1
|
Chen J, Peng K, Yang Y, Dai Y, Huang B, Chen X. Hierarchical Iontronic Flexible Sensor with High Sensitivity over Ultrabroad Range Enabled by Equilibration of Microstructural Compressibility and Stability. ACS Sens 2025. [PMID: 39843387 DOI: 10.1021/acssensors.4c02684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Despite improved sensitivity of iontronic pressure sensors with microstructures, structural compressibility and stability issues hinder achieving exceptional sensitivity across a wide pressure range. Herein, the interplay between ion concentration, mechanical properties, structural geometry, and aspect ratio (AR) on the sensitivity of lithium bis(trifluoromethanesulfonyl) imide/thermoplastic polyurethane (LiTFSI/TPU) ionogel is delved into. The results indicate that cones exhibit superior compressibility compared to pyramids and hemispheres, manifesting in an enhanced sensitivity toward the LiTFSI/TPU ionogel. Subsequently, by strategically combining cones with varying ARs, a harmonious balance between structural stability and compressibility is achieved, culminating in the fabrication of hierarchical iontronic flexible sensors (HIFS). Remarkably, HIFS-III with a three-level hierarchical conical microstructure demonstrates a preeminent sensitivity of 127.65 kPa-1 within ∼500 kPa. Even within the ultrabroad pressure range of 1500-3000 kPa, the sensitivity remains exceeding 10 kPa-1. Furthermore, HIFS-III boasts swift response and relaxation times (∼11 and 18 ms, respectively), a low detection limit (∼6.35 Pa), as well as remarkable durability (15,000 cycles). The exceptional sensing capabilities of HIFS-III underscore its emergence as a promising high-performance sensing and feedback solution tailored for applications in human-machine interaction and e-skin.
Collapse
Affiliation(s)
- Jianfeng Chen
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Kai Peng
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yinong Yang
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yichuan Dai
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Ben Huang
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xiaoxiao Chen
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, China
| |
Collapse
|
2
|
Zhuo F, Ding Z, Yang X, Chu F, Liu Y, Gao Z, Jin H, Dong S, Wang X, Luo J. Advanced Morphological and Material Engineering for High-Performance Interfacial Iontronic Pressure Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413141. [PMID: 39840613 DOI: 10.1002/advs.202413141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/12/2024] [Indexed: 01/23/2025]
Abstract
High-performance flexible pressure sensors are crucial for applications such as wearable electronics, interactive systems, and healthcare technologies. Among these, iontronic pressure sensors have garnered particular attention due to their superior sensitivity, enabled by the giant capacitance variation of the electric double layer (EDL) at the ionic-electronic interface under deformation. Key advancements, such as incorporating microstructures into ionic layers and employing diverse materials, have significantly improved sensor properties like sensitivity, accuracy, stability, and response time. This review highlights advancements in flexible EDL pressure sensors, focusing on structural designs and material engineering. These strategies are tailored to optimize key metrics such as sensitivity, detection limit, linearity, stability, response speed, hysteresis, transparency, wearability, selectivity, and multifunctionality. Key fabrication techniques, including micropatterning and externally assisted methods, are reviewed, along with strategies for sensor comparison and guidelines for selecting appropriate sensors. Emerging applications in healthcare, environmental and aerodynamic sensing, human-machine interaction, robotics, and machine learning-assisted intelligent sensing are explored. Finally, this review discusses the challenges and future directions for advancing EDL-based pressure sensors.
Collapse
Affiliation(s)
- Fengling Zhuo
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, Zhejiang University, Haining, 314400, China
| | - Zhi Ding
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xi Yang
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, Zhejiang University, Haining, 314400, China
| | - Fengjian Chu
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yulu Liu
- Research Institute of Medical and Biological Engineering, Ningbo University, Ningbo, 315211, China
| | - Zhuoqing Gao
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, Zhejiang University, Haining, 314400, China
| | - Hao Jin
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, Zhejiang University, Haining, 314400, China
| | - Shurong Dong
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, Zhejiang University, Haining, 314400, China
| | - Xiaozhi Wang
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, Zhejiang University, Haining, 314400, China
| | - Jikui Luo
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, Zhejiang University, Haining, 314400, China
| |
Collapse
|
3
|
Moulahoum H, Ghorbanizamani F. The LOD paradox: When lower isn't always better in biosensor research and development. Biosens Bioelectron 2024; 264:116670. [PMID: 39151260 DOI: 10.1016/j.bios.2024.116670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Biosensor research has long focused on achieving the lowest possible Limits of Detection (LOD), driving significant advances in sensitivity and opening up new possibilities in analysis. However, this intense focus on low LODs may not always meet the practical needs or suit the actual uses of these devices. While technological improvements are impressive, they can sometimes overlook important factors such as detection range, ease of use, and market readiness, which are vital for biosensors to be effective in real-world applications. This review advocates for a balanced approach to biosensor development, emphasizing the need to align technological advancements with practical utility. We delve into various applications, including the detection of cancer biomarkers, pathology-related biomarkers, and illicit drugs, illustrating the critical role of LOD within these contexts. By considering clinical needs and broader design aspects like cost-effectiveness, sustainability, and regulatory compliance, we argue that integrating technical progress with practicality will enhance the impact of biosensors. Such an approach ensures that biosensors are not only technically sound but also widely useable and beneficial in real-world applications. Addressing the diverse analytical parameters alongside user expectations and market demands will likely maximize the real-world impact of biosensors.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, 35100, Izmir, Turkiye.
| | | |
Collapse
|
4
|
Li P, Zhang Y, Li C, Chen X, Gou X, Zhou Y, Yang J, Xie L. From materials to structures: a holistic examination of achieving linearity in flexible pressure sensors. NANOTECHNOLOGY 2024; 36:042002. [PMID: 39413806 DOI: 10.1088/1361-6528/ad8750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 10/16/2024] [Indexed: 10/18/2024]
Abstract
As a pivotal category in the realm of electronics skins, flexible pressure sensors have become a focal point due to their diverse applications such as robotics, aerospace industries, and wearable devices. With the growing demands for measurement accuracy, data reliability, and electrical system compatibility, enhancing sensor's linearity has become increasingly critical. Analysis shows that the nonlinearity of flexible sensors primarily originates from mechanical nonlinearity due to the nolinear deformation of polymers and electrical nonlinearity caused by changes in parameters such as resistance. These nonlinearities can be mitigated through geometric design, material design or combination of both. This work reviews linear design strategies for sensors from the perspectives of structure and materials, covering the following main points: (a) an overview of the fundamental working mechanisms for various sensors; (b) a comprehensive explanation of different linear design strategies and the underlying reasons; (c) a detailed review of existing work employing these strategies and the achieved effects. Additionally, this work delves into diverse applications of linear flexible pressure sensors, spanning robotics, safety, electronic skin, and health monitoring. Finally, existing constraints and future research prospects are outlined to pave the way for the further development of high-performance flexible pressure sensors.
Collapse
Affiliation(s)
- Pei Li
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education of China), Chongqing University, Chongqing 400044, People's Republic of China
| | - Yong Zhang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education of China), Chongqing University, Chongqing 400044, People's Republic of China
| | - Chunbao Li
- Department of Orthopedics, The No.4 Medical Centre, Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Xian Chen
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xin Gou
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education of China), Chongqing University, Chongqing 400044, People's Republic of China
| | - Yong Zhou
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education of China), Chongqing University, Chongqing 400044, People's Republic of China
| | - Jun Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Lei Xie
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education of China), Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
5
|
Cheng AJ, Chang W, Qiao Y, Huang F, Sha Z, He S, Wu L, Chu D, Peng S. High-Performance Supercapacitive Pressure Sensors via Height-Grading Micro-Domes of Ionic Conductive Elastomer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59614-59625. [PMID: 39433470 DOI: 10.1021/acsami.4c14072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Soft capacitive sensors present numerous appealing characteristics, including simple structure, low power consumption, and fast response. However, they often suffer from low sensitivity and a limited linear sensing range. Herein, a concept is presented to enhance the sensitivity and linearity of supercapacitive pressure sensors by functionally grading the heights of macrodomes constructed from a highly elastic and ionic conductive elastomer made of poly(vinyl alcohol) and phosphoric acid (PVA/H3PO4). The resultant supercapacitive sensors exhibit a high sensitivity (423.42 kPa-1), wide linear sensing range (0-400 kPa), ultralow limit of detection (0.48 Pa), and high durability (stable signal outputs up to 5000 cycles of loading/unloading). Additionally, the sensors can maintain consistent sensing performance within a temperature range of 25-40 °C. The potential of the sensor in health monitoring is demonstrated through ultrahigh-resolution weight measurement, pulse detection, and respiration monitoring.
