (Kb) of baricitinib to HAG at 298 K was at the level of 104 M-1, indicating a moderate affinity of baricitinib to HAG. Hydrogen bonding and hydrophobic interactions conducted the main effect, according to thermodynamic characteristics, competition studies between ANS and sucrose, and molecular dynamics simulations. For the change in HAG conformation, the results of multiple spectra showed that baricitinib was able to alter the secondary structure of HAG as well as increase the polarity of the microenvironment around the Trp amino acid. Furthermore, the binding behavior of baricitinib to HAG was investigated by molecular docking and molecular dynamics simulations, which validated experimental results. Also explored is the influence of K+, Co2+, Ni2+, Ca2+, Fe3+, Zn2+, Mg2+ and Cu2+plasma on binding affinity.
Collapse
Affiliation(s)
- Shao-Liang Jiang
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Zhe-Ying Hu
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wan-Jun Wang
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lu Hu
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Li Li
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Song-Bo Kou
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jie-Hua Shi
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
18
|
Ali SM, Nabi F, Hisamuddin M, Rizvi I, Ahmad A, Hassan MN, Paul P, Chaari A, Khan RH. Evaluating the inhibitory potential of natural compound luteolin on human lysozyme fibrillation. Int J Biol Macromol 2023; 233:123623. [PMID: 36773857 DOI: 10.1016/j.ijbiomac.2023.123623] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Numerous pathophysiological conditions known as amyloidosis, have been connected to protein misfolding leading to aggregation of proteins. Inhibition of cytotoxic aggregates or disaggregation of the preformed fibrils is thus one of the important strategies in the prevention of such diseases. Growing interest and exploration of identification of small molecules mainly natural compounds can prevent or delay amyloid fibril formation. We examined the mechanism of interaction and inhibition of human lysozyme (HL) aggregates with luteolin (LT). Biophysical and computational approaches have been employed to study the effect of LT on HL amyloid aggregation. Transmission Electronic Microscopy, Thioflavin T fluorescence, UV-vis spectroscopy, and RLS demonstrates that LT inhibit HL fibril formation. ANS fluorescence and hemolytic assay was also employed to examine the effect of the LT on toxicity of HL aggregation. Docking and molecular dynamics results showed that LT interacted with HL via hydrophobic and hydrogen interactions, thus reducing fibrillation levels. These findings highlight the benefit of polyphenols as safe therapy for preventing amyloid related diseases.
Collapse
Affiliation(s)
- Syed Moasfar Ali
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Malik Hisamuddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Irum Rizvi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Azeem Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Pradipta Paul
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Ali Chaari
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Rizwan H Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India.
| |
Collapse
|
19
|
Ali MS, Muthukumaran J, Jain M, Tariq M, Al-Lohedan HA, Al-Sanea ASS. Detailed Experimental and In Silico Investigation of Indomethacin Binding with Human Serum Albumin Considering Primary and Secondary Binding Sites. Molecules 2023; 28:molecules28072979. [PMID: 37049745 PMCID: PMC10095894 DOI: 10.3390/molecules28072979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The interaction of indomethacin with human serum albumin (HSA) has been studied here considering the primary and secondary binding sites. The Stern–Volmer plots were linear in the lower concentration range of indomethacin while a downward curvature was observed in the higher concentration range, suggesting the presence of more than one binding site for indomethacin inside HSA due to which the microenvironment of the fluorophore changed slightly and some of its fraction was not accessible to the quencher. The Stern–Volmer quenching constants (KSV) for the primary and secondary sites were calculated from the two linear portions of the Stern–Volmer plots. There was around a two-fold decrease in the quenching constants for the low-affinity site as compared to the primary binding site. The interaction takes place via a static quenching mechanism and the KSV decreases at both primary and secondary sites upon increasing the temperature. The binding constants were also evaluated, which show strong binding at the primary site and fair binding at the secondary site. The binding was thermodynamically favorable with the liberation of heat and the ordering of the system. In principle, hydrogen bonding and Van der Waals forces were involved in the binding at the primary site while the low-affinity site interacted through hydrophobic forces only. The competitive binding was also evaluated using