1
|
Retout M, Lepeintre V, Amer L, Yim W, Jokerst JV. Activatable Photoacoustic Probe for Imaging Infection: Gold Nanorod Dissociation In Vivo Reports Bacterial Protease Activity. ACS NANO 2025; 19:12041-12052. [PMID: 40116426 DOI: 10.1021/acsnano.4c17874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
We present a strategy for constructing activatable photoacoustic imaging (PAI) probes for in vivo enzyme activity measurements, based on a dissociation strategy previously applied to in vitro sensing. Unlike conventional nanoparticle aggregation strategies, dissociation minimizes false positives and functions effectively in complex biological environments. Overcoming the challenge of dissociating nanostructure aggregates, which arises from the strong van der Waals forces at short distances, we demonstrate the controlled assembly and dissociation of citrate-capped gold nanorods (AuNRs-citrate) using a diarginine peptide additive and a thiolated polyethylene glycol (HS-PEG-OMe), respectively. This assembly dissociation mechanism enables precise control of the optical and photoacoustic (PA) properties of AuNRs in both in vitro and in vivo settings. Building on these findings, we engineered an enzyme-sensitive PAI probe (AuNRs@RgpB) composed of AuNR assemblies and a PEG-peptide conjugate with a protease-specific cleavage sequence. The probe detects Arg-specific gingipain (RgpB), a protease expressed by Porphyromonas gingivalis associated with periodontal disease and Alzheimer's disease. Proteolytic cleavage of the peptide sequence triggers AuNR dissociation, resulting in enhanced PA signal output. The probe was designed to be injected intrathecally for preclinical trials to image gingipains and investigate the value of gingipain inhibitors developed for Alzheimer's disease. The probe's performance was characterized in vitro using UV-vis spectroscopy and PAI, achieving detection limits of 5 and 20 nM, respectively. In vivo studies involved intracranial injection of AuNRs@RgpB into RgpB-containing murine models, with PA monitoring over time. RgpB activity produced a four-fold PA signal increase within 2 h, while P. gingivalis-infected mice showed similar signal enhancement. Specificity was confirmed by negligible responses to Fusobacterium nucleatum, a non-RgpB-producing bacterium. Additionally, the system demonstrated utility in drug development by successfully monitoring the inhibition of RgpB activity using RgpB inhibitors (leupeptin and KYT-1) in vivo models. Beyond its immediate application to RgpB detection, this modular approach to plasmonic-based sensing holds significant potential for detecting other proteases, advancing both nanotechnology and protease-targeted diagnostics.
Collapse
Affiliation(s)
- Maurice Retout
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Victor Lepeintre
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, Brussels B-1050, Belgium
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Brussels B-1050, Belgium
| | - Lubna Amer
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Jin Z, Yim W, Retout M, Housel E, Zhong W, Zhou J, Strano MS, Jokerst JV. Colorimetric sensing for translational applications: from colorants to mechanisms. Chem Soc Rev 2024; 53:7681-7741. [PMID: 38835195 PMCID: PMC11585252 DOI: 10.1039/d4cs00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Colorimetric sensing offers instant reporting via visible signals. Versus labor-intensive and instrument-dependent detection methods, colorimetric sensors present advantages including short acquisition time, high throughput screening, low cost, portability, and a user-friendly approach. These advantages have driven substantial growth in colorimetric sensors, particularly in point-of-care (POC) diagnostics. Rapid progress in nanotechnology, materials science, microfluidics technology, biomarker discovery, digital technology, and signal pattern analysis has led to a variety of colorimetric reagents and detection mechanisms, which are fundamental to advance colorimetric sensing applications. This review first summarizes the basic components (e.g., color reagents, recognition interactions, and sampling procedures) in the design of a colorimetric sensing system. It then presents the rationale design and typical examples of POC devices, e.g., lateral flow devices, microfluidic paper-based analytical devices, and wearable sensing devices. Two highlighted colorimetric formats are discussed: combinational and activatable systems based on the sensor-array and lock-and-key mechanisms, respectively. Case discussions in colorimetric assays are organized by the analyte identities. Finally, the review presents challenges and perspectives for the design and development of colorimetric detection schemes as well as applications. The goal of this review is to provide a foundational resource for developing colorimetric systems and underscoring the colorants and mechanisms that facilitate the continuing evolution of POC sensors.