Collapse
Affiliation(s)
- Allen J Cheng
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wenkai Chang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yuansen Qiao
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Feng Huang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Zhao Sha
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shuai He
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Liao Wu
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Zhong Y, Liu K, Wu L, Ji W, Cheng G, Ding J. Flexible Tactile Sensors with Gradient Conformal Dome Structures. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52966-52976. [PMID: 39295176 DOI: 10.1021/acsami.4c12736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The trade-off between high sensitivity and wide detection range remains a challenge for flexible capacitive pressure sensors. Gradient structure can provide continuous deformation and lead to a wide sensing range. However, it simultaneously augments the distance between two electrodes, which diminishes the variation in the relative distance and results in a decreased sensitivity. Herein, a conformal design is introduced into the gradient structure to construct a flexible capacitive pressure sensor. The gradient conformal dome structure is fabricated by a simple reverse dome adsorption process. Taking advantage of the progressive deformation behavior of the gradient dielectric, and the significant improvement of relative distance variation between two electrodes from the conformal design, the sensor achieves a sensitivity of 0.214 kPa-1 in an ultrabroad linear range up to 200 kPa. It maintains high-pressure resolution under the preload of 10 and 100 kPa. Benefiting from the rapid response and excellent repeatability, the sensor can be used for physiological monitor and human motion detection, including arterial pulse, joint bending, and motion state. The gradient conformal design strategy may pave a promising avenue to develop pressure sensors with high sensitivity and wide linear range.
Collapse
Affiliation(s)
- Yan Zhong
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kunshan Liu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Longgang Wu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Weixiang Ji
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guanggui Cheng
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianning Ding
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Liu C, Ma F, Sun Q, Hu Q, Tong W, Guo X, Hu R, Liu P, Huang Y, Hao X, Ma W, Zhang Y. Highly Sensitive Flexible Capacitive Pressure Sensor Based on a Multicross-Linked Dual-Network Ionic Hydrogel for Blood Pressure Monitoring Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34042-34056. [PMID: 38887945 DOI: 10.1021/acsami.4c04686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Flexible capacitive pressure sensors based on ionic hydrogels (IHs) have garnered significant attention in the field of wearable technology. However, the vulnerability of traditional single-network hydrogels to mechanical damage and the complexity associated with preparing double-network hydrogels present challenges in developing a highly sensitive, easily prepared, and durable IH-based flexible capacitive pressure sensor. This study introduces a novel multicross-linked dual-network IH achieved through the physical and chemical cross-linking of polymers polyvinyl alcohol (PVA) and chitosan (CS), ionic solution H3PO4, and cross-linking agent gum arabic. Flexible capacitive pressure sensors, characterized by high sensitivity and a broad pressure range, are fabricated by employing mesh as templates to design cut-corner cube microstructures with high uniformity and controllability on the IHs. The sensor exhibits high sensitivity across a wide pressure range (0-290 kPa) and with excellent features such as high resolution (∼1.3 Pa), fast response-recovery time (∼11 ms), and repeatable compression stability at 25 kPa (>2000 cycles). The IHs as a dielectric layer demonstrate long-term water retention properties, enabling exposure to air for up to 100 days. Additionally, the developed sensor shows the ability to accurately measure the pulse wave within the small pressure range. By combining the pulse wave acquired by the sensor with a trained neural network model, we achieve successful blood pressure (BP) prediction, meeting the standards set by the Association for the Advancement of Medical Instrumentation and the British Hypertension Society. Ultimately, the sensor proposed in this study holds promising prospects for broad applications in high-precision wearable medical electronic devices.
Collapse
Affiliation(s)
- Caixia Liu
- College of Physics, Hefei University of Technology, Hefei 230009, China
| | - Fei Ma
- College of Microelectronics, Hefei University of Technology, Hefei 230009, China
| | - Qichang Sun
- College of Physics, Hefei University of Technology, Hefei 230009, China
| | - Qiusheng Hu
- College of Microelectronics, Hefei University of Technology, Hefei 230009, China
| | - Wei Tong
- College of Microelectronics, Hefei University of Technology, Hefei 230009, China
| | - Xu Guo
- College of Microelectronics, Hefei University of Technology, Hefei 230009, China
| | - Ruohai Hu
- College of Microelectronics, Hefei University of Technology, Hefei 230009, China
| | - Ping Liu
- College of Microelectronics, Hefei University of Technology, Hefei 230009, China
| | - Ying Huang
- College of Microelectronics, Hefei University of Technology, Hefei 230009, China
| | - Xingtong Hao
- College of Physics, Hefei University of Technology, Hefei 230009, China
| | - Wenzhi Ma
- College of Microelectronics, Hefei University of Technology, Hefei 230009, China
| | - Yugang Zhang
- College of Microelectronics, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
8
|
Li W, Zou K, Guo J, Zhang C, Feng J, You J, Cheng G, Zhou Q, Kong M, Li G, Guo CF, Yang J. Integrated Fibrous Iontronic Pressure Sensors with High Sensitivity and Reliability for Human Plantar Pressure and Gait Analysis. ACS NANO 2024; 18:14672-14684. [PMID: 38760182 DOI: 10.1021/acsnano.4c02919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Flexible sensing systems (FSSs) designed to measure plantar pressure can deliver instantaneous feedback on human movement and posture. This feedback is crucial not only for preventing and controlling diseases associated with abnormal plantar pressures but also for optimizing athletes' postures to minimize injuries. The development of an optimal plantar pressure sensor hinges on key metrics such as a wide sensing range, high sensitivity, and long-term stability. However, the effectiveness of current flexible sensors is impeded by numerous challenges, including limitations in structural deformability, mechanical incompatibility between multifunctional layers, and instability under complex stress conditions. Addressing these limitations, we have engineered an integrated pressure sensing system with high sensitivity and reliability for human plantar pressure and gait analysis. It features a high-modulus, porous laminated ionic fiber structure with robust self-bonded interfaces, utilizing a unified polyimide material system. This system showcases a high sensitivity (156.6 kPa-1), an extensive sensing range (up to 4000 kPa), and augmented interfacial toughness and durability (over 150,000 cycles). Additionally, our FSS is capable of real-time monitoring of plantar pressure distribution across various sports activities. Leveraging deep learning, the flexible sensing system achieves a high-precision, intelligent recognition of different plantar types with a 99.8% accuracy rate. This approach provides a strategic advancement in the field of flexible pressure sensors, ensuring prolonged stability and accuracy even amidst complex pressure dynamics and providing a feasible solution for long-term gait monitoring and analysis.