warfarin, ibuprofen, hemin, and a warfarin + hemin combination as site markers. The binding profile remained unchanged in the presence of ibuprofen, whereas it decreased in the presence of both warfarin and hemin with a straight line in the Stern–Volmer plots. The reduction in the binding was at a maximum when both warfarin and hemin were present simultaneously with the downward curvature in the Stern–Volmer plots at higher concentrations of indomethacin. The secondary structure of HSA also changes slightly in the presence of higher concentrations of indomethacin. Molecular dynamics simulations were performed at the primary and secondary binding sites of HSA which are drug site 1 (located in the subdomain IIA of the protein) and the hemin binding site (located in subdomain IB), respectively. From the results obtained from molecular docking and MD simulation, the indomethacin molecule showed more binding affinity towards drug site 1 followed by the other two sites.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India
| | - Mohammad Tariq
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Hamad A. Al-Lohedan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Saad S. Al-Sanea
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
20
|
Jamuna NA, Kamalakshan A, Dandekar BR, Chittilappilly Devassy AM, Mondal J, Mandal S. Mechanistic Insight into the Amyloid Fibrillation Inhibition of Hen Egg White Lysozyme by Three Different Bile Acids. J Phys Chem B 2023; 127:2198-2213. [PMID: 36861956 DOI: 10.1021/acs.jpcb.3c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Amyloid aggregation of protein is linked to many neurodegenerative diseases. Identification of small molecules capable of targeting amyloidogenic proteins has gained significant importance. Introduction of hydrophobic and hydrogen bonding interactions through site-specific binding of small molecular ligand to protein can effectively modulate the protein aggregation pathway. Here, we investigate the possible roles of three different bile acids, cholic acid (CA), taurocholic acid (TCA), and lithocholic acid (LCA) with varying hydrophobic and hydrogen bonding properties in inhibiting protein fibrillation. Bile acids are an important class of steroid compounds that are synthesized in the liver from cholesterol. Increasing evidence suggests that altered taurine transport, cholesterol metabolism, and bile acid synthesis have strong implications in Alzheimer's disease. We find that the hydrophilic bile acids, CA and TCA (taurine conjugated form of CA), are substantially more efficient inhibitors of lysozyme fibrillation than the most hydrophobic secondary bile acid LCA. Although LCA binds more strongly with the protein and masks the Trp residues more prominently through hydrophobic interactions, the lesser extent of hydrogen bonding interactions at the active site has made LCA a relatively weaker inhibitor of HEWL aggregation than CA and TCA. The introduction of a greater number of hydrogen bonding channels by CA and TCA with several key amino acid residues which are prone to form oligomers and fibrils has weakened the protein's internal hydrogen bonding capabilities for undergoing amyloid aggregation.
Collapse
Affiliation(s)
- Nidhi Anilkumar Jamuna
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - Adithya Kamalakshan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | | | | | | | - Sarthak Mandal
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| |
Collapse
|
21
|
Stabilization of lysozyme in aqueous dispersion of graphene oxide sheets. Colloids Surf B Biointerfaces 2023; 225:113250. [PMID: 36905833 DOI: 10.1016/j.colsurfb.2023.113250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
This study examines the effect of surface oxygen groups upon ability of graphene oxide (GO) sheets in suppressing the fibrillation of lysozyme (LYZ). Graphite was oxidized using 6 and 8 wt equivalents of KMnO4, and as produced sheets were abbreviated as GO-06 and GO-08, respectively. Particulate characteristics of sheets were characterized by light scattering and electron microscopic techniques, and their interaction with LYZ was analysed by circular dichroism (CD) spectroscopy. After ascertaining acid-driven conversion of LYZ to fibrillary form, we have shown that the fibrillation of dispersed protein can be prevented by adding GO sheets. Inhibitory effect could be attributed to binding of LYZ over the sheets via noncovalent forces. A comparison between GO-06 and GO-08 samples showed superior binding affinity of the latter. Higher aqueous dispersibility and density of oxygenated groups in GO-08 sheets would have facilitated the adsorption of protein molecules, thus making them unavailable for aggregation. Pre-treatment of GO sheets with Pluronic 103 (P103, a nonionic triblock copolymer), caused reduction in the adsorption of LYZ. P103 aggregates would have rendered the sheet surface unavailable for the adsorption of LYZ. Based on these observations, we conclude that fibrillation of LYZ can be prevented in association with graphene oxide sheets.