Collapse
Affiliation(s)
- Zhicheng Jin
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maurice Retout
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Emily Housel
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jiajing Zhou
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jesse V Jokerst
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Wang M, Tao M, Zhu W, Liu W, Liu Z, Hai Z. Tumor-Targeted Fluorescent/Photoacoustic Imaging of Legumain Activity In Vivo. ACS Sens 2023; 8:4473-4477. [PMID: 37982675 DOI: 10.1021/acssensors.3c01922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Legumain has been identified as a target for diagnosis and treatment of associated cancers. Therefore, real-time imaging of legumain activity in vivo is helpful in diagnosing and evaluating therapeutic efficacy of associated cancers. Fluorescent/photoacoustic (FL/PA) dual-modal imaging developed rapidly because of its good sensitivity and spatial resolution. As far as we know, a tumor-targeted probe for FL/PA imaging of legumain activity in vivo has not been reported. Hence, we intended to develop a tumor-targeted hemicyanine (HCy) probe (HCy-AAN-Bio) for FL/PA imaging of legumain in vivo. The control probe HCy-AAN does not have tumor-targeting ability. Legumain can specifically cleave HCy-AAN-Bio or HCy-AAN with the generation of FL/PA signal while more HCy-AAN-Bio could be recognized by legumain than HCy-AAN with higher sensitivity in vitro. Due to the tumor-targeting ability, HCy-AAN-Bio could image 4T1 cells with an additional 1.3-fold FL enhancement and 1.9-fold PA enhancement than HCy-AAN. In addition, HCy-AAN-Bio could image legumain activity in vivo with an additional 1.5-fold FL enhancement and 1.9-fold PA enhancement than HCy-AAN. We expected that HCy-AAN-Bio will be a powerful tool for early diagnosis of associated cancer.
Collapse
Affiliation(s)
- Minghui Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Menglin Tao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Wujuan Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Wenbin Liu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Zhengjie Liu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Zijuan Hai
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| |
Collapse
|
4
|
Ling C, Jin Z, Yeung J, da Silva EB, Chang YC, He T, Yim W, O'Donoghue AJ, Jokerst JV. Valence-driven colorimetric detection of norovirus protease via peptide-AuNP interactions. Chem Commun (Camb) 2023; 59:12459-12462. [PMID: 37782049 DOI: 10.1039/d3cc04142e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
We report here a colorimetric method for rapid detection of norovirus based on the valence-driven peptide-AuNP interactions. We engineered a peptide sequence named K1 with a cleavage sequence in between two lysine residues. The positively charged lysine groups aggregated the negatively charged nanoparticles leading to a purple color change. There was a red color when the cleavage sequence was digested by the Southampton norovirus 3C-like protease (SV3CP)-a protease involved in the life cycle of Human norovirus (HNV). The limit of detection was determined to be 320 nM in Tris buffer. We further show that the sensor has good performance in exhaled breath condensate, urine, and faecal matter. This research provides a potential easy and quick way to selectively detect HNV.