Collapse
Affiliation(s)
- Wendong Li
- School of Aeronautics and Astronautics, State Key Laboratory of Polymer Materials Engineering of China, Robotic Satellite Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Kangkang Zou
- School of Aeronautics and Astronautics, State Key Laboratory of Polymer Materials Engineering of China, Robotic Satellite Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Junwei Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Cancan Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jiabao Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jia You
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Gang Cheng
- Beijing Key Laboratory of Intelligent Space Robotic Systems Technology and Applications, Beijing Institute of Spacecraft System Engineering, Beijing, 100094, People's Republic of China
| | - Qinghua Zhou
- School of Aeronautics and Astronautics, State Key Laboratory of Polymer Materials Engineering of China, Robotic Satellite Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Miqiu Kong
- School of Aeronautics and Astronautics, State Key Laboratory of Polymer Materials Engineering of China, Robotic Satellite Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Guangxian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Junlong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu, 610065, People's Republic of China
| |
Collapse
|
9
|
Li Z, Li K, Wang W, Zhang T, Yang X. Ultrawide linear range, high sensitivity, and large-area pressure sensor arrays enabled by pneumatic spraying broccoli-like microstructures. MATERIALS HORIZONS 2024; 11:2271-2280. [PMID: 38439709 DOI: 10.1039/d3mh02232c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Large-area pressure sensor arrays with a wide linear response range and high sensitivity are beneficial to map the inhomogeneous interface pressure, which is significant in practical applications. Here, we demonstrate a pneumatic spraying method to prepare large-area microstructure films (PSMF) for high performance pressure sensor arrays. The sprayed surface morphology is designable by controlling the spraying parameters. It is worth noting that the constructed "broccoli" like morphology with a swollen top and shrunken bottom inspired a new mechanism to enlarge the linear response range by decreasing the series resistance with pressure increasing. At the same time, the pneumatic sprayed "broccoli" has a rough surface due to droplet stacking, which reduces the initial current effectively. Hence, the sensor achieves a 10 000 kPa ultrawide linear response range with a high sensitivity (98.71 kPa-1), and low detection (5 Pa). The prepared sensor has a small static response error (4.4%) and 5000 cycle full-range dynamic response durability. Finally, the constructed sensor arrays can distinguish the pressure distribution in different ranges clearly, which indicates a great potential in health care, motion detection, and the tire industry.
Collapse
Affiliation(s)
- Zonglin Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Kun Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Weiwei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Tong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Huangpu Institute of Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Guangzhou 510530, China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
10
|
Jin Q, Wang C, Wu H, Luo X, Li J, Ma G, Li Y, Luo C, Guo F, Long Y. 3D Printing of Capacitive Pressure Sensors with Tuned Wide Detection Range and High Sensitivity Inspired by Bio-Inspired Kapok Structures. Macromol Rapid Commun 2024; 45:e2300668. [PMID: 38325804 DOI: 10.1002/marc.202300668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/09/2024] [Indexed: 02/09/2024]
Abstract
Flexible pressure sensors have drawn considerable attention for their potential applications as electronic skins with both sensitivity and pressure response range. Although the introduction of surface microstructures effectively enhances sensitivity, the confined volume of their compressible structures results in a limited pressure response range. To address this issue, a biomimetic kapok structure is proposed and implemented for constructing the dielectric layer of flexible capacitive pressure sensors employing 3D printing technology. The structure is designed with easily deformable concave and rotational structures, enabling continuous deformation under pressure. This design results in a significant expansion of the pressure response range and improvement in sensitivity. Further, the study purposively analyses crucial parameters of the devised structure that affect its compressibility and stability. These include the concave angle θ, height ratio d1/d2, rotation angle α, and width k. As a result, the ultimate pressure sensors demonstrate remarkable features such as high sensitivity (≈2.38 kPa-1 in the range of 0-10 kPa), broad detection range (734 kPa), fast response time (23 ms), and outstanding pressure resolution (0.4% at 500 kPa). This study confirms the viability of bionic structures for flexible sensors, and their potential to expand the scope of wearable electronic devices.
Collapse
Affiliation(s)
- Qingxin Jin
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| | - Chengyun Wang
- College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, 410083, China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha, Hunan, 410083, China
| | - Han Wu
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xin Luo
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jiaqi Li
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| | - Guangmeng Ma
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yu Li
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| | - Chunyi Luo
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| | - Fawei Guo
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yu Long
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
11
|
Su D, Shen G, Ma K, Li J, Qin B, Wang S, Yang W, He X. Enhanced sensitivity and linear-response in iontronic pressure sensors for non-contact, high-frequency vibration recognition. J Colloid Interface Sci 2024; 659:1042-1051. [PMID: 38195360 DOI: 10.1016/j.jcis.2023.12.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
Monitoring non-contact high-frequency vibrations requires improving the sensitivity and linear response of iontronic pressure sensors (IPSs). In this study, we incorporate composite electrodes comprising silver nanowires (Ag NWs) and MXene into IPSs to enhance electronic conduction and pseudocapacitance. Moreover, we utilize a novel surface-pillar microstructure, along with an internally randomized multi-bubble structure within the dielectric layer, to significantly expand the linear response range of the sensor. The resulting IPS device demonstrates exceptional linear sensitivity, measuring approximately 153.83 kPa-1, across a broad pressure range of up to 260 kPa. Additionally, it exhibits long-term stability, rapid response and recovery characteristics, and remains functional underwater. Notably, these devices exhibit remarkable capabilities in monitoring ultrasonic vibrations and accurately identifying sound wave vibrations. The integration of composite electrodes, microstructure designs, and their compatibility with underwater applications positions these IPSs as highly promising tools for precise measurements and advancements in flexible electronics technology.
Collapse
Affiliation(s)
- Daojian Su
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China; Jiangmen Key Laboratory of Micro-Nano Functional Materials and Devices, Jiangmen 529020, PR China
| | - Gengzhe Shen
- Zhuhai Institute of Advanced Technology Chinese Academy of Sciences, Zhuhai 519003, PR China
| | - Ke Ma
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China; Jiangmen Key Laboratory of Micro-Nano Functional Materials and Devices, Jiangmen 529020, PR China
| | - Junxian Li
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China; Jiangmen Key Laboratory of Micro-Nano Functional Materials and Devices, Jiangmen 529020, PR China
| | - Bolong Qin
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China; Jiangmen Key Laboratory of Micro-Nano Functional Materials and Devices, Jiangmen 529020, PR China
| | - Shuangpeng Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa 999078, Macau
| | - Weijia Yang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China; Jiangmen Key Laboratory of Micro-Nano Functional Materials and Devices, Jiangmen 529020, PR China
| | - Xin He
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China; Jiangmen Key Laboratory of Micro-Nano Functional Materials and Devices, Jiangmen 529020, PR China.
| |
Collapse
|
12
|
An T, Zhang Y, Wen J, Dong Z, Du Q, Liu L, Wang Y, Xing G, Zhao X. Multi-Level Pyramidal Microstructure-Based Pressure Sensors with High Sensitivity and Wide Linear Range for Healthcare Monitoring. ACS Sens 2024; 9:726-735. [PMID: 38266628 DOI: 10.1021/acssensors.3c02001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Flexible pressure sensors have garnered significant attention in the field of wearable healthcare due to their scalability and shape variability. However, a crucial challenge in their practical application for various healthcare scenarios is striking a balance between the sensitivity and sensing range. This limitation arises from the reduced compressibility of the microstructures on the surface of pressure-sensitive materials under high pressure, resulting in progressive saturation of the sensor's response and leading to a restricted and nonlinear pressure sensing range. In this study, we present a novel approach utilizing multi-level pyramidal microstructures in flexible pressure sensors to achieve both high sensitivity (8775 kPa-1) and linear response (R2 = 0.997) over a wide pressure range (up to 1000 kPa). The effectiveness of the proposed design stems from the compensatory behavior of the lower pyramidal microstructures, which counteracts the declining sensitivity associated with the gradual hardening of the higher pyramidal microstructures. Furthermore, the sensor demonstrates a fast response time of 11.6 ms and a fast relaxation time of 3.8 ms and can reliably detect pressures as low as 30.2 Pa. Our findings highlight the applicability of this flexible pressure sensor in diverse human body health detection tasks, ranging from weak pulses to finger flexion and plantar pressure distribution. Notably, the proposed sensor design eliminates the need for replacing flexible pressure sensors with varying ranges, thereby enhancing their practical utility.