Collapse
|
22
|
Li X, Han L, Song Z, Xu R, Wang L. Comparative study on the interaction between transferrin and flavonols: Experimental and computational modeling approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122128. [PMID: 36455462 DOI: 10.1016/j.saa.2022.122128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Transferrin is the indispensable component in the body fluids and has been explored as a potential drug carrier for target drugs to cancer cells. Flavonols are widely distributed in plants and shown a wide range of biological activities. In the present study, the interaction between flavonols (including galangin, kaempferol, quercetin, and myricetin) and transferrin under physiological conditions was investigated by using experimental as well as computational approaches. Fluorescence data reveal that the fluorescence quenching mechanism of transferrin by flavonols is static quenching. Transferrin has moderate affinity with flavonols, and the binding constants (Ka) are 103-104 L/mol. In addition, there are two different binding sites for the interaction between kaempferol and transferrin. Thermodynamic parameter analysis shows that the interaction of flavonols and transferrin is synergistically driven by enthalpy and entropy. Hydrophobic interaction, electrostatic force and hydrogen bonds are the main force types. Synchronous fluorescence spectroscopy shows that flavonols decrease the hydrophobicity of the microenvironment around tryptophan (Trp) and have no effect on the microenvironment around tyrosine (Tyr). UV-vis and CD spectra show that the interaction between transferrin and flavonols leads to the loosening and unfolding of transferrin backbone. The increase of β-sheet is accompanied by the decrease of α-helix and β-turn. The specific binding sites of flavonols to transferrin are confirmed by molecular docking. Molecular dynamic simulation suggests that the transferrin-flavonols docked complex is stable throughout the simulation trajectory.
Collapse
Affiliation(s)
- Xiangrong Li
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.
| | - Linyu Han
- Grade 2020, Clinical Medicine, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Zhizhi Song
- Grade 2020, Clinical Medicine, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Ruonan Xu
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Lixia Wang
- College of Science, Henan Agricultural University, Zhengzhou, Henan 450002, PR China
| |
Collapse
|
23
|
Hussain I, Fatima S, Ahmed S, Tabish M. Biophysical and molecular modelling analysis of the binding of β-resorcylic acid with bovine serum albumin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Lyndem S, Gazi R, Jana M, Belwal VK, Singha Roy A. Molecular recognition of two bioactive coumarin derivatives 7-hydroxycoumarin and 4-methyl-7-hydroxycoumarin by hen egg white lysozyme: Exploring the binding mechanism, thermodynamic parameters and structural changes using multispectroscopic and computational approaches. J Biomol Struct Dyn 2022; 40:13872-13888. [PMID: 34751096 DOI: 10.1080/07391102.2021.1995499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multispectroscopic and computational methods of exploring the interaction between a carrier protein and therapeutic compounds provide a preliminary investigation into establishing the efficacy of such compounds. Here, two coumarin derivatives, 7-hydroxycoumarin (7-HC) and 4-methyl-7-hydroxycoumarin (4-Me-7-HC), were selected to carry out numerous biophysical interaction studies with a model carrier protein, hen egg white lysozyme (HEWL). Fluorescence spectroscopy studies conducted between HEWL and 7-HC/4-Me-7-HC revealed the binding constants (Kb) were in the range of 104 M-1, indicating a moderate nature of binding. The quenching mechanism observed during complexation process was an unusual static quenching due to the effect of temperature on the rate constant. Thermodynamic parameters revealed a positive ΔH and ΔS for HEWL-7-HC/4-Me-7-HC, indicating hydrophobic forces played a dominant role in the interaction process. FRET studies suggested a possible non-radiative energy transfer from the donor (HEWL) to the acceptor (coumarins). Molecular docking studies revealed the interaction of 7-HC/4-Me-7-HC with