1
|
Terreiro JFPR, Marquês JT, Antunes I, de Faria CF, Santos S, Martins F, de Almeida RFM. Membrane interaction studies of isoniazid derivatives active against drug-resistant tuberculosis. Eur J Pharm Sci 2025; 205:106986. [PMID: 39674553 DOI: 10.1016/j.ejps.2024.106986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/22/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Tuberculosis is one of the leading causes of mortality worldwide due to the growth of multi-drug resistant strains unsusceptible to currently available therapies. Four compounds, isoniazid (INH) and three derivatives, N'-decanoylisonicotinohydrazide (INHC10), N'-(E)-(4-phenoxybenzylidene)isonicotinohydrazide (N34) and N'-(4-phenoxybenzyl)isonicotinohydrazide (N34red), were studied. Owing to their advantageous in vitro selectivity index against the primary mutation responsible for drug resistance in Mycobacterium tuberculosis (Mtb), as well as their suitable lipophilicity and interaction with human serum albumin, INHC10 and N34 were deemed promising antitubercular compounds. N34red, despite differing from N34 only in the saturation of the N' = C bond, presents a poor selectivity index. To delve deeper into the therapeutic potential of these compounds, their interaction with biomembrane models, mimicking biological barriers on the way to the target inside Mtb cells, was herein evaluated. All compounds, except N34red, weakened the packing of the acyl chains in the rigid lipid gel phase, especially INHC10, which was the only compound disturbing liquid disordered membranes. Notably, all compounds except INH decreased membrane dipole potential, across all types of bilayers studied, but only N34red had a drastic effect. The insertion in gel phase bilayers suggests that the compounds may be able to penetrate the rigid cell wall of Mtb. Förster's resonance energy transfer (FRET) assays in ternary bilayers with liquid ordered/liquid disordered lateral heterogeneity mimicking human cell membranes, showed that the compounds affected neither the size nor the organization of lipid domains. These results provide molecular insights into the low toxicity against human cell lines and improved activity against drug-resistant Mtb of INHC10 and N34.
Collapse
Affiliation(s)
- Joana F P R Terreiro
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Campo Grande 1749-016, Portugal
| | - Joaquim T Marquês
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Campo Grande 1749-016, Portugal.
| | - Inês Antunes
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Campo Grande 1749-016, Portugal
| | - Catarina Frazão de Faria
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Campo Grande 1749-016, Portugal
| | - Susana Santos
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Campo Grande 1749-016, Portugal
| | - Filomena Martins
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Campo Grande 1749-016, Portugal.
| | - Rodrigo F M de Almeida
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Campo Grande 1749-016, Portugal.
| |
Collapse
|
2
|
Kozieł S, Wojtala D, Szmitka M, Lesiów M, Ziółkowska A, Sawka J, Del Carpio E, Crans DC, Komarnicka UK. Half-Sandwich Organometallic Ir(III) and Ru(II) Compounds and their Interactions with Biomolecules. Chempluschem 2025:e202400621. [PMID: 39878055 DOI: 10.1002/cplu.202400621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/19/2024] [Indexed: 01/31/2025]
Abstract
This review highlights how a Ir(III) and Ru(II) coordination complexes can change theirs cytotoxic activity by interacting with a biomolecules such as deoxyribonucleic acid (DNA), human albumins (HSA), nicotinamide adenine dinucleotide (NADH), and glutathione (GSH). We have selected biomolecules (DNA, NADH, GSH, and HSA) based on their significant biological roles and importance in cellular processes. Moreover, this review may provide useful information for the development of new half-sandwich Ir(III) and Ru(II) complexes with desired properties and relevant biological activities. Additionally, the examples discussed here may help us better understand what happens to a metal-based drug once it enters the body.
