1
|
Wieduwilt T, Förster R, Nissen M, Kobelke J, Schmidt MA. Characterization of diffusing sub-10 nm nano-objects using single anti-resonant element optical fibers. Nat Commun 2023; 14:3247. [PMID: 37277352 DOI: 10.1038/s41467-023-39021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 05/23/2023] [Indexed: 06/07/2023] Open
Abstract
Accurate characterization of diffusing nanoscale species is increasingly important for revealing processes at the nanoscale, with fiber-assisted nanoparticle-tracking-analysis representing a new and promising approach in this field. In this work, we uncover the potential of this approach for the characterization of very small nanoparticles (<20 nm) through experimental studies, statistical analysis and the employment of a sophisticated fiber and chip design. The central results is the characterization of diffusing nanoparticles as small as 9 nm with record-high precision, corresponding to the smallest diameter yet determined for an individual nanoparticle with nanoparticle-tracking-analysis using elastic light scattering alone. Here, the detectable scattering cross-section is limited only by the background scattering of the ultrapure water, thus reaching the fundamental limit of Nanoparticle-Tracking-Analysis in general. The obtained results outperform other realizations and allow access to previously difficult to address application fields such as understanding nanoparticle growth or control of pharmaceuticals.
Collapse
Affiliation(s)
- Torsten Wieduwilt
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Ronny Förster
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Mona Nissen
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
- Abbe Center of Photonics and Faculty of Physics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743, Jena, Germany
| | - Jens Kobelke
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Markus A Schmidt
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany.
- Abbe Center of Photonics and Faculty of Physics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743, Jena, Germany.
- Otto Schott Institute of Material Research, Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743, Jena, Germany.
| |
Collapse
|
2
|
Li J, Zhao R, Bi J, Engarnevis A. Design of a single aspheric beam homogenizer for accurate particle sizing application. APPLIED OPTICS 2023; 62:3683-3689. [PMID: 37706985 DOI: 10.1364/ao.488571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/08/2023] [Indexed: 09/15/2023]
Abstract
Understanding, detection, and accurate monitoring of particles are of utmost importance in various industrial fields and environmental science. Optical sensors allow for real-time monitoring of particles at the single species level by analyzing the elastically scattered light intensities. Nevertheless, since most laser diodes employed for illuminating the particle generally follow a Gaussian-type intensity distribution, the non-uniform energy distribution across the aerosol channel causes considerable errors in the conversion of the scattered light intensities into the actual particle sizes. In order to achieve uniform illumination of particles across the aerosol channel and improve the particle sizing and classification accuracy, we design and customize a single aspheric lens, which efficiently converts the divergent Gaussian beam profile of a TO packaged laser diode into a one-dimensional flattop beam profile along the fast axis at the desired working distance. A beam uniformity better than 5% has been achieved. Furthermore, we demonstrate a practical sensing application using the designed lens for accurate particle sizing, and an obvious improvement in the accuracy has been achieved compared to that based on off-the-shelf aspheric lenses. The singlet beam homogenizer developed in this work has many appealing features (e.g., high uniformity and energy efficiency, compactness, and low stray light), which is especially relevant for building portable particle sensors in order to address various industrial applications where on-site or remote metrology and classification of particles are required.