intrinsic fluorophores, Trp63 and Trp108, Trp108 being an essential residue for binding as proven by molecular dynamic (MD) simulation. MD simulation studies also indicated conformational stability gained by HEWL upon interaction with 7-HC and 4-Me-7-HC. The microenvironment surrounding the Trp residues showed a significant Stoke's shift on carrying out 3-D fluorescence. CD studies revealed a decrease in the alpha helical content of HEWL upon interacting with the ligands. Enzymatic assay conducted for HEWL in the presence of 7-HC/4-Me-7-HC saw an increase in the activity of HEWL, suggesting a change in structural conformation and stability of the protein, altering its activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sona Lyndem
- Department of Chemistry, National Institute of Technology, Meghalaya, Shillong, India
| | - Rabiul Gazi
- Department of Chemistry, Molecular Simulation Laboratory, National Institute of Technology, Rourkela, Odisha, India
| | - Madhurima Jana
- Department of Chemistry, Molecular Simulation Laboratory, National Institute of Technology, Rourkela, Odisha, India
| | - Vinay Kumar Belwal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology, Meghalaya, Shillong, India
| |
Collapse
|
25
|
Ali MS, Rehman MT, Al-Lohedan HA, AlAjmi MF. Exploration of the binding between cuminol and bovine serum albumin through spectroscopic, molecular docking and molecular dynamics methods. J Biomol Struct Dyn 2022; 40:12404-12412. [PMID: 34488560 DOI: 10.1080/07391102.2021.1971560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cuminol (4-Isopropylbenzyl alcohol), found in the essential oils of several plant sources, is an important constituent of several cosmetics formulations. The interaction of cuminol with model plasma protein bovine serum albumin was studied in this paper. The experimental studies were mainly carried out using fluorescence spectrophotometry aided with UV visible and CD spectroscopies. Intrinsic fluorescence measurements showed that there was a weak binding between cuminol and BSA. The mechanism of binding involved static quenching with around 1:1 binding. The binding was chiefly supported by hydrophobic forces although a little contribution of hydrogen bonding was also found in the interaction and the values of enthalpy change were negative with positive entropy change. The secondary structure of BSA didn't change significantly in presence of low concentrations of cuminol, however, partial unfolding of the former taken place when the concentration of the latter increased. Molecular docking analyses showed cuminol binds at the intersection of subdomains IIA and IIIA, i.e. its binding site is in between Sudlow sites I and II. Molecular dynamics simulations results have shown that BSA forms a stable complex with cuminol and the structure of the former didn't change much in presence of later. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hamad A Al-Lohedan
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Fahad AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Khalil A, Kashif M. Interaction studies of levofloxacin with human lysozyme in a ternary complex using multispectroscopic and computational analysis: A circular dichroism method for the quantitation of levofloxacin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Kaur L, Rahman AJ, Singh A, Pathak M, Datta A, Singhal R, Ojha H. Binding studies for the interaction between hazardous organophosphorus compound phosmet and lysozyme: Spectroscopic and In-silico analyses. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
28
|
Wang L, Zhang W, Shao Y, Zhang D, Guo G, Wang X. Analytical methods for obtaining binding parameters of drug–protein interactions: A review. Anal Chim Acta 2022; 1219:340012. [DOI: 10.1016/j.aca.2022.340012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
|
29
|
Ali MS, Al-Lohedan HA. Experimental and Computational Investigation on the Interaction of Anticancer Drug Gemcitabine with Human Plasma Protein: Effect of Copresence of Ibuprofen on the Binding. Molecules 2022; 27:1635. [PMID: 35268736 PMCID: PMC8912049 DOI: 10.3390/molecules27051635] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/24/2022] Open
Abstract