Collapse
Affiliation(s)
- Tongge An
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
- Qiantang Science and Technology Innovation Center, Hangzhou 310018, China
| | - Yongjun Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
- Shangyu Institute of Science and Engineering, Hangzhou Dianzi University, Shaoxing, Zhejiang 312000, China
| | - Jiahong Wen
- The College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
- Shangyu Institute of Science and Engineering, Hangzhou Dianzi University, Shaoxing, Zhejiang 312000, China
| | - Zhichao Dong
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
- Qiantang Science and Technology Innovation Center, Hangzhou 310018, China
| | - Qifeng Du
- Qiantang Science and Technology Innovation Center, Hangzhou 310018, China
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang 314000, China
| | - Long Liu
- Institute of Microelectronics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100029, China
| | - Yaxin Wang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
- Zhejiang Laboratory, Hangzhou 311100, China
| | - Guozhong Xing
- Institute of Microelectronics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100029, China
| | - Xiaoyu Zhao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
13
|
Chai J, Wang X, Li X, Wu G, Zhao Y, Nan X, Xue C, Gao L, Zheng G. A Dual-Mode Pressure and Temperature Sensor. MICROMACHINES 2024; 15:179. [PMID: 38398909 PMCID: PMC10893131 DOI: 10.3390/mi15020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
The emerging field of flexible tactile sensing systems, equipped with multi-physical tactile sensing capabilities, holds vast potential across diverse domains such as medical monitoring, robotics, and human-computer interaction. In response to the prevailing challenges associated with the limited integration and sensitivity of flexible tactile sensors, this paper introduces a versatile tactile sensing system capable of concurrently monitoring temperature and pressure. The temperature sensor employs carbon nanotube/graphene conductive paste as its sensitive material, while the pressure sensor integrates an ionic gel containing boron nitride as its sensitive layer. Through the application of cost-effective screen printing technology, we have successfully manufactured a flexible dual-mode sensor with exceptional performance, featuring high sensitivity (804.27 kPa-1), a broad response range (50 kPa), rapid response time (17 ms), and relaxation time (34 ms), alongside exceptional durability over 5000 cycles. Furthermore, the resistance temperature coefficient of the sensor within the temperature range of 12.5 °C to 93.7 °C is -0.17% °C-1. The designed flexible dual-mode tactile sensing system enables the real-time detection of pressure and temperature information, presenting an innovative approach to electronic skin with multi-physical tactile sensing capabilities.
Collapse
Affiliation(s)
- Jin Chai
- Xiamen Zehuo Digital Technology Co., Ltd., Xiamen 361102, China;
| | - Xin Wang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Xuan Li
- The 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang 050051, China
| | - Guirong Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; (Y.Z.)
| | - Yunlong Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; (Y.Z.)
| | - Xueli Nan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Chenyang Xue
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; (Y.Z.)
| | - Libo Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; (Y.Z.)
| | - Gaofeng Zheng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; (Y.Z.)
| |
Collapse
|
14
|
Bai N, Xue Y, Chen S, Shi L, Shi J, Zhang Y, Hou X, Cheng Y, Huang K, Wang W, Zhang J, Liu Y, Guo CF. A robotic sensory system with high spatiotemporal resolution for texture recognition. Nat Commun 2023; 14:7121. [PMID: 37963866 PMCID: PMC10645869 DOI: 10.1038/s41467-023-42722-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023] Open
Abstract
Humans can gently slide a finger on the surface of an object and identify it by capturing both static pressure and high-frequency vibrations. Although modern robots integrated with flexible sensors can precisely detect pressure, shear force, and strain, they still perform insufficiently or require multi-sensors to respond to both static and high-frequency physical stimuli during the interaction. Here, we report a real-time artificial sensory system for high-accuracy texture recognition based on a single iontronic slip-sensor, and propose a criterion-spatiotemporal resolution, to corelate the sensing performance with recognition capability. The sensor can respond to both static and dynamic stimuli (0-400 Hz) with a high spatial resolution of 15 μm in spacing and 6 μm in height, together with a high-frequency resolution of 0.02 Hz at 400 Hz, enabling high-precision discrimination of fine surface features. The sensory system integrated on a prosthetic fingertip can identify 20 different commercial textiles with a 100.0% accuracy at a fixed sliding rate and a 98.9% accuracy at random sliding rates. The sensory system is expected to help achieve subtle tactile sensation for robotics and prosthetics, and further be applied to haptic-based virtual reality and beyond.
Collapse
Affiliation(s)
- Ningning Bai
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, China
| | - Yiheng Xue
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shuiqing Chen
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lin Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Junli Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuan Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xingyu Hou
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kaixi Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weidong Wang
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, China
| | - Jin Zhang
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuan Liu
- Department of Physics and TcSUH, University of Houston, Houston, TX, 77204, USA
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
15
|
Wu S, Yang C, Hu J, Pan M, Meng W, Liu Y, Li P, Peng J, Zhang Q, Chen P, Wang H. Normal-Direction Graded Hemispheres for Ionic Flexible Sensors with a Record-High Linearity in a Wide Working Range. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47733-47744. [PMID: 37782111 DOI: 10.1021/acsami.3c09580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Flexible pressure sensors developed rapidly with increased sensitivity, a fast response time, high stability, and excellent deformability. These progresses have expanded the application of wearable electronics under high-pressure backgrounds while also bringing new challenges. In particular, the nonlinearity and narrow working range lead to a gradually insensitive response, principally because the microstructure deforms inconsistently on the device interfaces in the whole working range. Herein, we report an ionic flexible sensor with a record-high linearity (R2 = 0.99994) in a wide working range (up to 600 kPa). The linearity response comes from the normal-direction graded hemisphere (GH) microstructure. It is prepared from poly(dimethylsiloxane) (PDMS)/carbon nanotubes (CNTs)/Au into flexible and deformable electrodes, and its geometry is precisely designed from the linear elastic theory and optimized through finite element simulation. The sensor can achieve a high sensitivity of S = 165.5 kPa-1, a response-relaxation time of <30 ms, and superb consistency, allowing the device to detect vibration signals. Our sensor has been assembled with circuits and capsulation in order to monitor the function state of players in underwater sports in the frequency domain. This work deepens the theory of linearized design of microstructures and provides a strategy to make flexible pressure sensors that have combined the performances of ultrahigh linearity, high sensitivity, and a wide working range.
Collapse
Affiliation(s)
- Shaowei Wu
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Chengxiu Yang
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Jiafei Hu
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Mengchun Pan
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Weize Meng
- State Key Laboratory of CEMEE, College of Electronic Science and Technology, National University of Defense Technology, Deya Road 109, Changsha 410073, China
| | - Yan Liu
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Peisen Li
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Junping Peng
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Qi Zhang
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Pengteng Chen
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Haomiao Wang
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| |
Collapse
|
16
|
Wang F, Su D, Ma K, Qin B, Li B, Li J, Zhang C, Xin Y, Huang Z, Yang W, Wang S, He X. Reliable and Scalable Piezoresistive Sensors with an MXene/MoS 2 Hierarchical Nanostructure for Health Signals Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44001-44011. [PMID: 37671797 DOI: 10.1021/acsami.3c09464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The increased popularity of wearable electronic devices has led to a greater need for advanced sensors. However, fabricating pressure sensors that are flexible, highly sensitive, robust, and compatible with large-scale fabrication technology is challenging. This work investigates a piezoresistive sensor constructed from an MXene/MoS2 hierarchical nanostructure, which is obtained through an easy and inexpensive fabrication process. The sensor exhibits a high sensitivity of 0.42 kPa-1 (0-1.5 kPa), rapid response (∼36 ms), and remarkable mechanical durability (∼10,000 cycles at 13 kPa). The sensor has been demonstrated to be successful in detecting human motion, speech recognition, and physiological signals, particularly in analyzing human pulse. These data can be used to alert and identify irregularities in human health. Additionally, the sensing units are able to construct sensor arrays of various sizes and configurations, enabling pressure distribution imaging in a variety of application scenarios. This research proposes a cost-effective and scalable approach to fabricating piezoresistive sensors and sensor arrays, which can be utilized for monitoring human health and for use in human-machine interfaces.