Collapse
Affiliation(s)
- Sandra Kozieł
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
- Department of Chemistry, Colorado State University, 80523, Fort Collins, CO, USA
| | - Daria Wojtala
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Magdalena Szmitka
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Monika Lesiów
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Aleksandra Ziółkowska
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Jacek Sawka
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Edgar Del Carpio
- Department of Chemistry, Colorado State University, 80523, Fort Collins, CO, USA
- Facultad de Farmacia, Escuela "Dr. Jesús María Bianco", Universidad Central de Venezuela (UCV), Paseo Los Ilustres, Los Chaguaramos, 1050, Caracas, Venezuela
| | - Debbie C Crans
- Department of Chemistry, Colorado State University, 80523, Fort Collins, CO, USA
- Cell and Molecular Biology Program, Colorado State University, 80523, Fort Collins, CO, USA
| | - Urszula K Komarnicka
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
- Department of Chemistry, Colorado State University, 80523, Fort Collins, CO, USA
| |
Collapse
|
3
|
Chaves OA, Cesarin-Sobrinho D, Serpa C, da Silva MB, de Lima MEF, Netto-Ferreira JC. The presence of NSAIDs may affect the binding capacity of serum albumin to the natural products hymecromone and umbelliferone. Int J Biol Macromol 2024; 283:137981. [PMID: 39581404 DOI: 10.1016/j.ijbiomac.2024.137981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
The natural products 7-hydroxycoumarin (7HC) and 7-hydroxy-4-methylcoumarin (7H4MC), known as umbelliferone and hymecromone, respectively, are one of the simplest structural examples from coumarin's family, showing several biological activities. Bovine serum albumin (BSA) is the main model protein used in laboratory experiments to characterize the biophysical capacity of potential drugs to be carried until the target in the bloodstream. Thus, the interaction BSA:7HC and BSA:7H4MC was biophysically characterized by circular dichroism (CD), steady-state, and time-resolved fluorescence techniques combined with molecular docking calculations via cross-docking approach to better correlate with the biological medium. There is a ground-state association BSA:7HC/7H4MC, and the presence of the methyl group in the coumarin core did not change the binding affinity and trend to BSA significantly. However, comparing the obtained data with those reported to benzo-α-pyrone there is evidence that the incorporation of the hydroxyl group in the aromatic ring A of the coumarin core improves the binding affinity to albumin around 10-folds and changes the binding site from subdomain IIA to IIIA or IB. In addition, the presence of other drugs, e.g., naproxen or ketoprofen, might interfere with the binding capacity of 7HC and 7H4MC, resulting in perturbations on the residence time of some clinically used drugs in the bloodstream.
Collapse
Affiliation(s)
- Otávio Augusto Chaves
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra (UC), Rua Larga, 3004-535 Coimbra, Portugal.
| | - Dari Cesarin-Sobrinho
- Departament of Organic Chemistry, Institute of Chemistry, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica 23890-000, RJ, Brazil
| | - Carlos Serpa
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra (UC), Rua Larga, 3004-535 Coimbra, Portugal
| | - Márcia Barbosa da Silva
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador 40110-902, BA, Brazil
| | - Marco Edilson Freire de Lima
- Departament of Organic Chemistry, Institute of Chemistry, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica 23890-000, RJ, Brazil
| | - José Carlos Netto-Ferreira
- Departament of Organic Chemistry, Institute of Chemistry, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica 23890-000, RJ, Brazil.
| |
Collapse
|
4
|
Zheng L, Zeng Z, Zhao Y, Liu X, Huai Z, Zhang X, Sun Z, Zhang JZH. HSADab: A comprehensive database for human serum albumin. Int J Biol Macromol 2024; 277:134289. [PMID: 39084442 DOI: 10.1016/j.ijbiomac.2024.134289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Human Serum Albumin (HSA), the most abundant protein in human body fluids, plays a crucial role in the transportation, absorption, metabolism, distribution, and excretion of drugs, significantly influencing their therapeutic efficacy. Despite the importance of HSA as a drug target, the available data on its interactions with external agents, such as drug-like molecules and antibodies, are limited, posing challenges for molecular modeling investigations and the development of empirical scoring functions or machine learning predictors for this target. Furthermore, the reported entries in existing databases often contain major inconsistencies due to varied experiments and conditions, raising concerns about data quality. To address these issues, a pioneering database, HSADab, was established through an extensive review of >30,000 scientific publications published between 1987 and 2023. The database encompasses over 5000 affinity data points at multiple temperatures and >130 crystal structures, including both ligand-bound and apo forms. The current HSADab resource (www.hsadab.cn) serves as a reliable foundation for validating molecular simulation protocols, such as traditional virtual screening workflows using docking, end-point, and al-chemical free energy techniques. Additionally, it provides a valuable data source for the implementation of machine learning predictors, including plasma protein binding models and plasma protein-based drug design models.