Collapse
|
3
|
Kim J, Förster R, Wieduwilt T, Jang B, Bürger J, Gargiulo J, de S Menezes L, Rossner C, Fery A, Maier SA, Schmidt MA. Locally Structured On-Chip Optofluidic Hollow-Core Light Cages for Single Nanoparticle Tracking. ACS Sens 2022; 7:2951-2959. [PMID: 36260351 DOI: 10.1021/acssensors.2c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nanoparticle tracking analysis (NTA) is a widely used methodology to investigate nanoscale systems at the single species level. Here, we introduce the locally structured on-chip optofluidic hollow-core light cage, as a novel platform for waveguide-assisted NTA. This hollow waveguide guides light by the antiresonant effect in a sparse array of dielectric strands and includes a local modification to realize aberration-free tracking of individual nano-objects, defining a novel on-chip solution with properties specifically tailored for NTA. The key features of our system are (i) well-controlled nano-object illumination through the waveguide mode, (ii) diffraction-limited and aberration-free imaging at the observation site, and (iii) a high level of integration, achieved by on-chip interfacing to fibers. The present study covers all aspects relevant for NTA including design, simulation, implementation via 3D nanoprinting, and optical characterization. The capabilities of the approach to precisely characterize practically relevant nanosystems have been demonstrated by measuring the solvency-induced collapse of a nanoparticle system which includes polymer brush-based shells that react to changes in the liquid environment. Our study unlocks the advantages of the light cage approach in the context of NTA, suggesting its application in various areas such as bioanalytics, life science, environmental science, or nanoscale material science in general.
Collapse
Affiliation(s)
- Jisoo Kim
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745Jena, Germany.,Abbe Center of Photonics and Faculty of Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743Jena, Germany
| | - Ronny Förster
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745Jena, Germany
| | - Torsten Wieduwilt
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745Jena, Germany
| | - Bumjoon Jang
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745Jena, Germany.,Abbe Center of Photonics and Faculty of Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743Jena, Germany
| | - Johannes Bürger
- Chair in Hybrid Nanosystems, Nano Institute Munich, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany
| | - Julian Gargiulo
- Chair in Hybrid Nanosystems, Nano Institute Munich, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany
| | - Leonardo de S Menezes
- Chair in Hybrid Nanosystems, Nano Institute Munich, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany.,Departamento de Física, Universidade Federal de Pernambuco, 50670-901Recife-PE, Brazil
| | - Christian Rossner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069Dresden, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069Dresden, Germany
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nano Institute Munich, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany.,The Blackett Laboratory, Department of Physics, Imperial College London, LondonSW7 2AZ, United Kingdom.,School of Physics and Astronomy, Monash University, Clayton, Victoria3800, Australia
| | - Markus A Schmidt
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745Jena, Germany.,Abbe Center of Photonics and Faculty of Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743Jena, Germany.,Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743Jena, Germany
| |
Collapse
|
4
|
Wang R, Schirmer L, Wieduwilt T, Förster R, Schmidt MA, Freudenberg U, Werner C, Fery A, Rossner C. Colorimetric Biosensors Based on Polymer/Gold Hybrid Nanoparticles: Topological Effects of the Polymer Coating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12325-12332. [PMID: 36154138 DOI: 10.1021/acs.langmuir.2c02013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Gold nanoparticles decorated with analyte recognition units can form the basis of colorimetric (bio)sensors. The presentation of those recognition units may play a critical role in determining sensor sensitivity. Herein, we use a model system to investigate the effect of the architecture of a polymeric linker that connects gold nanoparticles with the recognition units. Our results show that the number of the latter that can be adsorbed during the assembly of the colorimetric sensors depends on the linker topology. We also show that this may lead to substantial differences in colorimetric sensor performance, particularly in situations in which the interactions with the analyte are comparably weak. Finally, we discuss design principles for efficient colorimetric sensor materials based on our findings.