Collapse
Affiliation(s)
- Fengming Wang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Daojian Su
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Ke Ma
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Bolong Qin
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Baijun Li
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Junxian Li
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Chi Zhang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Yue Xin
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Zundi Huang
- School of Rail Transportation, Wuyi University, Jiangmen 529020, P.R. China
| | - Weijia Yang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Shuangpeng Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P.R. China
| | - Xin He
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| |
Collapse
|
17
|
Zhu B, Xu Z, Liu X, Wang Z, Zhang Y, Chen Q, Teh KS, Zheng J, Du X, Wu D. High-Linearity Flexible Pressure Sensor Based on the Gaussian-Curve-Shaped Microstructure for Human Physiological Signal Monitoring. ACS Sens 2023; 8:3127-3135. [PMID: 37471516 DOI: 10.1021/acssensors.3c00818] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Flexible pressure sensors with high-performance show broad application prospects in health monitoring, wearable electronic devices, intelligent robot sensing, and other fields. Although flexible pressure sensors have made significant progress in sensitivity and detection range, most of them still exhibit strong nonlinearity, which leads to significant troubles in signal acquisition and thus limits their popularity in practical applications. It remains a serious challenge for the flexible pressure sensor to achieve high linearity while maintaining high sensitivity. Herein, a doped sensing membrane with a uniformly distributed Gaussian-curve-shaped micropattern array was developed using the micro-electromechanical systems (MEMS) process, and a flexible sensor structure with the doped film as the core was designed and constructed. The prototype sensor has a high sensitivity of 1.77 kPa-1 and a linearity of 0.99 in the full detection range of 20 Pa to 30 kPa. In addition, its excellent performance also includes fast response/recovery times (∼25/50 ms) and long-term endurance (>10,000 cycles at 15 kPa). The prototype sensor has been successfully demonstrated in human pulse monitoring, speech recognition, and gesture recognition. The 2 × 6 sensor array can detect the spatial pressure distribution. Thus, such a microstructure shape design will open a new way to fabricate a high-linearity pressure sensor for potential applications in health monitoring, human-machine interaction, etc.
Collapse
Affiliation(s)
- Bin Zhu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Zhenjin Xu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Xin Liu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Zhongbao Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Yang Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Qinnan Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Kwok Siong Teh
- School of Engineering, San Francisco State University, San Francisco, California 94132, United States
| | - Jianyi Zheng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Xiaohui Du
- Sensor and network control center, Instrumentation Technology and Economy Institute, Beijing 100055, China
| | - Dezhi Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| |
Collapse
|
18
|
Liu S, Song Z, Chen M, Li W, Ma Y, Liu Z, Bao Y, Mahmood A, Niu L. Modulus difference-induced embedding strategy to construct iontronic pressure sensor with high sensitivity and wide linear response range. iScience 2023; 26:107304. [PMID: 37539034 PMCID: PMC10393752 DOI: 10.1016/j.isci.2023.107304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/06/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
Sensitivity and linearity are two crucial indices to assess the sensing capability of pressure sensors; unfortunately, the two mutually exclusive parameters usually result in limited applications. Although a series of microengineering strategies including micropatterned, multilayered, and porous approach have been provided in detail, the conflict between the two parameters still continues. Here, we present an efficient strategy to resolve this contradiction via modulus difference-induced embedding deformation. Both the microscopic observation and finite element simulation results confirm the embedding deformation behavior ascribed to the elastic modulus difference between soft electrode and rigid microstructures. The iontronic pressure sensor with high sensitivity (35 kPa-1) and wide linear response range (0-250 kPa) is further fabricated and demonstrates the potential applications in monitoring of high-fidelity pulse waveforms and human motion. This work provides an alternative strategy to guide targeted design of all-around and comprehensive pressure sensor.
Collapse
Affiliation(s)
- Shengjie Liu
- Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
- Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Guangzhou University, Guangzhou 510006, P.R. China
| | - Zhongqian Song
- Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
- Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Guangzhou University, Guangzhou 510006, P.R. China
| | - Minqi Chen
- Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
- Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Guangzhou University, Guangzhou 510006, P.R. China
| | - Weiyan Li
- Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
- Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Guangzhou University, Guangzhou 510006, P.R. China
| | - Yingming Ma
- Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
- Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Guangzhou University, Guangzhou 510006, P.R. China
| | - Zhenbang Liu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Guangzhou University, Guangzhou 510006, P.R. China
| | - Yu Bao
- Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Guangzhou University, Guangzhou 510006, P.R. China
| | - Azhar Mahmood
- Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Li Niu
- Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
- Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Guangzhou University, Guangzhou 510006, P.R. China
| |
Collapse
|
19
|
Yang R, Dutta A, Li B, Tiwari N, Zhang W, Niu Z, Gao Y, Erdely D, Xin X, Li T, Cheng H. Iontronic pressure sensor with high sensitivity over ultra-broad linear range enabled by laser-induced gradient micro-pyramids. Nat Commun 2023; 14:2907. [PMID: 37264026 DOI: 10.1038/s41467-023-38274-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 04/21/2023] [Indexed: 06/03/2023] Open
Abstract
Despite the extensive developments of flexible capacitive pressure sensors, it is still elusive to simultaneously achieve excellent linearity over a broad pressure range, high sensitivity, and ultrahigh pressure resolution under large pressure preloads. Here, we present a programmable fabrication method for microstructures to integrate an ultrathin ionic layer. The resulting optimized sensor exhibits a sensitivity of 33.7 kPa-1 over a linear range of 1700 kPa, a detection limit of 0.36 Pa, and a pressure resolution of 0.00725% under the pressure of 2000 kPa. Taken together with rapid response/recovery and excellent repeatability, the sensor is applied to subtle pulse detection, interactive robotic hand, and ultrahigh-resolution smart weight scale/chair. The proposed fabrication approaches and design toolkit from this work can also be leveraged to easily tune the pressure sensor performance for varying target applications and open up opportunities to create other iontronic sensors.
Collapse
Affiliation(s)
- Ruoxi Yang
- School of Mechanical Engineering, Hebei University of Technology, 300401, Tianjin, China
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ankan Dutta
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Bowen Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Naveen Tiwari
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Wanqing Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zhenyuan Niu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yuyan Gao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniel Erdely
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Xin Xin
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tiejun Li
- School of Mechanical Engineering, Hebei University of Technology, 300401, Tianjin, China.
- School of Mechanical Engineering, Hebei University of Science & Technology, 050018, Shijiazhuang, China.
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
20
|
Yang Z, Duan Q, Zang J, Zhao Y, Zheng W, Xiao R, Zhang Z, Hu L, Wu G, Nan X, Zhang Z, Xue C, Gao L. Boron nitride-enabled printing of a highly sensitive and flexible iontronic pressure sensing system for spatial mapping. MICROSYSTEMS & NANOENGINEERING 2023; 9:68. [PMID: 37251710 PMCID: PMC10220000 DOI: 10.1038/s41378-023-00543-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
Recently, flexible iontronic pressure sensors (FIPSs) with higher sensitivities and wider sensing ranges than conventional capacitive sensors have been widely investigated. Due to the difficulty of fabricating the nanostructures that are commonly used on electrodes and ionic layers by screen printing techniques, strategies for fabricating such devices using these techniques to drive their mass production have rarely been reported. Herein, for the first time, we employed a 2-dimensional (2D) hexagonal boron nitride (h-BN) as both an additive and an ionic liquid reservoir in an ionic film, making the sensor printable and significantly improving its sensitivity and sensing range through screen printing. The engineered sensor exhibited high sensitivity (Smin> 261.4 kPa-1) and a broad sensing range (0.05-450 kPa), and it was capable of stable operation at a high pressure (400 kPa) for more than 5000 cycles. In addition, the integrated sensor array system allowed accurate monitoring of wrist pressure and showed great potential for health care systems. We believe that using h-BN as an additive in an ionic material for screen-printed FIPS could greatly inspire research on 2D materials for similar systems and other types of sensors. Hexagonal boron nitride (h-BN) was employed for the first time to make iontronic pressure sensor arrays with high sensitivity and a broad sensing range by screen printing.