Collapse
Affiliation(s)
- Lei Zheng
- NYU-ECNU Center for Computational Chemistry and Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning, NYU Shanghai, Shanghai 200062, China; Department of Chemistry, New York University, NY NY10003, USA.
| | - Zhaoyi Zeng
- NYU-ECNU Center for Computational Chemistry and Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning, NYU Shanghai, Shanghai 200062, China.
| | - Yao Zhao
- Department of Cardiovasology, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Xiao Liu
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Zhe Huai
- Clickmab Biotechnology Research Center, Beijing 100094, China.
| | - Xudong Zhang
- Department of Chemistry, New York University, NY NY10003, USA.
| | - Zhaoxi Sun
- Changping Laboratory, Beijing 102206, China.
| | - John Z H Zhang
- NYU-ECNU Center for Computational Chemistry and Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning, NYU Shanghai, Shanghai 200062, China; Department of Chemistry, New York University, NY NY10003, USA; Faculty of Synthetic Biology and Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
5
|
Cunha RS, Cruz PF, Costa T, Almeida ZL, de Lima MEF, Serpa C, Chaves OA. Revisiting and Updating the Interaction between Human Serum Albumin and the Non-Steroidal Anti-Inflammatory Drugs Ketoprofen and Ketorolac. Molecules 2024; 29:3001. [PMID: 38998953 PMCID: PMC11243439 DOI: 10.3390/molecules29133001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Ketoprofen (KTF) and ketorolac (KTL) are among the most primarily used non-steroidal anti-inflammatory drugs (NSAIDs) in humans to alleviate moderate pain and to treat inflammation. Their binding affinity with albumin (the main globular protein responsible for the biodistribution of drugs in the bloodstream) was previously determined by spectroscopy without considering some conventional pitfalls. Thus, the present work updates the biophysical characterization of the interactions of HSA:KTF and HSA:KTL by 1H saturation-transfer difference nuclear magnetic resonance (1H STD-NMR), ultraviolet (UV) absorption, circular dichroism (CD), steady-state, and time-resolved fluorescence spectroscopies combined with in silico calculations. The binding of HSA:NSAIDs is spontaneous, endothermic, and entropically driven, leading to a conformational rearrangement of HSA with a slight decrease in the α-helix content (7.1% to 7.6%). The predominance of the static quenching mechanism (ground-state association) was identified. Thus, both Stern-Volmer quenching constant (KSV) and binding constant (Kb) values enabled the determination of the binding affinity. In this sense, the KSV and Kb values were found in the order of 104 M-1 at human body temperature, indicating moderate binding affinity with differences in the range of 0.7- and 3.4-fold between KTF and KTL, which agree with the previously reported experimental pharmacokinetic profile. According to 1H STD-NMR data combined with in silico calculations, the aromatic groups in relation to the aliphatic moiety of the drugs interact preferentially with HSA into subdomain IIIA (site II) and are stabilized by interactions via hydrogen bonding and hydrophobic forces. In general, the data obtained in this study have been revised and updated in comparison to those previously reported by other authors who did not account for inner filter corrections, spectral backgrounds, or the identification of the primary mathematical approach for determining the binding affinity of HSA:KTF and HSA:KTL.
Collapse
Affiliation(s)
- Rita S. Cunha
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Pedro F. Cruz
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Telma Costa
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Zaida L. Almeida
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Marco Edilson Freire de Lima
- Departament of Organic Chemistry, Institute of Chemistry, Federal Rural University of Rio de Janeiro, Seropédica 23890-000, RJ, Brazil
| | - Carlos Serpa
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Otávio A. Chaves
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| |
Collapse
|
6
|
Tang W, Yao W, Wang W, Lv Q, Ding W, He R. Common hematological and biochemical parameters for predicting urinary tract infections in geriatric patients with hip fractures. Front Med (Lausanne) 2024; 11:1333472. [PMID: 38873209 PMCID: PMC11169829 DOI: 10.3389/fmed.2024.1333472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/14/2024] [Indexed: 06/15/2024] Open
Abstract
Background This study aims to discern the significance of common hematological and biochemical parameters for predicting urinary tract infections in geriatric patients with hip fractures. Methods Multivariable logistic regression and propensity score-matched analyses were conducted to calculate adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for UTIs. The abilities of these parameters to predict UTIs were evaluated by receiver operating characteristic (ROC) curves. Dose-response relationships were assessed by categorizing hematological and biochemical parameters into quartiles. Subgroup analyses were further explored to investigate the relationship between these parameters and urinary tract infections. Results Out of the 1,231 participants, 23.2% were diagnosed with UTIs. Hyperglycemia, hypoproteinemia and hyperglobulinemia were risk factors for UTIs in multivariate analysis. After propensity score matching, hyperglycemia (OR 2.14, 95% CI 1.50-3.05, p < 0.001), hypoproteinemia (OR 1.75, 95% CI 1.18-2.63, p = 0.006), and hyperglobulinemia (OR 1.38, 95% CI 0.97-1.97, p = 0.074) remained significantly associated with increased odds of urinary tract infections. ROC curve analyses showed moderate predictive accuracy of blood glucose, albumin and globulin for UTIs, with areas under the curves of 0.714, 0.633, and 0.596, respectively. Significant dose-response relationships were observed between these parameters and UTIs. The associations were consistent in subgroup analyses. Conclusion Blood glucose, albumin and globulin levels can facilitate early identification of geriatric hip fracture patients at high risk of UTIs. These easily obtainable hematological and biochemical parameters provide a practical clinical prediction tool for individualized UTI prevention in this population.