Collapse
Affiliation(s)
- Ruosong Wang
- Institut für Physikalische Chemie und Physik der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Lucas Schirmer
- Max Bergmann Center of Biomaterials Dresden (MBC), Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Torsten Wieduwilt
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Straße 9, D-07745 Jena, Germany
| | - Ronny Förster
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Straße 9, D-07745 Jena, Germany
| | - Markus A Schmidt
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Straße 9, D-07745 Jena, Germany
- Abbe Center of Photonics and Faculty of Physics, FSU Jena, 07745 Jena, Germany
- Otto Schott Institute of Material Research, FSU Jena, 07745 Jena, Germany
| | - Uwe Freudenberg
- Max Bergmann Center of Biomaterials Dresden (MBC), Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Carsten Werner
- Max Bergmann Center of Biomaterials Dresden (MBC), Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstr. 105, D-01307 Dresden, Germany
| | - Andreas Fery
- Institut für Physikalische Chemie und Physik der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Christian Rossner
- Institut für Physikalische Chemie und Physik der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, D-01069 Dresden, Germany
| |
Collapse
|
5
|
Bürger J, Schalles V, Kim J, Jang B, Zeisberger M, Gargiulo J, de S. Menezes L, Schmidt MA, Maier SA. 3D-Nanoprinted Antiresonant Hollow-Core Microgap Waveguide: An on-Chip Platform for Integrated Photonic Devices and Sensors. ACS PHOTONICS 2022; 9:3012-3024. [PMID: 36164483 PMCID: PMC9501922 DOI: 10.1021/acsphotonics.2c00725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Indexed: 05/25/2023]
Abstract
Due to their unique capabilities, hollow-core waveguides are playing an increasingly important role, especially in meeting the growing demand for integrated and low-cost photonic devices and sensors. Here, we present the antiresonant hollow-core microgap waveguide as a platform for the on-chip investigation of light-gas interaction over centimeter-long distances. The design consists of hollow-core segments separated by gaps that allow external access to the core region, while samples with lengths up to 5 cm were realized on silicon chips through 3D-nanoprinting using two-photon absorption based direct laser writing. The agreement of mathematical models, numerical simulations and experiments illustrates the importance of the antiresonance effect in that context. Our study shows the modal loss, the effect of gap size and the spectral tuning potential, with highlights including extremely broadband transmission windows (>200 nm), very high contrast resonance (>60 dB), exceptionally high structural openness factor (18%) and spectral control by nanoprinting (control over dimensions with step sizes (i.e., increments) of 60 nm). The application potential was demonstrated in the context of laser scanning absorption spectroscopy of ammonia, showing diffusion speeds comparable to bulk diffusion and a low detection limit. Due to these unique properties, application of this platform can be anticipated in a variety of spectroscopy-related fields, including bioanalytics, environmental sciences, and life sciences.
Collapse
Affiliation(s)
- Johannes Bürger
- Chair
in Hybrid Nanosystems, Nanoinstitute Munich, Ludwig-Maximilians-Universität Munich, Königinstraße 10, 80539 Munich, Germany
| | - Vera Schalles
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Abbe
Center of Photonics and Faculty of Physics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Jisoo Kim
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Abbe
Center of Photonics and Faculty of Physics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Bumjoon Jang
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Abbe
Center of Photonics and Faculty of Physics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Matthias Zeisberger
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Abbe
Center of Photonics and Faculty of Physics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Julian Gargiulo
- Chair
in Hybrid Nanosystems, Nanoinstitute Munich, Ludwig-Maximilians-Universität Munich, Königinstraße 10, 80539 Munich, Germany
| | - Leonardo de S. Menezes
- Chair
in Hybrid Nanosystems, Nanoinstitute Munich, Ludwig-Maximilians-Universität Munich, Königinstraße 10, 80539 Munich, Germany
- Departmento
de Física, Universidade Federal de
Pernambuco, 50670-901 Recife-PE Brazil
| | - Markus A. Schmidt
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Abbe
Center of Photonics and Faculty of Physics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
- Otto
Schott Institute of Materials Research (OSIM), Friedrich-Schiller-Universität Jena, Fraunhoferstr. 6, 07743 Jena, Germany
| | - Stefan A. Maier
- Chair
in Hybrid Nanosystems, Nanoinstitute Munich, Ludwig-Maximilians-Universität Munich, Königinstraße 10, 80539 Munich, Germany
- School
of
Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
- The
Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
6
|
Heck JR, Miele E, Mouthaan RP, Frosz MH, Knowles TPJ, Euser TG. Label-free monitoring of proteins in optofluidic hollow-core photonic crystal fibres. Methods Appl Fluoresc 2022; 10. [PMID: 36084629 DOI: 10.1088/2050-6120/ac9113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022]
Abstract
The fluorescent detection of proteins without labels or stains, which affect their behaviour and require additional genetic or chemical preparation, has broad applications to biological research. However, standard approaches require large sample volumes or analyse only a small fraction of the sample. Here we use optofluidic hollow-core photonic crystal fibres to detect and quantify sub-microlitre volumes of unmodified bovine serum albumin (BSA) protein down to 100 nM concentrations. The optofluidic fibre's waveguiding properties are optimised for guidance at the (auto)fluorescence emission wavelength, enabling fluorescence collection from a 10 cm long excitation region, increasing sensitivity. The observed spectra agree with spectra taken from a conventional cuvette-based fluorimeter, corrected for the guidance properties of the fibre. The BSA fluorescence depended linearly on BSA concentration, while only a small hysteresis effect was observed, suggesting limited biofouling of the fibre sensor. Finally, we briefly discuss how this method could be used to study aggregation kinetics. With small sample volumes, the ability to use unlabelled proteins, and continuous flow, the method will be of interest to a broad range of protein-related research.