Collapse
Affiliation(s)
- Zekun Yang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, 030051 Taiyuan, China
| | - Qikai Duan
- School of Automation and Software Engineering, Shanxi University, 030006 Taiyuan, China
| | - Junbin Zang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, 030051 Taiyuan, China
| | - Yunlong Zhao
- Department of Mechanical and Electrical Engineering, Xiamen University, 361102 Xiamen, China
| | - Weihao Zheng
- School of Mechano-Electronic Engineering, Xidian University, 710071 Xi’an, China
| | - Ran Xiao
- Department of Mechanical Engineering, City University of Hong Kong, 999077 Kowloon, Hong Kong SAR
| | - Zhidong Zhang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, 030051 Taiyuan, China
| | - Liangwei Hu
- Department of Mechanical and Electrical Engineering, Xiamen University, 361102 Xiamen, China
| | - Guirong Wu
- Department of Mechanical and Electrical Engineering, Xiamen University, 361102 Xiamen, China
| | - Xueli Nan
- School of Automation and Software Engineering, Shanxi University, 030006 Taiyuan, China
| | - Zengxing Zhang
- Department of Mechanical and Electrical Engineering, Xiamen University, 361102 Xiamen, China
| | - Chenyang Xue
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, 030051 Taiyuan, China
- Department of Mechanical and Electrical Engineering, Xiamen University, 361102 Xiamen, China
| | - Libo Gao
- Department of Mechanical and Electrical Engineering, Xiamen University, 361102 Xiamen, China
| |
Collapse
|
21
|
Ren Y, He Q, Xu T, Zhang W, Peng Z, Meng B. Recent Progress in MXene Hydrogel for Wearable Electronics. BIOSENSORS 2023; 13:bios13050495. [PMID: 37232856 DOI: 10.3390/bios13050495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023]
Abstract
Recently, hydrogels have attracted great attention because of their unique properties, including stretchability, self-adhesion, transparency, and biocompatibility. They can transmit electrical signals for potential applications in flexible electronics, human-machine interfaces, sensors, actuators, et al. MXene, a newly emerged two-dimensional (2D) nanomaterial, is an ideal candidate for wearable sensors, benefitting from its surface's negatively charged hydrophilic nature, biocompatibility, high specific surface area, facile functionalization, and high metallic conductivity. However, stability has been a limiting factor for MXene-based applications, and fabricating MXene into hydrogels has been proven to significantly improve their stability. The unique and complex gel structure and gelation mechanism of MXene hydrogels require intensive research and engineering at nanoscale. Although the application of MXene-based composites in sensors has been widely studied, the preparation methods and applications of MXene-based hydrogels in wearable electronics is relatively rare. Thus, in order to facilitate the effective evolution of MXene hydrogel sensors, the design strategies, preparation methods, and applications of MXene hydrogels for flexible and wearable electronics are comprehensively discussed and summarized in this work.
Collapse
Affiliation(s)
- Yi Ren
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qi He
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tongyi Xu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Weiguan Zhang
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China
| | - Zhengchun Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bo Meng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
22
|
Kim KL, Cho SH, Lee JB, Kim G, Lee K, Lee SW, Kang HS, Park C, Ahn JH, Shim W, Bae I, Park C. Transparent and Flexible Graphene Pressure Sensor with Self-Assembled Topological Crystalline Ionic Gel. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19319-19329. [PMID: 37022806 DOI: 10.1021/acsami.3c01375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
This study demonstrates transparent and flexible capacitive pressure sensors using a high-k ionic gel composed of an insulating polymer (poly(vinylidene fluoride-co-trifluoroethylene-co-chlorofluoroethylene), P(VDF-TrFE-CFE)) blended with an ionic liquid (IL; 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide, [EMI][TFSA]). The thermal melt recrystallization of the P(VDF-TrFE-CFE):[EMI][TFSA] blend films develops the characteristic topological semicrystalline surface of the films, making them highly sensitive to pressure. Using optically transparent and mechanically flexible graphene electrodes, a novel pressure sensor is realized with the topological ionic gel. The sensor exhibits a sufficiently large air dielectric gap between graphene and the topological ionic gel, resulting in a large variation in capacitance before and after the application of various pressures owing to the pressure-sensitive reduction of the air gap. The developed graphene pressure sensor exhibits a high sensitivity of 10.14 kPa-1 at 20 kPa, rapid response times of <30 ms, and durable device operation with 4000 repeated ON/OFF cycles. Furthermore, broad-range detections from lightweight objects to human motion are successfully achieved, demonstrating that the developed pressure sensor with a self-assembled crystalline topology is potentially suitable for a variety of cost-effective wearable applications.
Collapse
Affiliation(s)
- Kang Lib Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sung Hwan Cho
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jae-Bok Lee
- School of Electrical and Electronic Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Gwangmook Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyuho Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Seung Won Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Han Sol Kang
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Chanho Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Wooyoung Shim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Insung Bae
- Department of Advanced Materials Engineering, Hannam University, Yuseong-daero 1646, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
23
|
Zhao X, Zhao S, Zhang X, Su Z. Recent progress in flexible pressure sensors based on multiple microstructures: from design to application. NANOSCALE 2023; 15:5111-5138. [PMID: 36852534 DOI: 10.1039/d2nr06084a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flexible pressure sensors (FPSs) have been widely studied in the fields of wearable medical monitoring and human-machine interaction due to their high flexibility, light weight, sensitivity, and easy integration. To better meet these application requirements, key sensing properties such as sensitivity, linear sensing range, pressure detection limits, response/recovery time, and durability need to be effectively improved. Therefore, researchers have extensively and profoundly researched and innovated on the structure of sensors, and various microstructures have been designed and applied to effectively improve the sensing performance of sensors. Compared with single microstructures, multiple microstructures (MMSs) (including hierarchical, multi-layered and hybrid microstructures) can improve the sensing performance of sensors to a greater extent. This paper reviews the recent research progress in the design and application of FPSs with MMSs and systematically summarizes the types, sensing mechanisms, and preparation methods of MMSs. In addition, we summarize the applications of FPSs with MMSs in the fields of human motion detection, health monitoring, and human-computer interaction. Finally, we provide an outlook on the prospects and challenges for the development of FPSs.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Shujing Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| |
Collapse
|
24
|
Wu S, Yang C, Hu J, Pan M, Qiu W, Guo Y, Sun K, Xu Y, Li P, Peng J, Zhang Q. Wide-Range Linear Iontronic Pressure Sensor with Two-Scale Random Microstructured Film for Underwater Detection. ACS OMEGA 2022; 7:43923-43933. [PMID: 36506201 PMCID: PMC9730760 DOI: 10.1021/acsomega.2c05186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
A broad linear range of ionic flexible sensors (IFSs) with high sensitivity is vital to guarantee accurate pressure acquisition and simplify back-end circuits. However, the issue that sensitivity gradually decreases as the applied pressure increases hinders the linearity over the whole working range and limits its wide-ranging application. Herein, we design a two-scale random microstructure ionic gel film with rich porosity and a rough surface. It increases the buffer space during compression, enabling the stress deformation to be more uniform, which makes sure that the sensitivity maintains steady as the pressure loading. In addition, we develop electrodes with multilayer graphene produced by a roll-to-roll process, utilizing its large interlayer spacing and ion-accessible surface area. It benefits the migration and diffusion of ions inside the electrolyte, which increases the unit area capacitance and sensitivity, respectively. The IFS shows ultra-high linearity and a linear range (correlation coefficient ∼ 0.9931) over 0-1 MPa, an excellent sensitivity (∼12.8 kPa-1), a fast response and relaxation time (∼20 and ∼30 ms, respectively), a low detection limit (∼2.5 Pa), and outstanding mechanical stability. This work offers an available path to achieve wide-range linear response, which has potential applications for attaching to soft robots, followed with sensing slight disturbances induced by ships or submersibles.