Collapse
Affiliation(s)
- Wanyun Tang
- Department of Orthopedics, Zigong First People’s Hospital, Zigong, China
- Department of Orthopedics, Dandong Central Hospital, China Medical University, Dandong, China
| | - Wei Yao
- Department of Orthopedics, Dandong Central Hospital, China Medical University, Dandong, China
| | - Wei Wang
- Department of Orthopedics, Dandong Central Hospital, China Medical University, Dandong, China
| | - Qiaomei Lv
- Department of Oncology, Dandong Central Hospital, China Medical University, Dandong, China
| | - Wenbo Ding
- Department of Orthopedics, Dandong Central Hospital, China Medical University, Dandong, China
| | - RenJian He
- Department of Orthopedics, Zigong First People’s Hospital, Zigong, China
| |
Collapse
|
7
|
Martins FM, Iglesias BA, Chaves OA, Gutknecht da Silva JL, Leal DBR, Back DF. Vanadium(V) complexes derived from triphenylphosphonium and hydrazides: cytotoxicity evaluation and interaction with biomolecules. Dalton Trans 2024; 53:8315-8327. [PMID: 38666341 DOI: 10.1039/d4dt00464g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
The development of coordination compounds with antineoplastic therapeutic properties is currently focused on non-covalent interactions with deoxyribonucleic acid (DNA). Additionally, the interaction profiles of these compounds with globular plasma proteins, particularly serum albumin, warrant thorough evaluation. In this study, we report on the interactions between biomolecules and complexes featuring hydrazone-type imine ligands coordinated with vanadium. The potential to enhance the therapeutic efficiency of these compounds through mitochondrial targeting is explored. This targeting is facilitated by the derivatization of ligands with triphenylphosphonium groups. Thus, this work presents the synthesis, characterization, interactions, and cytotoxicity of dioxidovanadium(V) complexes (C1-C5) with a triphenylphosphonium moiety. These VV-species are coordinated to hydrazone-type iminic ligands derived from (3-formyl-4-hydroxybenzyl)triphenylphosphonium chloride ([AH]Cl) and aromatic hydrazides ([H2L1]Cl-[H2L5]Cl). The structures of the five complexes were elucidated through single-crystal X-ray diffraction and vibrational spectroscopies, confirming the presence of dioxidovanadium(V) species in various geometries with degrees of distortion (τ = 0.03-0.50) and highlighting their zwitterionic characteristics. The molecular structural stability of C1-C5 in solution was ascertained using 1H, 19F, 31P, and 51V-nuclear magnetic resonance. Moreover, their interactions with biomolecules were evaluated using diverse spectroscopic methodologies and molecular docking, indicating moderate interactions (Kb ≈ 104 M-1) with calf thymus DNA in the minor groove and with human serum albumin, predominantly in the superficial IB subdomain. Lastly, the cytotoxic potentials of these complexes were assessed in keratinocytes of the HaCaT lineage, revealing that C1-C5 induce a reduction in metabolic activity and cell viability through apoptotic pathways.
Collapse
Affiliation(s)
- Francisco Mainardi Martins
- Laboratory of Inorganic Materials, Department of Chemistry, CCNE, UFSM, Santa Maria, RS, 97105-900, Brazil.