Collapse
Affiliation(s)
- Jan Robert Heck
- Department of Physics, Cambridge University, JJ Thomson Ave, Cambridge, CB3 071, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Ermanno Miele
- Department of Physics, Cambridge University, JJ Thomson Ave, Cambridge, Cambridgeshire, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Ralf P Mouthaan
- Department of Physics, Cambridge University, JJ Thomson Ave, Cambridge, Cambridgeshire, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Michael H Frosz
- Max Planck Institute for the Science of Light, Max-Planck-Institut fuer die Physik des Lichts, Staudtstr. 2, Erlangen, 91058, GERMANY
| | - Tuomas P J Knowles
- Department of Physics, Cambridge University, JJ Thomson Ave, Cambridge, Cambridgeshire, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Tijmen G Euser
- Department of Physics, Cambridge University, JJ Thomson Ave, Cambridge, Cambridgeshire, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
7
|
Nissen M, Förster R, Wieduwilt T, Lorenz A, Jiang S, Hauswald W, Schmidt MA. Nanoparticle Tracking in Single-Antiresonant-Element Fiber for High-Precision Size Distribution Analysis of Mono- and Polydisperse Samples. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202024. [PMID: 35988130 DOI: 10.1002/smll.202202024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Accurate determination of the size distribution of nanoparticle ensembles remains a challenge in nanotechnology-related applications due to the limitations of established methods. Here, a microstructured fiber-assisted nanoparticle tracking analysis (FaNTA) realization is introduced that breaks existing limitations through the recording of exceptionally long trajectories of rapidly diffusing polydisperse nanoparticles, resulting in excellent sizing precision and unprecedented separation capabilities of bimodal nanoparticle mixtures. An effective-single-mode antiresonant-element fiber allows to efficiently confine nanoparticles in a light-guiding microchannel and individually track them over more than 1000 frames, while aberration-free imaging is experimentally confirmed by cross-correlation analysis. Unique features of the approach are (i) the highly precise determination of the size distribution of monodisperse nanoparticle ensembles (only 7% coefficient of variation) and (ii) the accurate characterization of individual components in a bimodal mixture with very close mean diameters, both experimentally demonstrated for polymer nanospheres. The outstanding performance of the FaNTA realization can be quantified by introducing a new model for the bimodal separation index. Since FaNTA is applicable to all types of nano-objects down to sub-20 nm diameters, the method will improve the precision standard of mono- and polydisperse nanoparticle samples such as nano-plastics or extracellular vesicles.