Collapse
Affiliation(s)
- Shaowei Wu
- College of Intelligent Science, National University of Defense Technology, Changsha410073, China
| | - Chengxiu Yang
- College of Intelligent Science, National University of Defense Technology, Changsha410073, China
| | - Jiafei Hu
- College of Intelligent Science, National University of Defense Technology, Changsha410073, China
| | - Mengchun Pan
- College of Intelligent Science, National University of Defense Technology, Changsha410073, China
| | - Weicheng Qiu
- College of Intelligent Science, National University of Defense Technology, Changsha410073, China
| | - Yanrui Guo
- College of Intelligent Science, National University of Defense Technology, Changsha410073, China
| | - Kun Sun
- College of Intelligent Science, National University of Defense Technology, Changsha410073, China
| | - Yujing Xu
- College of Intelligent Science, National University of Defense Technology, Changsha410073, China
| | - Peisen Li
- College of Intelligent Science, National University of Defense Technology, Changsha410073, China
| | - Junping Peng
- College of Intelligent Science, National University of Defense Technology, Changsha410073, China
| | - Qi Zhang
- College of Intelligent Science, National University of Defense Technology, Changsha410073, China
| |
Collapse
|
25
|
Zhang J, Zhao N, Qu F. Bio-inspired flapping wing robots with foldable or deformable wings: a review. BIOINSPIRATION & BIOMIMETICS 2022; 18:011002. [PMID: 36317380 DOI: 10.1088/1748-3190/ac9ef5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Traditional flapping-wing robots (FWRs) obtain lift and thrust by relying on the passive deformation of their wings which cannot actively fold or deform. In contrast, flying creatures such as birds, bats, and insects can maneuver agilely through active folding or deforming their wings. Researchers have developed many bio-inspired foldable or deformable wings (FDWs) imitating the wings of flying creatures. The foldable wings refer to the wings like the creatures' wings that can fold in an orderly manner close to their bodies. Such wings have scattered feathers or distinct creases that can be stacked and folded to reduce the body envelope, which in nature is beneficial for these animals to prevent wing damage and ensure agility in crossing bushes. The deformable wings refer to the active deformation of the wings using active driving mechanisms and the passive deformation under the aerodynamic force, which functionally imitates the excellent hydrodynamic performance of the deformable body and wings of the creatures. However, the shape and external profile changes of deformable wings tend to be much smaller than that of folding wings. FDWs enable the FWRs to improve flight degree of flexibility, maneuverability, and efficiency and reduce flight energy consumption. However, FDWs still need to be studied, and a comprehensive review of the state-of-the-art progress of FDWs in FWR design is lacking. This paper analyzes the wing folding and deformation mechanisms of the creatures and reviews the latest progress of FWRs with FDWs. Furthermore, we summarize the current limitations and propose future directions in FDW design, which could help researchers to develop better FWRs for safe maneuvering in obstacle-dense environments.
Collapse
Affiliation(s)
- Jun Zhang
- The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Ning Zhao
- The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Feiyang Qu
- The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|
26
|
Wei D, Guo J, Qiu Y, Liu S, Mao J, Liu Y, Chen Z, Wu H, Yin Z. Monitoring the delicate operations of surgical robots via ultra-sensitive ionic electronic skin. Natl Sci Rev 2022; 9:nwac227. [PMID: 36600986 PMCID: PMC9798889 DOI: 10.1093/nsr/nwac227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/22/2022] [Accepted: 09/29/2022] [Indexed: 01/07/2023] Open
Abstract
The arrival of surgical robots in high-end medical equipment is a landmark, and the realization of tactile sensation a major challenge in this important cutting-edge research field. Aiming to address this issue, we present ultra-sensitive ionic electronic skin in the form of flexible capacitive pressure sensors, which incorporate multistage bionic microstructures in ion gels for the purpose of monitoring the delicate operations of surgical robots. Significantly, the ionic skin exhibits an ultra-high sensitivity of 9484.3 kPa-1 (<15 kPa), and the sensitivity remains higher than 235 kPa-1 in the wide range of 15-155 kPa. The device has also achieved a detection limit as low as 0.12 Pa or, equivalently, 0.31 mg, fast response within 24 ms, and high robustness (loading/unloading for 5000 cycles without fatigue). The sensor facilitates the challenging task of tele-operated robotic threading, which exceeds the human tactile perception limit when threading a needle. We have also confirmed that ionic skin can be used in robot-assisted invasive surgery, such as incision/resection of tissues and suturing of wounds, providing tactile information to surgeons to improve operation success rates. The flexible ionic skin is capable of conforming to the various shapes of robotic manipulators, thus has great promise for applications in robotic dexterous manipulation, prosthetics and human-machine interfaces.
Collapse
Affiliation(s)
- Danyang Wei
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiajie Guo
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuqi Qiu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaoyu Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiangyan Mao
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yutian Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hao Wu
- Corresponding author. E-mail:
| | | |
Collapse
|
27
|
Cheng X, Cai J, Xu J, Gong D. High-Performance Strain Sensors Based on Au/Graphene Composite Films with Hierarchical Cracks for Wide Linear-Range Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39230-39239. [PMID: 35988067 DOI: 10.1021/acsami.2c10226] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stretchable strain sensors based on nanomaterial thin films have aroused extensive interest for the strain perception of smart skins. However, it still remains challenging to have them achieve high sensitivity over wide linear working ranges. Herein, we propose a facile strategy to fabricate stretchable strain sensors based on Au/graphene composite films (AGCFs) with hierarchical cracks and demonstrate their superior sensing performances. The polydimethylsiloxane substrates were covered with self-assembled graphene films (SAGFs) and sputtered with Au, and then prestretching was applied to introduce hierarchical cracks. The AGCF strain sensors exhibited high sensitivity (gauge factor (GF) ≈ 153) and favorable linearity (R2 ≈ 0.9975) in the wide working range (0-20%) with ultralow overshooting (∼1.7% at 20%), fast response (<42.5 ms), and also excellent cycling stability (1500 cycles). Besides, these patternable sensors could further achieve higher GF (∼320) via pattern designing. The dominant effect of the intermediate wrinkled SAGFs in forming hierarchical cracks was studied, and the linear sensing mechanism of the as-formed fractal microstructures was also revealed in detail. Moreover, the AGCF strain sensors were tested for motion monitoring of the human body and electronic bird. Due to the remarkable versatility, scalable fabrication, and integration capability, these sensors demonstrate great potential to construct smart skins.
Collapse
Affiliation(s)
- Xiang Cheng
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jun Cai
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jiahua Xu
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - De Gong
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
28
|
Yu B, Luo Y, Li J, Ye H, Li KH. Interface Engineering in Chip-Scale GaN Optical Devices for Near-Hysteresis-Free Hydraulic Pressure Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38351-38357. [PMID: 35951558 DOI: 10.1021/acsami.2c09291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, a compact, near-hysteresis-free hydraulic pressure sensor is presented through interface engineering in a GaN chip-scale optical device. The sensor consists of a monolithic GaN-on-sapphire device responsible for light emission and detection and a multilevel microstructured polydimethylsiloxane (PDMS) film prepared through a low-cost molding process using sandpaper as a template. The micro-patterned PDMS film functions as a pressure-sensing medium to effectively modulate the reflectance properties at the sapphire interface during pressure loading and unloading. The interface engineering endows the GaN optical device with near-hysteresis-free performance over a wide pressure range of up to 0-800 kPa. Verified by a series of experimental measurements on its dynamic responses, the tiny hydraulic sensor exhibits superior performance in hysteresis, stability, repeatability, and response time, indicating its considerable potential for a broad range of practical applications.
Collapse
Affiliation(s)
- Binlu Yu
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yumeng Luo
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Li
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huaiyu Ye
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kwai Hei Li
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
29
|
Chen Z, Zhang Y, Zhu B, Wu Y, Du X, Lin L, Wu D. Laser-Sculptured Hierarchical Spinous Structures for Ultra-High-Sensitivity Iontronic Sensors with a Broad Operation Range. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19672-19682. [PMID: 35442620 DOI: 10.1021/acsami.2c01356] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tactile pressure sensing over a wide operation range (>1 MPa) is challenging for a variety of applications in fields such as aviation, oceanography, and biomedicine. Recently, innovative strategies have been utilized to improve the performances of tactile sensors using specially designed structures, dielectric layers, and electrodes. Here, a hierarchical structural design based on ionic gel films has been utilized to build iontronic pressure sensors with ultrahigh sensitivities and broad operation ranges. Sculptured patterns made by a controlled CO2 laser scanning process have been produced on polyimide films to achieve two kinds of protrusion structures for high specific surface areas and strength to withstand high pressure. The iontronic sensor has been constructed by adding two screen-printed electrodes of high surface areas to achieve an ultrahigh sensitivity of 2593 kPa-1 and a wide pressure range from 0 Pa to 3.36 MPa. The prototype device also has a fast response and recovery time of 26 and 13 ms, respectively, and an excellent mechanical durability in the endurance test of over 2700 repeated loading and unloading cycles under a pressure of 1 MPa. Several application examples have been demonstrated, including the detection of physiological signals on human volunteers, the feedback control of intelligent robots, the grasping operation of underwater soft grippers, and the environmental wind-speed monitoring. As such, this work demonstrates a versatile and economical methodology to produce high-performance flexible sensors for various potential applications.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| | - Yang Zhang
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| | - Bin Zhu
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| | - Yigen Wu
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| | - Xiaohui Du
- Sensor and Network Control Center, Instrumentation Technology and Economy Institute, Beijing 100055, China
| | - Liwei Lin
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - Dezhi Wu
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| |
Collapse
|
30
|
Xu D, Duan L, Yan S, Wang Y, Cao K, Wang W, Xu H, Wang Y, Hu L, Gao L. Monolayer MoS 2-Based Flexible and Highly Sensitive Pressure Sensor with Wide Sensing Range. MICROMACHINES 2022; 13:660. [PMID: 35630127 PMCID: PMC9146476 DOI: 10.3390/mi13050660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023]
Abstract
Flexible pressure sensors play an important role in flexible robotics, human-machine interaction (HMI), and human physiological information. However, most of the reported flexible pressure sensors suffer from a highly nonlinear response and a significant decrease in sensitivity at high pressures. Herein, we propose a flexible novel iontronic pressure sensor based on monolayer molybdenum disulfide (MoS2). Based on the unique structure and the excellent mechanical properties as well as the large intercalation capacitance of MoS2, the prepared sensor holds an ultra-high sensitivity (Smax = 89.75 kPa-1) and a wide sensing range (722.2 kPa). Further, the response time and relaxation time of the flexible sensor are only 3 ms, respectively, indicating that the device can respond to external pressure rapidly. In addition, it shows long-term cycling stability (over 5000 cycles with almost no degradation) at a high pressure of 138.9 kPa. Finally, it is demonstrated that the sensor can be used in physiological information monitoring and flexible robotics. It is anticipated that our prepared sensor provide a reliable approach to advance the theory and practicality of the flexible sensor electronics.