Collapse
Affiliation(s)
- Chuxuan Ling
- Department of Nano and Chemical Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Zhicheng Jin
- Department of Nano and Chemical Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Justin Yeung
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elany Barbosa da Silva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yu-Ci Chang
- Program in Materials Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tengyu He
- Program in Materials Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wonjun Yim
- Program in Materials Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jesse V Jokerst
- Department of Nano and Chemical Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
- Program in Materials Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Jin Z, Ling C, Yim W, Chang YC, He T, Li K, Zhou J, Cheng Y, Li Y, Yeung J, Wang R, Fajtová P, Amer L, Mattoussi H, O'Donoghue AJ, Jokerst JV. Endoproteolysis of Oligopeptide-Based Coacervates for Enzymatic Modeling. ACS NANO 2023; 17:16980-16992. [PMID: 37579082 PMCID: PMC10614163 DOI: 10.1021/acsnano.3c04259] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Better insights into the fate of membraneless organelles could strengthen the understanding of the transition from prebiotic components to multicellular organisms. Compartmentalized enzyme reactions in a synthetic coacervate have been investigated, yet there remains a gap in understanding the enzyme interactions with coacervate as a substrate hub. Here, we study how the molecularly crowded nature of the coacervate affects the interactions of the embedded substrate with a protease. We design oligopeptide-based coacervates that comprise an anionic Asp-peptide (D10) and a cationic Arg-peptide (R5R5) with a proteolytic cleavage site. The coacervates dissolve in the presence of the main protease (Mpro) implicated in the coronavirus lifecycle. We capitalize on the condensed structure, introduce a self-quenching mechanism, and model the enzyme kinetics by using Cy5.5-labeled peptides. The determined specificity constant (kcat/KM) is 5817 M-1 s-1 and is similar to that of the free substrate. We further show that the enzyme kinetics depend on the type and quantity of dye incorporated into the coacervates. Our work presents a simple design for enzyme-responsive coacervates and provides insights into the interactions between the enzyme and coacervates as a whole.
Collapse
Affiliation(s)
- Zhicheng Jin
- Department of NanoEngineering, University of California, San Diego, La Jolla 92093, California, United States
| | - Chuxuan Ling
- Department of NanoEngineering, University of California, San Diego, La Jolla 92093, California, United States
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, La Jolla 92093, California, United States
| | - Yu-Ci Chang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla 92093, California, United States
| | - Tengyu He
- Materials Science and Engineering Program, University of California, San Diego, La Jolla 92093, California, United States
| | - Ke Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jiajing Zhou
- Department of NanoEngineering, University of California, San Diego, La Jolla 92093, California, United States
| | - Yong Cheng
- Department of NanoEngineering, University of California, San Diego, La Jolla 92093, California, United States
| | - Yi Li
- Department of NanoEngineering, University of California, San Diego, La Jolla 92093, California, United States
| | - Justin Yeung
- Department of Bioengineering, University of California, San Diego, La Jolla 92093, California, United States
| | - Ruijia Wang
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla 92093, California, United States
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla 92093, California, United States
| | - Lubna Amer
- Materials Science and Engineering Program, University of California, San Diego, La Jolla 92093, California, United States
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee 32306, Florida, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla 92093, California, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla 92093, California, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla 92093, California, United States
- Department of Radiology, University of California, San Diego, La Jolla 92093, California, United States
| |
Collapse
|
6
|
Lee M, Landers K, Chan J. Activity-Based Photoacoustic Probes for Detection of Disease Biomarkers beyond Oncology. ACS BIO & MED CHEM AU 2023; 3:223-232. [PMID: 37363076 PMCID: PMC10288495 DOI: 10.1021/acsbiomedchemau.3c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/28/2023]
Abstract
The earliest activity-based photoacoustic (PA) probes were developed as diagnostic agents for cancer. Since this seminal work over a decade ago that specifically targeted matrix metalloproteinase-2, PA instrumentation, dye platforms, and probe designs have advanced considerably, allowing for the detection of an impressive list of cancer types. However, beyond imaging for oncology purposes, the ability to selectively visualize a given disease biomarker, which can range from aberrant enzymatic activity to the overproduction of reactive small molecules, is also being exploited to study a myriad of noncancerous disease states. In this review, we have assembled a collection of recent papers to highlight the design principles that enable activity-based sensing via PA imaging with respect to biomarker identification and strategies to trigger probe activation under specific conditions.