Collapse
Affiliation(s)
- Mona Nissen
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
- Abbe Center of Photonics and Faculty of Physics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743, Jena, Germany
| | - Ronny Förster
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Torsten Wieduwilt
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Adrian Lorenz
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Shiqi Jiang
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
- Abbe Center of Photonics and Faculty of Physics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743, Jena, Germany
| | - Walter Hauswald
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Markus A Schmidt
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
- Abbe Center of Photonics and Faculty of Physics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743, Jena, Germany
- Otto Schott Institute of Material Research, Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743, Jena, Germany
| |
Collapse
|
8
|
Parker HE, Sengupta S, Harish AV, Soares RRG, Joensson HN, Margulis W, Russom A, Laurell F. A Lab-in-a-Fiber optofluidic device using droplet microfluidics and laser-induced fluorescence for virus detection. Sci Rep 2022; 12:3539. [PMID: 35241725 PMCID: PMC8894408 DOI: 10.1038/s41598-022-07306-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/19/2022] [Indexed: 01/10/2023] Open
Abstract
Microfluidics has emerged rapidly over the past 20 years and has been investigated for a variety of applications from life sciences to environmental monitoring. Although continuous-flow microfluidics is ubiquitous, segmented-flow or droplet microfluidics offers several attractive features. Droplets can be independently manipulated and analyzed with very high throughput. Typically, microfluidics is carried out within planar networks of microchannels, namely, microfluidic chips. We propose that fibers offer an interesting alternative format with key advantages for enhanced optical coupling. Herein, we demonstrate the generation of monodisperse droplets within a uniaxial optofluidic Lab-in-a-Fiber scheme. We combine droplet microfluidics with laser-induced fluorescence (LIF) detection achieved through the development of an optical side-coupling fiber, which we term a periscope fiber. This arrangement provides stable and compact alignment. Laser-induced fluorescence offers high sensitivity and low detection limits with a rapid response time making it an attractive detection method for in situ real-time measurements. We use the well-established fluorophore, fluorescein, to characterize the Lab-in-a-Fiber device and determine the generation of [Formula: see text] 0.9 nL droplets. We present characterization data of a range of fluorescein concentrations, establishing a limit of detection (LOD) of 10 nM fluorescein. Finally, we show that the device operates within a realistic and relevant fluorescence regime by detecting reverse-transcription loop-mediated isothermal amplification (RT-LAMP) products in the context of COVID-19 diagnostics. The device represents a step towards the development of a point-of-care droplet digital RT-LAMP platform.
Collapse
Affiliation(s)
- Helen E. Parker
- grid.5037.10000000121581746Laser Physics Group, Department of Applied Physics, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden ,grid.9531.e0000000106567444Scottish Universities Physics Alliance (SUPA), Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS UK
| | - Sanghamitra Sengupta
- grid.5037.10000000121581746Laser Physics Group, Department of Applied Physics, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden ,grid.417889.b0000 0004 0646 2441AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Achar V. Harish
- grid.5037.10000000121581746Laser Physics Group, Department of Applied Physics, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden
| | - Ruben R. G. Soares
- grid.5037.10000000121581746Science for Life Laboratory, Division of Nanobiotechnology, Department of Protein Science, Royal Institute of Technology (KTH), 171 65 Solna, Sweden
| | - Haakan N. Joensson
- grid.5037.10000000121581746Science for Life Laboratory, Division of Nanobiotechnology, Department of Protein Science, Royal Institute of Technology (KTH), 171 65 Solna, Sweden
| | - Walter Margulis
- grid.5037.10000000121581746Laser Physics Group, Department of Applied Physics, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden ,Research Institutes of Sweden (RISE), 164 19 Stockholm, Sweden