Collapse
Affiliation(s)
- Dandan Xu
- School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China; (D.X.); (L.D.); (S.Y.); (H.X.); (Y.W.)
- CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Xi’an 710071, China
| | - Ling Duan
- School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China; (D.X.); (L.D.); (S.Y.); (H.X.); (Y.W.)
| | - Suyun Yan
- School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China; (D.X.); (L.D.); (S.Y.); (H.X.); (Y.W.)
| | - Yong Wang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710171, China;
| | - Ke Cao
- School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China; (D.X.); (L.D.); (S.Y.); (H.X.); (Y.W.)
| | - Weidong Wang
- School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China; (D.X.); (L.D.); (S.Y.); (H.X.); (Y.W.)
- CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Xi’an 710071, China
| | - Hongcheng Xu
- School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China; (D.X.); (L.D.); (S.Y.); (H.X.); (Y.W.)
| | - Yuejiao Wang
- School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China; (D.X.); (L.D.); (S.Y.); (H.X.); (Y.W.)
| | - Liangwei Hu
- School of Aerospace Engineering, Xiamen University, Xiamen 361102, China;
| | - Libo Gao
- School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China; (D.X.); (L.D.); (S.Y.); (H.X.); (Y.W.)
| |
Collapse
|
31
|
Bai N, Wang L, Xue Y, Wang Y, Hou X, Li G, Zhang Y, Cai M, Zhao L, Guan F, Wei X, Guo CF. Graded Interlocks for Iontronic Pressure Sensors with High Sensitivity and High Linearity over a Broad Range. ACS NANO 2022; 16:4338-4347. [PMID: 35234457 DOI: 10.1021/acsnano.1c10535] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Flexible pressure sensors that have high sensitivity, high linearity, and a wide pressure-response range are highly desired in applications of robotic sensation and human health monitoring. The challenge comes from the incompressibility of soft materials and the stiffening of microstructures in the device interfaces that lead to gradually saturated response. Therefore, the signal is nonlinear and pressure-response range is limited. Here, we show an iontronic flexible pressure sensor that can achieve high sensitivity (49.1 kPa-1), linear response (R2 > 0.995) over a broad pressure range (up to 485 kPa) enabled by graded interlocks of an array of hemispheres with fine pillars in the ionic layer. The high linearity comes from the fact that the pillar deformation can compensate for the effect of structural stiffening. The response-relaxation time of the sensor is <5 ms, allowing the device to detect vibration signals with frequencies up to 200 Hz. Our sensor has been used to recognize objects with different weights based on machine learning during the gripper grasping tasks. This work provides a strategy to make flexible pressure sensors that have combined performances of high sensitivity, high linearity, and wide pressure-response range.
Collapse
Affiliation(s)
- Ningning Bai
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiheng Xue
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Wang
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Xingyu Hou
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gang Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuan Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Minkun Cai
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lingyu Zhao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fangyi Guan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xueyong Wei
- State key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
32
|
Liu Y, Sheng Z, Huang J, Liu W, Ding H, Peng J, Zhong B, Sun Y, Ouyang X, Cheng H, Wang X. Moisture-resistant MXene-sodium alginate sponges with sustained superhydrophobicity for monitoring human activities. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 432:134370. [PMID: 35110969 PMCID: PMC8803272 DOI: 10.1016/j.cej.2021.134370] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Wearable mechanical sensors are easily influenced by moisture resulting in inaccuracy for monitoring human health and body motions. Though the superhydrophobic barrier has been extensively explored as passive water repel strategy on the sensor surface, the dense superhydrophobic surface not only limits the sensor working under large deformations but also inevitable degradation in high humidity or saturation water vapor environments. This work reports a superhydrophobic MXene-sodium alginate sponge (SMSS) pressure sensor with a low voltage Joule heating effect to provide sustain moisture-insensitive property for both sensing performance and superhydrophobicity by heating-driven water molecules away. Because of the positive temperature coefficient under pressure applied, the Joule heating can provides a stable temperature to the moisture-insensitivity property during the whole dynamic pressure cycled. Therefore, the pressure sensor with a simple spray-coating superhydrophobic coating on the outer layer demonstrates key capabilities even in extreme use scenarios with high humidity or water vapor and also provides stable and reliable bio-signal monitoring.
Collapse
Affiliation(s)
- Yangchengyi Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Zhong Sheng
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Jielong Huang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Weiyi Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Hongyan Ding
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Jinfeng Peng
- School of Mechanical Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Bowen Zhong
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yuhui Sun
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Xiaoping Ouyang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiufeng Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
33
|
Zhang W, Guo Q, Duan Y, Xu Q, Shang C, Li N, Peng Z. Touchless Sensing Interface Based on the Magneto-Piezoresistive Effect of Magnetic Microstructures with Stacked Conductive Coating. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61422-61433. [PMID: 34905921 DOI: 10.1021/acsami.1c19137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Robotics capable of human-like operations need to have electronic skin (e-skin) with not only tactile sensing functions but also proximity perception abilities. Especially, under the current widespread of COVID-19 pandemic, touchless interfaces are highly desirable. Magnetoreception, with inherent specificity for magnetic objects, is an effective approach to construct a non-contact sensing e-skin. In this work, we propose a new touchless sensing mechanism based on the magneto-piezoresistive effect. The substrate of the sensor is made of hierarchically microstructured ferromagnetic polydimethylsiloxane, coated with a three-dimensional (3D) piezoresistive network. The 3D network is constructed by stacked layers of reduced graphene oxide and carbon nanotubes through layer-by-layer deposition. With this integrated design, a magnetic force induced on the ferromagnetic substrate can seamlessly be applied to the piezoresistive layer of the sensor. Because the magnetic force relates strongly to the approaching distance, the position information can be transduced into the resistance change of the piezoresistive network. The flexible proximity sensor exhibits an ultrahigh spatial resolution of 60 μm, a sensitivity of 50.47 cm-1, a wide working range of 6 cm, and a fast response of 10 ms. The repeatable performance of the sensor is shown by over 5000 cycles of approaching-separation test. We also demonstrate successful application of the sensor in 3D positioning and motion tracking settings, which is critical for touchless tactile perception-based human-machine interactions.
Collapse
Affiliation(s)
- Weiguan Zhang
- Center for Stretchable Electronics and Nano Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qinhua Guo
- Center for Stretchable Electronics and Nano Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yu Duan
- Center for Stretchable Electronics and Nano Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qunhui Xu
- Center for Stretchable Electronics and Nano Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chao Shang
- Center for Stretchable Electronics and Nano Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ning Li
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhengchun Peng
- Center for Stretchable Electronics and Nano Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|