The interaction of common anticancer drug gemcitabine with human serum albumin (HSA) has been studied in detail. The effect of an omnipresent nonsteroidal anti-inflammatory drug ibuprofen was also seen on the binding of HSA and gemcitabine. A slight hyperchromic shift in the difference UV-visible absorption spectra of HSA on the addition of gemcitabine gave a primary idea of the possible complex formation between them. The inner filter effect, which happens due to the significant absorbance of the ligand at the excitation and/or emission wavelengths, played an important role in the observed fluorescence quenching of HSA by gemcitabine that can be understood by comparing the observed and corrected fluorescence intensities obtained at λex = 280 nm and 295 nm. Gemcitabine showed weak interaction with HSA, which took place via a dynamic quenching mechanism with 1:1 cooperative binding between them. Secondary structural analysis, based on circular dichroism (CD) spectroscopy, showed that low concentrations of gemcitabine did not affect the native structure of protein; however, higher concentrations affected it slightly with partial unfolding. For understanding the binding site of gemcitabine within HSA, both experimental (using site markers, warfarin and ibuprofen) as well as computational methods were employed, which revealed that the gemcitabine binding site is located between the interface of subdomain IIA and IIB within the close proximity of the warfarin site (drug site 1). The effect of ibuprofen on the binding was further elaborated because of the possibility of its coexistence with gemcitabine in the prescription given to the cancer patients, and it was noticed that, ibuprofen, even present in high amounts, did not affect the binding efficacy of gemcitabine with HSA. DFT analyses of various conformers of gemcitabine obtained from its docking with various structures of HSA (free and bounded with site markers), show that the stability of the gemcitabine molecule increased slightly after binding with ibuprofen-complexed HSA. Both experimental as well as computational results were in good agreement with each other.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | | |
Collapse
|
30
|
Zhang H, Min S, Zhang L, Li L. Design, synthesis and protein-binding character of an acylhydrazone anticancer candidate. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Parveen S, Jafri S, Yasir Khan H, Tabassum S, Arjmand F. Elucidating the interaction of enantiomeric Cu(II) complexes with DNA, RNA and HSA: A comparative study. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Parveen S, Ali MS, Al-Lohedan HA, Tabassum S. Interaction of Carrier Protein with Potential Metallic Drug Candidate N-Glycoside 'GATPT': Validation by Multi-Spectroscopic and Molecular Docking Approaches. Molecules 2021; 26:6641. [PMID: 34771048 PMCID: PMC8587009 DOI: 10.3390/molecules26216641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/02/2022] Open
Abstract
Lysozyme is often used as a model protein to study interaction with drug molecules and to understand biological processes which help in illuminating the therapeutic effectiveness of the drug. In the present work, in vitro interaction studies of 1-{(2-hydroxyethyl)amino}-2-amino-1,2-dideoxy-d-glucose triphenyl tin (IV) (GATPT) complex with lysozyme were carried out by employing various biophysical methods such as absorption, fluorescence, and circular dichroism (CD) spectroscopies. The experimental results revealed efficient binding affinity of GATPT with lysozyme with intrinsic binding (Kb) and binding constant (K) values in the order of 105 M-1. The number of binding sites and thermodynamic parameters ΔG, ΔH, and ΔS at four different temperatures were also calculated and the interaction of GATPT with lysozyme was found to be enthalpy and entropy driven. The CD spectra revealed alterations in the population of α-helical content within the secondary structure of lysozyme in presence of GATPT complex. The morphological analysis of the complex with lysozyme and lysozyme-DNA condensates was carried out by employing confocal and SEM studies. Furthermore, the molecular docking studies confirmed the interaction of GATPT within the larger hydrophobic pocket of the lysozyme via several non-covalent interactions.