| | - Aman Russom
- grid.5037.10000000121581746Science for Life Laboratory, Division of Nanobiotechnology, Department of Protein Science, Royal Institute of Technology (KTH), 171 65 Solna, Sweden ,grid.5037.10000000121581746AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Laurell
- grid.5037.10000000121581746Laser Physics Group, Department of Applied Physics, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden
| |
Collapse
|
9
|
A review of optical methods for ultrasensitive detection and characterization of nanoparticles in liquid media with a focus on the wide field surface plasmon microscopy. Anal Chim Acta 2022; 1204:339633. [DOI: 10.1016/j.aca.2022.339633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/27/2022]
|
10
|
Jiang S, Förster R, Lorenz A, Schmidt MA. Three-dimensional tracking of nanoparticles by dual-color position retrieval in a double-core microstructured optical fiber. LAB ON A CHIP 2021; 21:4437-4444. [PMID: 34617084 DOI: 10.1039/d1lc00709b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Elastic light scattering-based three-dimensional (3D) tracking of objects at the nanoscale level is essential for unlocking the dynamics of individual species or interactions in fields such as biology or surface chemistry. In this work, we introduce the concept of dual-color 3D tracking in a double-core microstructured optical fiber that for the first time allows for full 3D reconstruction of the trajectory of a diffusing nanoparticle in a water-filled fiber-integrated microchannel. The use of two single-mode cores provides two opposite decaying evanescent fields of different wavelengths within the microchannel, bypassing spatial domains of ambiguous correlation between the scattered intensity and position. The novelty of the fiber design is the use of two slightly different single-mode cores, preventing modal crosstalk and thus allowing for longitudinally invariant dual-color illumination across the entire field of view. To demonstrate the capabilities of the scheme, a single gold nanosphere (80 nm) diffusing in the water-filled microchannel was tracked for a large number of images (about 32 000) at a high frame rate (1.389 kHz) over a long time (23 s), with the determined hydrodynamic diameters matching expectations. The presented 3D tracking approach yields unique opportunities to unlock processes at the nanoscale level and is highly relevant for a multitude of fields, particularly within the context of understanding sophisticated interaction of diffusing species with functionalized surfaces within the context of bioanalytics, nanoscale materials science, surface chemistry or life science.
Collapse
Affiliation(s)
- Shiqi Jiang
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany.
- Abbe Center of Photonics and Faculty of Physics, FSU Jena, 07745 Jena, Germany
| | - Ronny Förster
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany.
| | - Adrian Lorenz
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany.
| | - Markus A Schmidt
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany.
- Abbe Center of Photonics and Faculty of Physics, FSU Jena, 07745 Jena, Germany
- Otto Schott Institute of Material Research, FSU Jena, 07745 Jena, Germany
| |
Collapse
|
11
|
Priest L, Peters JS, Kukura P. Scattering-based Light Microscopy: From Metal Nanoparticles to Single Proteins. Chem Rev 2021; 121:11937-11970. [PMID: 34587448 PMCID: PMC8517954 DOI: 10.1021/acs.chemrev.1c00271] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 02/02/2023]
Abstract
Our ability to detect, image, and quantify nanoscopic objects and molecules with visible light has undergone dramatic improvements over the past few decades. While fluorescence has historically been the go-to contrast mechanism for ultrasensitive light microscopy due to its superior background suppression and specificity, recent developments based on light scattering have reached single-molecule sensitivity. They also have the advantages of universal applicability and the ability to obtain information about the species of interest beyond its presence and location. Many of the recent advances are driven by novel approaches to illumination, detection, and background suppression, all aimed at isolating and maximizing the signal of interest. Here, we review these developments grouped according to the basic principles used, namely darkfield imaging, interferometric detection, and surface plasmon resonance microscopy.
