1
|
Saxon E, Ali T, Peng X. Hydrogen peroxide responsive theranostics for cancer-selective activation of DNA alkylators and real-time fluorescence monitoring in living cells. Eur J Med Chem 2024; 276:116695. [PMID: 39047609 DOI: 10.1016/j.ejmech.2024.116695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Triple negative breast cancer (TNBC) is a notoriously difficult disease to treat, and many of the existing TNBC chemotherapeutics lack tumor selectivity and the capability for simultaneously visualizing and monitoring their own activity in the biological context. However, TNBC cells have been known to generate high levels of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2). To this end, three novel small molecule theranostics 1a, 1c, and 2 consisting of both H2O2-responsive nitrogen mustard prodrug and profluorophore character have been designed, synthesized, and evaluated as targeted cancer therapeutics and bioimaging agents. The three theranostics comprise of boronate esters that deactivate nitrogen mustard functional groups and fluorophores but allow their selective activation through H2O2-specific oxidative deboronation for the release of the active drug and fluorophore. The three theranostics demonstrated H2O2-inducible DNA-alkylating capability and fluorescence turn-on properties in addition to selective anticancer activity. They are particularly effective in killing TNBC MDA-MB-468 cells with high H2O2 level while safe to normal epithelial MCF-10A cell. The conjugated boron-masked fluorophores in 1c and 2 are highly responsive towards H2O2, which enabled tracking of the theranostics in living cellular mitochondria and nucleus organelles. The three theranostics 1a, 1c, and 2 are capable of both selective release of the active drug to take effect in H2O2-rich cancer sites and simultaneously monitoring its activity. This single molecule system is of utmost importance to understand the function, efficacy, and mechanism of the H2O2-activated prodrugs and theranostics within the living recipient.
Collapse
Affiliation(s)
- Eron Saxon
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer St., Milwaukee, WI, 53211, USA
| | - Taufeeque Ali
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer St., Milwaukee, WI, 53211, USA
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer St., Milwaukee, WI, 53211, USA.
| |
Collapse
|
2
|
Yu D, Wang L, Li J, Zeng X, Jia Y, Tian J, Campbell A, Sun H, Fan H. Dual-responsive probe and DNA interstrand crosslink precursor target the unique redox status of cancer cells. Chem Commun (Camb) 2023; 59:14705-14708. [PMID: 37997159 DOI: 10.1039/d3cc05175g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Elevated GSH and H2O2 in cancer cells is sometimes doubted due to their contrary reactivities. Here, we construct a dual-responsive fluorescent probe to confirm the conclusion, and employ this to exploit a redox-inducible DNA interstrand crosslink (ICL) precursor. It crosslinks DNA upon activation by GSH and H2O2, affording an alternative dual-responsive strategy.
Collapse
Affiliation(s)
- Dehao Yu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Luo Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Jingao Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Xuanwei Zeng
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Yuanyuan Jia
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Junyu Tian
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Anahit Campbell
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Huabing Sun
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Heli Fan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| |
Collapse
|
3
|
Cao S, Wang Y, Li D, Peng X. H 2 O 2 -Inducible DNA Cross-linking Agents Capable of Releasing Multiple DNA Alkylators as Anticancer Prodrugs. ChemMedChem 2023; 18:e202300273. [PMID: 37440359 DOI: 10.1002/cmdc.202300273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/15/2023]
Abstract
Three compounds with arylboronate esters conjugated with two equivalent nitrogen mustards [bis(2-chloroethyl)methylamine, HN2] have been synthesized and characterized. These inactive small molecules selectively react with H2 O2 to produce multiple DNA cross-linkers, such as two HN2 molecules alongside a bisquinone methide (bisQM), leading to efficient DNA ICL formation. In comparison to other amine functional groups, using HN2 as a leaving group greatly improves the DNA cross-linking efficiency of these arylboronate esters as well as cellular activity. The introduction of HN2 in these arylboronate ester analogues favored the generation of bisQM that can directly cross-link DNA. Two equivalents of HN2 are also generated from these compounds upon treatment with H2 O2 , which directly produces DNA ICL products. The cumulative effects of HN2 and bisQM on DNA cross-linking makes these molecules highly effective H2 O2 -inducible DNA ICL agents. The three compounds with HN2 as a leaving group showed greatly enhanced cytotoxicity towards cancer cells in comparison to those containing trimethyl amine as a leaving group. This provides an effective strategy for further design of novel potential ROS-activated anticancer prodrugs.