Collapse
Affiliation(s)
- Sabiha Parveen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India;
| | - Mohd. Sajid Ali
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.A.); (H.A.A.-L.)
| | - Hamad A. Al-Lohedan
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.A.); (H.A.A.-L.)
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India;
| |
Collapse
|
33
|
Experimental and in silico investigation on the interaction of indomethacin with bovine serum albumin: Effect of sodium dodecyl sulfate surfactant monomers on the binding. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Pramanik U, Kongasseri AA, Shekhar S, Mathew A, Yadav R, Mukherjee S. Structural Compactness in Hen Egg White Lysozyme Induced by Bisphenol S: A Spectroscopic and Molecular Dynamics Simulation Approach. Chemphyschem 2021; 22:1745-1753. [PMID: 34227204 DOI: 10.1002/cphc.202100272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/15/2021] [Indexed: 12/24/2022]
Abstract
The endocrine disrupting compound Bisphenol and its analogues are widely used in food packaging products and can cause serious health hazards. The protein, Lysozyme (Lyz), showing anti-microbial properties, is used as a "natural" food and dairy preservative. Herein, we explored the interaction between Lyz and Bisphenol S (BPS) by multi-spectroscopic and theoretical approaches. Lyz interacts with BPS through static quenching, where hydrophobic force governed the underlying interaction. Molecular docking results reveal that tryptophan plays a vital role in binding, corroborated well with near UV-CD studies. A decrease in the radius of gyration (from 1.43 nm to 1.35 nm) of Lyz substantiates the compactness of the protein conformation owing to such an interaction. This structural alteration experienced by Lyz may alter its functional properties as a food preservative. Consequently, this can degrade the quality of the food products and thereby lead to severe health issues.
Collapse
Affiliation(s)
- Ushasi Pramanik
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Anju Ajayan Kongasseri
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Shashi Shekhar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Ashwin Mathew
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Rahul Yadav
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, 462 066, Madhya Pradesh, India
| |
Collapse
|
35
|
Liao X, Zhu C, Huang D, Wen X, Zhang SL, Shen Y. Profiling the interaction of a novel toxic pyruvate dehydrogenase kinase inhibitor with human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119733. [PMID: 33827040 DOI: 10.1016/j.saa.2021.119733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
To discover novel pyruvate dehydrogenase kinase (PDK) inhibitors, a new compound 2,2-dichloro-1-(4-((4-isopropylphenyl)amino)-3-nitrophenyl)ethan-1-one, namely XB-1 was identified, which inhibited PDK activity with a half maximal inhibitory concentration (IC50) value of 337.0 nM, and reduced A549 cell proliferation with a half maximal effective concentration (EC50) value of 330.0 nM. However, the compound appears to exhibit a negligible selectivity between cancer cell and normal one, indicating a potential toxicity existed for the compound. Herein, the interaction of the toxic XB-1 to human serum albumin (HSA) was firstly explored by spectroscopic approaches with the aim to reduce/avoid the toxicity of PDK inhibitors in the next hit-to-lead campaign. In detail, it was found that the XB-1 could effectively bind to HSA mainly via hydrogen bond interaction in PBS buffer (pH = 7.4, 10.0 mM), resulting in the formation of HSA-XB-1 complex. The negative value of ΔG showed that the binding of XB-1 to HSA is a spontaneous process. The result from site-selective binding assay suggested that the XB-1 bound to the site I of HSA by competing with warfarin, which was perfect in agreement with the molecular docking method. The results of this paper may offer a valuable theoretical basis to study the toxicity of biofunctional molecules and may offer thoughts about how to avoid/reduce toxicity for a small molecule.