Collapse
Affiliation(s)
| | | | - Philipp Kukura
- Physical and Theoretical
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
12
|
Yamamoto K, Ota N, Tanaka Y. Nanofluidic Devices and Applications for Biological Analyses. Anal Chem 2021; 93:332-349. [PMID: 33125221 DOI: 10.1021/acs.analchem.0c03868] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Koki Yamamoto
- Laboratory for Integrated Biodevice, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobutoshi Ota
- Laboratory for Integrated Biodevice, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yo Tanaka
- Laboratory for Integrated Biodevice, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Kim J, Jang B, Gargiulo J, Bürger J, Zhao J, Upendar S, Weiss T, Maier SA, Schmidt MA. The Optofluidic Light Cage - On-Chip Integrated Spectroscopy Using an Antiresonance Hollow Core Waveguide. Anal Chem 2020; 93:752-760. [PMID: 33296184 DOI: 10.1021/acs.analchem.0c02857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emerging applications in spectroscopy-related bioanalytics demand for integrated devices with small geometric footprints and fast response times. While hollow core waveguides principally provide such conditions, currently used approaches include limitations such as long diffusion times, limited light-matter interaction, substantial implementation efforts, and difficult waveguide interfacing. Here, we introduce the concept of the optofluidic light cage that allows for fast and reliable integrated spectroscopy using a novel on-chip hollow core waveguide platform. The structure, implemented by 3D nanoprinting, consists of millimeter-long high-aspect-ratio strands surrounding a hollow core and includes the unique feature of open space between the strands, allowing analytes to sidewise enter the core region. Reliable, robust, and long-term stable light transmission via antiresonance guidance was observed while the light cages were immersed in an aqueous environment. The performance of the light cage related to absorption spectroscopy, refractive index sensitivity, and dye diffusion was experimentally determined, matching simulations and thus demonstrating the relevance of this approach with respect to chemistry and bioanalytics. The presented work features the optofluidic light cage as a novel on-chip sensing platform with unique properties, opening new avenues for highly integrated sensing devices with real-time responses. Application of this concept is not only limited to absorption spectroscopy but also includes Raman, photoluminescence, or fluorescence spectroscopy. Furthermore, more sophisticated applications are also conceivable in, e.g., nanoparticle tracking analysis or ultrafast nonlinear frequency conversion.
Collapse
Affiliation(s)
- Jisoo Kim
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Abbe Center of Photonics and Faculty of Physics, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Bumjoon Jang
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Abbe Center of Photonics and Faculty of Physics, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Julian Gargiulo
- Chair in Hybrid Nanosystems, Ludwig-Maximilians-Universität Munich, 80799 Munich, Germany
| | - Johannes Bürger
- Chair in Hybrid Nanosystems, Ludwig-Maximilians-Universität Munich, 80799 Munich, Germany
| | - Jiangbo Zhao
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Swaathi Upendar
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Thomas Weiss
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Stefan A Maier
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom.,Chair in Hybrid Nanosystems, Ludwig-Maximilians-Universität Munich, 80799 Munich, Germany
| | - Markus A Schmidt
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Abbe Center of Photonics and Faculty of Physics, Friedrich-Schiller-University Jena, 07743 Jena, Germany.,Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
14
|
Taha BA, Al Mashhadany Y, Hafiz Mokhtar MH, Dzulkefly Bin Zan MS, Arsad N. An Analysis Review of Detection Coronavirus Disease 2019 (COVID-19) Based on Biosensor Application. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6764. [PMID: 33256085 PMCID: PMC7729752 DOI: 10.3390/s20236764] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023]
Abstract
Timely detection and diagnosis are essentially needed to guide outbreak measures and infection control. It is vital to improve healthcare quality in public places, markets, schools and airports and provide useful insights into the technological environment and help researchers acknowledge the choices and gaps available in this field. In this narrative review, the detection of coronavirus disease 2019 (COVID-19) technologies is summarized and discussed with a comparison between them from several aspects to arrive at an accurate decision on the feasibility of applying the best of these techniques in the biosensors that operate using laser detection technology. The collection of data in this analysis was done by using six reliable academic databases, namely, Science Direct, IEEE Xplore, Scopus, Web of Science, Google Scholar and PubMed. This review includes an analysis review of three highlights: evaluating the hazard of pandemic COVID-19 transmission styles and comparing them with Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) to identify the main causes of the virus spreading, a critical analysis to diagnose coronavirus disease 2019 (COVID-19) based on artificial intelligence using CT scans and CXR images and types of biosensors. Finally, we select the best methods that can potentially stop the propagation of the coronavirus pandemic.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (B.A.T.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Yousif Al Mashhadany
- Department of Electrical Engineering, College of Engineering, University of Anbar, Anbar 00964, Iraq;
| | - Mohd Hadri Hafiz Mokhtar
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (B.A.T.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Mohd Saiful Dzulkefly Bin Zan
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (B.A.T.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Norhana Arsad
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (B.A.T.); (M.H.H.M.); (M.S.D.B.Z.)
| |
Collapse
|