| | - Bernardo Almeida Iglesias
- Laboratory of Bioinorganic and Porphyrin Materials, Department of Chemistry, CCNE, UFSM, Santa Maria, RS, 97105-900, Brazil
| | - Otávio Augusto Chaves
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga s/n, Coimbra, 3004-535, Portugal
- Laboratory of Immunopharmacology, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias (CPIV), Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, 21040-361, Brazil
| | | | | | - Davi Fernando Back
- Laboratory of Inorganic Materials, Department of Chemistry, CCNE, UFSM, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
8
|
Tubertini M, Menilli L, Milani C, Martini C, Navacchia ML, Nugnes M, Bartolini M, Naldi M, Tedesco D, Martella E, Guerrini A, Ferroni C, Moret F, Varchi G. HSA-nanobinders crafted from bioresponsive prodrugs for combined cancer chemoimmunotherapy-an in vitro exploration. Front Chem 2024; 12:1378233. [PMID: 38591056 PMCID: PMC7615814 DOI: 10.3389/fchem.2024.1378233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer still lacking effective treatment options. Chemotherapy in combination with immunotherapy can restrict tumor progression and repolarize the tumor microenvironment towards an anti-tumor milieu, improving clinical outcome in TNBC patients. The chemotherapeutic drug paclitaxel has been shown to induce immunogenic cell death (ICD), whereas inhibitors of the indoleamine 2,3- dioxygenase 1 (IDO1) enzyme, whose expression is shared in immune regulatory and tumor cells, have been revealed to enhance the anti-tumor immune response. However, poor bioavailability and pharmacokinetics, off-target effects and hurdles in achieving therapeutic drug concentrations at the target tissue often limit the effectiveness of combination therapies. Methods This work describes the development of novel biomimetic and carrier-free nanobinders (NBs) loaded with both paclitaxel and the IDO1 inhibitor NLG919 in the form of bioresponsive and biomimetic prodrugs. A fine tuning of the preparation conditions allowed to identify NB@5 as the most suitable nanoformulation in terms of reproducibility, stability and in vitro effectiveness. Results and discussion Our data show that NB@5 effectively binds to HSA in cell-free experiments, demonstrating its protective role in the controlled release of drugs and suggesting the potential to exploit the protein as the endogenous vehicle for targeted delivery to the tumor site. Our study successfully proves that the drugs encapsulated within the NBs are preferentially released under the altered redox conditions commonly found in the tumor microenvironment, thereby inducing cell death, promoting ICD, and inhibiting IDO1.
Collapse
Affiliation(s)
- Matilde Tubertini
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Luca Menilli
- Pharmacy Unit, Veneto Institute of Oncology IOV-IRCSS, Padua, Italy
| | - Celeste Milani
- Department of Biology (DiBio), University of Padova, Padua, Italy
| | - Cecilia Martini
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
| | - Maria Luisa Navacchia
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
| | - Marta Nugnes
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Marina Naldi
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Daniele Tedesco
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
| | - Elisa Martella
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
| | - Andrea Guerrini
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
| | - Claudia Ferroni
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
| | - Francesca Moret
- Department of Biology (DiBio), University of Padova, Padua, Italy
| | - Greta Varchi
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
| |
Collapse
|
9
|
Fele-Paranj A, Saboury B, Uribe C, Rahmim A. Physiologically based radiopharmacokinetic (PBRPK) modeling to simulate and analyze radiopharmaceutical therapies: studies of non-linearities, multi-bolus injections, and albumin binding. EJNMMI Radiopharm Chem 2024; 9:6. [PMID: 38252191 PMCID: PMC10803696 DOI: 10.1186/s41181-023-00236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND We aimed to develop a publicly shared computational physiologically based pharmacokinetic (PBPK) model to reliably simulate and analyze radiopharmaceutical therapies (RPTs), including probing of hot-cold ligand competitions as well as alternative injection scenarios and drug designs, towards optimal therapies. RESULTS To handle the complexity of PBPK models (over 150 differential equations), a scalable modeling notation called the "reaction graph" is introduced, enabling easy inclusion of various interactions. We refer to this as physiologically based radiopharmacokinetic (PBRPK) modeling, fine-tuned specifically for radiopharmaceuticals. As three important applications, we used our PBRPK model to (1) study the effect of competition between hot and cold species on delivered doses to tumors and organs at risk. In addition, (2) we evaluated an alternative paradigm of utilizing multi-bolus injections in RPTs instead of prevalent single injections. Finally, (3) we used PBRPK modeling to study the impact of varying albumin-binding affinities by ligands, and the implications for RPTs. We found that competition between labeled and unlabeled ligands can lead to non-linear relations between injected activity and the delivered dose to a particular organ, in the sense that doubling the injected activity does not necessarily result in a doubled dose delivered to a particular organ (a false intuition from external beam radiotherapy). In addition, we observed that fractionating injections can lead to a higher payload of dose delivery to organs, though not a differential dose delivery to the tumor. By contrast, we found out that increased albumin-binding affinities of the injected ligands can lead to such a differential effect in delivering more doses to tumors, and this can be attributed to several factors that PBRPK modeling allows us to probe. CONCLUSIONS Advanced computational PBRPK modeling enables simulation and analysis of a variety of intervention and drug design scenarios, towards more optimal delivery of RPTs.