Collapse
Affiliation(s)
- Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chunlei Zhu
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ding Huang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoqing Wen
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Yizhong Shen
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
36
|
Nassab CN, Arooj M, Shehadi IA, Parambath JBM, Kanan SM, Mohamed AA. Lysozyme and Human Serum Albumin Proteins as Potential Nitric Oxide Cardiovascular Drug Carriers: Theoretical and Experimental Investigation. J Phys Chem B 2021; 125:7750-7762. [PMID: 34232651 DOI: 10.1021/acs.jpcb.1c04614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide-containing drugs present a critical remedy for cardiovascular diseases. Nitroglycerin (NG, O-NO) and S-nitrosoglutathione (SNG, S-NO) are the most common nitric oxide drugs for cardiovascular diseases. Insights regarding the binding affinity of NO drugs with lysozyme and human serum albumin (HSA) proteins and their dissociation mechanism will provide inquisitive information regarding the potential of the proteins as drug carriers. For the first time, the binding interactions and affinities are investigated using molecular docking, conventional molecular dynamics, steered molecular dynamics, and umbrella sampling to explore the ability of both proteins to act as nitric oxide drug carriers. The molecular dynamics simulation results showed higher stability of lysozyme-drug complexes compared to HSA. For lysozyme, cardiovascular drugs were bound in the protein cavity mainly by the electrostatic and hydrogen bond interactions with residues ASP53, GLN58, ILE59, ARG62, TRP64, ASP102, and TRP109. For HSA, key binding residues were ARG410, TYR411, LYS414, ARG485, GLU450, ARG486, and SER489. The free energy profiles produced from umbrella sampling also suggest that lysozyme-drug complexes had better binding affinity than HSA-drug. Binding characteristics of nitric oxide-containing drugs NG and SNG to lysozyme and HSA proteins were studied using fluorescence and UV-vis absorption spectroscopy. The relative change in the fluorescence intensity as a function of drug concentrations was analyzed using Stern-Volmer calculations. This was also confirmed by the change in the UV-vis spectra. Fluorescence quenching results of both proteins with the drugs, based on the binding constant values, demonstrated significantly weak binding affinity to NG and strong binding affinity to SNG. Both computational and experimental studies provided important data for understanding protein-drug interactions and will aid in developing potential drug carrier systems in cardiovascular diseases.
Collapse
Affiliation(s)
- Chahlaa N Nassab
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, UAE
| | - Mahreen Arooj
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, UAE
| | - Ihsan A Shehadi
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, UAE
| | - Javad B M Parambath
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, UAE
| | - Sofian M Kanan
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah 26666, UAE
| | - Ahmed A Mohamed
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, UAE
| |
Collapse
|
37
|
Ali MS, Muthukumaran J, Jain M, Al-Lohedan HA, Farah MA, Alsowilem OI. Experimental and computational investigation on the binding of anticancer drug gemcitabine with bovine serum albumin. J Biomol Struct Dyn 2021; 40:9144-9157. [PMID: 33998966 DOI: 10.1080/07391102.2021.1924270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study reports the experimental and computational investigation on the binding of a common anticancer drug, gemcitabine, with the model plasma protein, bovine serum albumin (BSA). Several experimental and computational methods, such as intrinsic and synchronous fluorescence, UV-visible, and circular dichroism spectroscopies, consensus molecular docking and molecular dynamics simulation have been employed to elucidate the binding mechanism. Gemcitabine altered the UV-visible spectrum of BSA, which is a clear indication of the complex formation between them. The visual inspection of observed fluorescence quenching results at λex = 280 nm and 295 nm has shown the substantial involvement of tyrosine residue, even larger than tryptophan. However, after the correction of inner filter effect of the observed data, it became clear that tyrosine has a negligible role in quenching. A 20-fold decrease in quenching constant was found in the corrected data, as compared to the observed data at λex = 280 nm. There was a 1:1 weak binding between BSA and gemcitabine accompanied by dynamic quenching. The secondary structure of BSA remained almost intact in the presence of gemcitabine. The primary binding site of gemcitabine inside BSA was the drug binding site 2 or DS II, which is located in the subdomain 3 A. MD Simulation results suggested that gemcitabine doesn't affect or deviate the structure of BSA upon interaction throughout 100 ns time period. The dominating intermolecular forces were hydrophobic forces and hydrogen bonding. A small change in the frontier molecular orbitals of gemcitabine was also observed after its binding with BSA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Hamad A Al-Lohedan