Collapse
Affiliation(s)
- Sheng Cao
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 North Cramer Street, 53211, Milwaukee, WI, USA
| | - Yibin Wang
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 North Cramer Street, 53211, Milwaukee, WI, USA
| | - Daniel Li
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 North Cramer Street, 53211, Milwaukee, WI, USA
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 North Cramer Street, 53211, Milwaukee, WI, USA
| |
Collapse
|
4
|
Yu D, Fan H, Zhou Z, Zhang Y, Sun J, Wang L, Jia Y, Tian J, Campbell A, Mi W, Sun H. Hydrogen Peroxide-Inducible PROTACs for Targeted Protein Degradation in Cancer Cells. Chembiochem 2023; 24:e202300422. [PMID: 37462478 DOI: 10.1002/cbic.202300422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) provide a powerful technique to degrade targeted proteins utilizing the cellular ubiquitin-proteasome system. The major concern is the host toxicity resulting from their poor selectivity. Inducible PROTACs responding to exogenous stimulus, such as light, improve their specificity, but it is difficult for photo-activation in deep tissues. Herein, we develop H2 O2 -inducible PROTAC precursors 2/5, which can be activated by endogenous H2 O2 in cancer cells to release the active PROTACs 1/4 to effectively degrade targeted proteins. This results in the intended cytotoxicity towards cancer cells while targeted protein in normal cells remains almost unaffected. The higher Bromodomain-containing protein 4 (BRD4) degradation activity and cytotoxicity of 2 towards cancer cells is mainly due to the higher endogenous concentration of H2 O2 in cancer cells (A549 and H1299), characterized by H2 O2 -responsive fluorescence probe 3. Western blot assays and cytotoxicity experiments demonstrate that 2 degrades BRD4 more effectively and is more cytotoxic in H2 O2 -rich cancer cells than in H2 O2 -deficient normal cells. This method is also extended to estrogen receptor (ER)-PROTAC precursor 5, showing H2 O2 -dependent ER degradation ability. Thus, we establish a novel strategy to induce targeted protein degradation in a H2 O2 -dependent way, which has the potential to improve the selectivity of PROTACs.
Collapse
Affiliation(s)
- Dehao Yu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, The Province and Ministry Co-sponsored Collaborative Innovation Center, for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Heli Fan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, The Province and Ministry Co-sponsored Collaborative Innovation Center, for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Zhili Zhou
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ying Zhang
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jing Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, The Province and Ministry Co-sponsored Collaborative Innovation Center, for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Luo Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, The Province and Ministry Co-sponsored Collaborative Innovation Center, for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Yuanyuan Jia
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, The Province and Ministry Co-sponsored Collaborative Innovation Center, for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Junyu Tian
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, The Province and Ministry Co-sponsored Collaborative Innovation Center, for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Anahit Campbell
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53211, USA
| | - Wenyi Mi
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Huabing Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, The Province and Ministry Co-sponsored Collaborative Innovation Center, for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
5
|
Wolfram A, Fuentes-Soriano P, Herold-Mende C, Romero-Nieto C. Boron- and phosphorus-containing molecular/nano platforms: exploiting pathological redox imbalance to fight cancer. NANOSCALE 2022; 14:17500-17513. [PMID: 36326151 DOI: 10.1039/d2nr03126d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cancer is currently the second leading cause of death globally. Despite multidisciplinary efforts, therapies to fight various types of cancer still remain inefficient. Reducing high recurrence rates and mortality is thus a major challenge to tackle. In this context, redox imbalance is an undervalued characteristic of cancer. However, it may be targeted by boron- and phosphorus-containing materials to selectively or systemically fight cancer. In particular, boron and phosphorus derivatives are attractive building blocks for rational drug discovery due to their unique and wide regioselective chemistry, high degree of tuneability and chemical stability. Thus, they can be meticulously employed to access tunable molecular platforms to selectively exploit the redox imbalance of cancer cells towards necrosis/apoptosis. This field of research holds a remarkable potential; nevertheless, it is still in its infancy. In this mini-review, we underline recent advances in the development of boron- or phosphorus-derivatives as molecular/nano platforms for rational anticancer drug design. Our goal is to provide comprehensive information on different methodologies that bear an outstanding potential to further develop this very promising field of research.
Collapse
Affiliation(s)
- Anna Wolfram
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
| | - Pablo Fuentes-Soriano
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Carlos Romero-Nieto
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Jia Y, Sun J, Yu D, Wang L, Campbell A, Fan H, Sun H. Light and Hydrogen Peroxide Dual-responsive DNA Interstrand Crosslink Precursors with Potent Cytotoxicity. Bioorg Chem 2022; 130:106270. [DOI: 10.1016/j.bioorg.2022.106270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2022]
|
7
|
Saxon E, Peng X. Recent Advances in Hydrogen Peroxide Responsive Organoborons for Biological and Biomedical Applications. Chembiochem 2021; 23:e202100366. [PMID: 34636113 DOI: 10.1002/cbic.202100366] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/10/2021] [Indexed: 12/26/2022]
Abstract
Hydrogen peroxide is the most stable reactive oxygen species generated endogenously, participating in numerous physiological processes and abnormal pathological conditions. Mounting evidence suggests that a higher level of H2 O2 exists in various disease conditions. Thus, H2 O2 functions as an ideal target for site-specific bioimaging and therapeutic targeting. The unique reactivity of organoborons with H2 O2 provides a method for developing chemoselective molecules for biological and biomedical applications. This review highlights the design and application of boron-derived molecules for H2 O2 detection, and the utility of boron moieties toward masking reactive compounds leading to the development of metal prochelators and prodrugs for selectively delivering an active species at the target sites with elevated H2 O2 levels. Additionally, the emergence of H2 O2 -responsive theranostic agents consisting of both therapeutic and diagnostic moieties in one integrated system are discussed. The purpose of this review is to provide a better understanding of the role of boron-derived molecules toward biological and pharmacological applications.
Collapse
Affiliation(s)
- Eron Saxon
- University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Xiaohua Peng
- University of Wisconsin-Milwaukee, Milwaukee, USA
| |
Collapse
|