Collapse
Affiliation(s)
- Ali Fele-Paranj
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, US
| | - Carlos Uribe
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Functional Imaging, BC Cancer, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Arman Rahmim
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Kozieł S, Wojtala D, Szmitka M, Kędzierski P, Bieńko D, Komarnicka UK. Insights into the binding of half-sandwich phosphino Ir(III) and Ru(II) complexes to deoxyribonucleic acid, albumin and apo-transferrin: Experimental and theoretical investigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123289. [PMID: 37651843 DOI: 10.1016/j.saa.2023.123289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
A group of cytotoxic half-sandwich iridium(III) (Ir(η5-Cp*)Cl2PPh2CH2OH (IrPOH)), (Ir(η5-Cp*)Cl2P(p-OCH3Ph)2CH2OH (IrMPOH)), and ruthenium(II) (Ru(η6-p-cymene)Cl2PPh2CH2OH (RuPOH), Ru(η6-p-cymene)Cl2P(p-OCH3Ph)2CH2OH (RuMPOH)) complexes with phosphine ligands exhibit the ability to (i) slow hydrolysis which is reversed by adding a high NaCl concentration; (ii) oxidation of NADH to NAD+; (iii) induction of cytotoxicity towards various cancer cell lines. Furthermore, we found that RuPOH and RuMPOH selectively inhibit the proliferation of skin cancer cells (WM266-4) while Ir(III) complexes were found to be moderate against prostate cancer cells (DU-145). Herein, to elucidate the cytotoxic effects, we investigated the interaction of these complexes with DNA and serum proteins by gel electrophoresis, fluorescence spectroscopy, and molecular docking studies. Fluorescence spectroscopic data (calf thymus DNA: CT-DNA titration), together with analysis of DNA fragmentation (gel electrophoresis) and molecular docking provided evidence for the multimodal interaction of Ir(III) and Ru(III) complexes with DNA with predominance of intercalation and minor groove binding. All examined complexes caused single-stranded cleavage of the sugar-phosphate backbone of plasmid DNA. The affinity of the complexes for apo-transferrin (apo-Tf) and human serum albumin (HSA) was evaluated by fluorescence emission spectroscopy to calculate the binding constants which suggested a tight and reversible binding. Moreover, ruthenium complexes can mimic the binding of iron compounds to specific biomolecules such as albumin and transferrin better than iridium complexes. In silico study indicate that complexes mostly bind to (i) apo-Tf with a preference for a single binding site and/or (ii) to dock within all the four predicted binding sites of HSA with the predominance of site I which include tryptophan residues of HSA. This class of ruthenium(II) and iridium(III) complexes has unusual features worthy of further exploration in the design of novel anticancer drugs.
Collapse
Affiliation(s)
- Sandra Kozieł
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | - Daria Wojtala
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Magdalena Szmitka
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Paweł Kędzierski
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Dariusz Bieńko
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Urszula K Komarnicka
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland.
| |
Collapse
|
11
|
Lee C. Albumin hydrogels for repeated capture of drugs from the bloodstream and release into the tumor. J Control Release 2024; 365:384-397. [PMID: 38007193 DOI: 10.1016/j.jconrel.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Despite the efficacy of hydrogels for consistently delivering drugs to targeted areas (primarily tumors), these systems face challenges such as initial burst release, non-refillable drugs, and a lack of dosage control. To address these issues, a novel strategy has been developed to capture and release drugs from the bloodstream, thereby overcoming the limitations of traditional hydrogels. In this study, an innovative albumin hydrogel system was developed through a bioorthogonal reaction using azide-modified albumin and 4-arm PEG-DBCO. This system can repeatedly capture and release drugs over prolonged periods. Inspired by albumin-drug binding in vivo, this hydrogel can be injected intratumorally and acts as a reservoir for capturing drugs circulating in the bloodstream. Drugs captured in hydrogels are released slowly and effectively delivered to tumors through a "capture and release process." Both the in vitro and in vivo results indicated that the hydrogel effectively captured and released drugs, such as indocyanine green and doxorubicin, over repeated cycles without compromising the activity of the drugs. Moreover, implanting the hydrogel at surgical sites successfully inhibited tumor recurrence through its drug capture-release capability. These findings establish the albumin hydrogel system as a promising capture-release platform that leverages drug-binding affinity to effectively deliver drugs to tumors, offering potential advancements in cancer treatment and post-surgery recurrence prevention.