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - M Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Osama Ibrahim Alsowilem
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
38
|
Ali MS, Waseem M, Subbarao N, Al-Lohedan HA. Noncovalent molecular interactions between antineoplastic drug gemcitabine and a carrier protein identified through spectroscopic and in silico methods. Int J Biol Macromol 2021; 182:993-1002. [PMID: 33857514 DOI: 10.1016/j.ijbiomac.2021.04.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022]
Abstract
Herein we have studied the noncovalent molecular interactions between hen egg white lysozyme (HEWL) and the commonly employed antineoplastic drug gemcitabine through the cumulative implementation of spectroscopic techniques and in silico approaches. The formation of a complex between HEWL and gemcitabine was made evident by the differences between the UV-visible spectra of the protein and protein-gemcitabine complex. Fluorescence quenching of HEWL by gemcitabine was hardly detectable at room temperature, but it became prominent at higher temperatures. Very low values for the bimolecular quenching constant and the non-reciprocal dependence of quenching on temperature indicated that dynamic quenching was taking place. Analysis of experimental data indicated that the interaction was dominated by hydrophobic forces, while the results of a computational investigation suggested the concomitant contribution of hydrogen bonding. Gemcitabine binding induced modifications of the secondary structure of HEWL by slightly increasing the α-helical content of the protein. Finally, gemcitabine binding site was inferred to be located in HEWL big hydrophobic cavity.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Department of Chemistry, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia.
| | - Mohd Waseem
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi, India
| | - Hamad A Al-Lohedan
- Department of Chemistry, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
39
|
Ali MS, Waseem M, Subbarao N, Al-Lohedan HA. Dynamic interaction between lysozyme and ceftazidime: Experimental and molecular simulation approaches. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
40
|
Vanaei S, Parizi MS, Abdolhosseini S, Katouzian I. Spectroscopic, molecular docking and molecular dynamic simulation studies on the complexes of β-lactoglobulin, safranal and oleuropein. Int J Biol Macromol 2020; 165:2326-2337. [PMID: 33132125 DOI: 10.1016/j.ijbiomac.2020.10.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
Herbal bioactive compounds have captured pronounced attention considering their health-promoting effects as well as their functional properties. In this study, the binding mechanism between milk protein bovine β-lactoglobulin (β-LG), oleuropein (OLE) and safranal (SAF) found in olive leaf extract and saffron, respectively via spectroscopic and in silico studies. Fluorescence quenching information exhibited that interactions with both ligands were spontaneous and hydrophobic interactions were dominant. Also, the CD spectroscopy results demonstrated the increase in β-sheet structure and decrease in the α-helix content for both ligands. Size of β-LG-OLE complex was higher than β-LG-SAF due to the conformation and larger molecular size. Molecular docking and simulation studies revealed that SAF and OLE bind in the central calyx of β-LG and the surface of β-LG next to hydrophobic residues. Lastly, OLE formed a more stabilized complex compared to SAF based on the molecular dynamic simulation results.
Collapse
Affiliation(s)
- Shohreh Vanaei
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, P.O. Box 14395/515, Iran
| | - Mohammad Salemizadeh Parizi
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, P.O. Box 14395/515, Iran
| | - Saeed Abdolhosseini
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, P.O. Box 14395/515, Iran
| | - Iman Katouzian
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Nano-encapsulation in the Food, Nutraceutical, and Pharmaceutical Industries Group (NFNPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
41
|
Ali MS, Muthukumaran J, Al-Lohedan HA. Molecular interactions of ceftazidime with bovine serum albumin: Spectroscopic, molecular docking, and DFT analyses. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113490] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|