Collapse
Affiliation(s)
- Changkyu Lee
- Department of Biopharmaceutical Engineering, Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
12
|
Mittal S, Mallia MB. Molecular imaging of tumor hypoxia: Evolution of nitroimidazole radiopharmaceuticals and insights for future development. Bioorg Chem 2023; 139:106687. [PMID: 37406518 DOI: 10.1016/j.bioorg.2023.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Though growing evidence has been collected in support of the concept of dose escalation based on the molecular level images indicating hypoxic tumor sub-volumes that could be radio-resistant, validation of the concept is still a work in progress. Molecular imaging of tumor hypoxia using radiopharmaceuticals is expected to provide the required input to plan dose escalation through Image Guided Radiation Therapy (IGRT) to kill/control the radio-resistant hypoxic tumor cells. The success of the IGRT, therefore, is heavily dependent on the quality of images obtained using the radiopharmaceutical and the extent to which the image represents the true hypoxic status of the tumor in spite of the heterogeneous nature of tumor hypoxia. Available literature on radiopharmaceuticals for imaging hypoxia is highly skewed in favor of nitroimidazole as the pharmacophore given their ability to undergo oxygen dependent reduction in hypoxic cells. In this context, present review on nitroimidazole radiopharmaceuticals would be immensely helpful to the researchers to obtain a birds-eye view on what has been achieved so far and what can be tried differently to obtain a better hypoxia imaging agent. The review also covers various methods of radiolabeling that could be utilized for developing radiotracers for hypoxia targeting applications.
Collapse
Affiliation(s)
- Sweety Mittal
- Radiopharmaceuticals Division, Bhabha Atomic Research Center, Mumbai 400085, India.
| | - Madhava B Mallia
- Radiopharmaceuticals Division, Bhabha Atomic Research Center, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
13
|
Alam M. Exploration of Binding Affinities of a 3β,6β-Diacetoxy-5α-cholestan-5-ol with Human Serum Albumin: Insights from Synthesis, Characterization, Crystal Structure, Antioxidant and Molecular Docking. Molecules 2023; 28:5942. [PMID: 37630192 PMCID: PMC10459092 DOI: 10.3390/molecules28165942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
The present study describes the synthesis, characterization, and in vitro molecular interactions of a steroid 3β,6β-diacetoxy-5α-cholestan-5-ol. Through conventional and solid-state methods, a cholestane derivative was successfully synthesized, and a variety of analytical techniques were employed to confirm its identity, including high-resolution mass spectrometry (HRMS), Fourier transforms infrared (FT-IR), nuclear magnetic resonance (NMR), elemental analysis, and X-ray single-crystal diffraction. Optimizing the geometry of the steroid was undertaken using density functional theory (DFT), and the results showed great concordance with the data from the experiments. Fluorescence spectral methods and ultraviolet-vis absorption titration were employed to study the in vitro molecular interaction of the steroid regarding human serum albumin (HSA). The Stern-Volmer, modified Stern-Volmer, and thermodynamic parameters' findings showed that steroids had a significant binding affinity to HSA and were further investigated by molecular docking studies to understand the participation of active amino acids in forming non-bonding interactions with steroids. Fluorescence studies have shown that compound 3 interacts with human serum albumin (HSA) through a static quenching mechanism. The binding affinity of compound 3 for HSA was found to be 3.18 × 104 mol-1, and the Gibbs free energy change (ΔG) for the binding reaction was -9.86 kcal mol-1 at 298 K. This indicates that the binding of compound 3 to HSA is thermodynamically favorable. The thermodynamic parameters as well as the binding score obtained from molecular docking at various Sudlow's sites was -8.2, -8.5, and -8.6 kcal/mol for Sites I, II, and III, respectively, supporting the system's spontaneity. Aside from its structural properties, the steroid demonstrated noteworthy antioxidant activity, as evidenced by its IC50 value of 58.5 μM, which is comparable to that of ascorbic acid. The findings presented here contribute to a better understanding of the pharmacodynamics of steroids.
Collapse
Affiliation(s)
- Mahboob Alam
- Department of Safety Engineering, Dongguk University Wise, 123 Dongdae-ro, Gyeongju-si 780714, Gyeongbuk, Republic of Korea
| |
Collapse
|
14
|
Label-free biosensing of lignans for therapeutics using engineered model surfaces. Int J Biol Macromol 2023; 233:123528. [PMID: 36736979 DOI: 10.1016/j.ijbiomac.2023.123528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
The label-free interaction analysis of macromolecules and small molecules has increasing importance nowadays, both in diagnostics and therapeutics. In the blood vascular system, human serum albumin (HSA) is a vital globular transport protein with potential multiple ligand binding sites. Characterizing the binding affinity of compounds to HSA is essential in pharmaceutics and in developing new compounds for clinical application. Aryltetralin lignans from the roots of Anthriscus sylvestris are potential antitumor therapeutic candidates, but their molecular scale interactions with specific biomolecules are unrevealed. Here, we applied the label-free grating-coupled interferometry (GCI) biosensing method with a polycarboxylate-based hydrogel layer with immobilized HSA on top of it. With this engineered model surface, we could determine the binding parameters of two novel aryltetralin lignans, deoxypodophyllotoxin (DPT), and angeloyl podophyllotoxin (APT) to HSA. Exploiting the multi-channel referencing ability, the unique surface sensitivity, and the throughput of GCI, we first revealed the specific biomolecular interactions. Traditional label-free kinetic measurements were also compared with a novel, fast way of measuring affinity kinetics using less sample material (repeated analyte pulses of increasing duration (RAPID)). Experiments with well-characterized molecular interactions (furosemide to carbonic-anhydrase (CAII) and warfarin, norfloxacin to HSA) were performed to prove the reliability of the RAPID method. In all investigated cases, the RAPID and traditional measurement gave similar affinity values. In the case of DPT, the measurements and relevant modeling suggested two binding sites on HSA, with dissociation constant values of Kd1 = 1.8 ± 0.01 μM, Kd2 = 3 ± 0.02 μM. In the case of APT, the experiments resulted in Kd1 = 9 ± 1.7 μM, Kd2 = 28 ± 0.3 μM. The obtained binding values might suggest the potential medical application of DPT and APT without further optimization of their binding affinity to HSA. These results could be also adapted to other biomolecules and applications where sample consumption and the rapidity of the measurements are critical.
Collapse
|
15
|
Fioravanço LP, Pôrto JB, Martins FM, Siqueira JD, Iglesias BA, Rodrigues BM, Chaves OA, Back DF. A Vanadium(V) complexes derived from pyridoxal/salicylaldehyde. Interaction with CT-DNA/HSA, and molecular docking assessments. J Inorg Biochem 2023; 239:112070. [PMID: 36450221 DOI: 10.1016/j.jinorgbio.2022.112070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
With the increasing development of metallopharmaceuticals, coordination compounds become viable alternatives for therapeutic uses. Despite the importance of platinum derivatives in this area, first-row transition metals complexes are welcome due to their characteristics. Vanadium is a promising metal in this context, as it has a range of compounds with different biological applications, including anticancer therapeutic effects. In this effort, the study of interactions between coordination compounds with deoxyribonucleic acid and with human serum albumin is fundamental. In this way, ten iminic ligands were synthesized by condensing p-substituted aromatic benzohydrazides (OH, CH3, H, NO2, and NH2) with salicylaldehyde (L1As-L5As) or pyridoxal hydrochloride (L1P-L5P). These ligands have characteristics that allow the tridentate coordination of vanadium cations, leading to the formation of ten vanadium(V) complexes (C1As-C5As and C1P-C5P) with different structural features, all characterized by single-crystal X-ray diffraction, UV-Vis and infrared spectroscopies, and cyclic voltammetry. In addition, the complexes were tested for their interactions with calf thymus deoxyribonucleic acid and human serum albumin by spectroscopic assays and molecular docking calculations. These new results can contribute to further research and provide different ways to design new vanadium complexes with biological applications.
Collapse
Affiliation(s)
- Letícia Paiva Fioravanço
- Laboratory of Inorganic Materials, Department of Chemistry, CCNE, UFSM, Santa Maria, RS 97105-900, Brazil
| | - Juliana Bortoluzzi Pôrto
- Laboratory of Inorganic Materials, Department of Chemistry, CCNE, UFSM, Santa Maria, RS 97105-900, Brazil
| | - Francisco Mainardi Martins
- Laboratory of Inorganic Materials, Department of Chemistry, CCNE, UFSM, Santa Maria, RS 97105-900, Brazil
| | - Josiéli Demetrio Siqueira
- Laboratory of Inorganic Materials, Department of Chemistry, CCNE, UFSM, Santa Maria, RS 97105-900, Brazil
| | - Bernardo Almeida Iglesias
- Laboratory of Bioinorganic and Porphyrin Materials, Department of Chemistry, CCNE, UFSM, Santa Maria, RS 97105-900, Brazil
| | - Bruna Matiuzzi Rodrigues
- Laboratory of Bioinorganic and Porphyrin Materials, Department of Chemistry, CCNE, UFSM, Santa Maria, RS 97105-900, Brazil
| | - Otávio Augusto Chaves
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, Rua Larga N°2, 3004-535, Coimbra, Portugal
| | - Davi Fernando Back
- Laboratory of Inorganic Materials, Department of Chemistry, CCNE, UFSM, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|