Collapse
Affiliation(s)
- Michael
C. Lee
- Department of Chemistry,
Beckman Institute for Advanced Science and Technology, and Cancer
Center at Illinois, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United
States
| | - Kayla Landers
- Department of Chemistry,
Beckman Institute for Advanced Science and Technology, and Cancer
Center at Illinois, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United
States
| | - Jefferson Chan
- Department of Chemistry,
Beckman Institute for Advanced Science and Technology, and Cancer
Center at Illinois, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United
States
| |
Collapse
|
7
|
Jin Z, Yeung J, Zhou J, Retout M, Yim W, Fajtová P, Gosselin B, Jabin I, Bruylants G, Mattoussi H, O'Donoghue AJ, Jokerst JV. Empirical Optimization of Peptide Sequence and Nanoparticle Colloidal Stability: The Impact of Surface Ligands and Implications for Colorimetric Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20483-20494. [PMID: 37058597 PMCID: PMC10614165 DOI: 10.1021/acsami.3c00862] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Surface ligands play a critical role in controlling and defining the properties of colloidal nanocrystals. These aspects have been exploited to design nanoparticle aggregation-based colorimetric sensors. Here, we coated 13-nm gold nanoparticles (AuNPs) with a large library of ligands (e.g., from labile monodentate monomers to multicoordinating macromolecules) and evaluated their aggregation propensity in the presence of three peptides containing charged, thiolate, or aromatic amino acids. Our results show that AuNPs coated with the polyphenols and sulfonated phosphine ligands were good choices for electrostatic-based aggregation. AuNPs capped with citrate and labile-binding polymers worked well for dithiol-bridging and π-π stacking-induced aggregation. In the example of electrostatic-based assays, we stress that good sensing performance requires aggregating peptides of low charge valence paired with charged NPs with weak stability and vice versa. We then present a modular peptide containing versatile aggregating residues to agglomerate a variety of ligated AuNPs for colorimetric detection of the coronavirus main protease. Enzymatic cleavage liberates the peptide segment, which in turn triggers NP agglomeration and thus rapid color changes in <10 min. The protease detection limit is 2.5 nM.
Collapse
Affiliation(s)
- Zhicheng Jin
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Justin Yeung
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Jiajing Zhou
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Maurice Retout
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Bryan Gosselin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), avenue F. D. Roosevel 50, CP160/06, B-1050 Brussels, Belgium
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), avenue F. D. Roosevel 50, CP160/06, B-1050 Brussels, Belgium
| | - Gilles Bruylants
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
8
|
Peng Q, Xiong T, Ji F, Ren J, Jia L. Reduction-Activatable Fluorogenic Nanobody for Targeted and Low-Background Bioimaging. Anal Chem 2023; 95:2804-2811. [PMID: 36709506 DOI: 10.1021/acs.analchem.2c04132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Environment-sensitive fluorogenic antibodies enable target-specific bioimaging with reduced unspecific background signal and improved spatiotemporal resolution. However, current strategies for the construction of fluorogenic antibodies are hard to handle due to challenges that lie in the prior design of fluorogenic probes and subsequent antibody labeling. Here, we report a simple strategy to generate a fluorogenic nanobody, which we term D-body, by in situ incorporation of a reduction-responsive Nile blue foldamer which is self-quenched via a dimerization-caused quenching mechanism. The D-body can be efficiently internalized by cells with high epidermal growth factor receptor expression levels and is highly fluorogenic upon lysosomal activation, allowing wash-free cell imaging with exquisite specificity and fast in vivo imaging with a high tumor-to-background ratio. The modular D-body is readily available and easy to handle, offering a platform that is highly tunable for bioimaging applications.
Collapse
Affiliation(s)
- Qiang Peng
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Tao Xiong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Fangling Ji
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jun Ren
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
9
|
Zou X, Zhao Y, Lin W. Photoacoustic/fluorescence dual-modality cyanine-based probe for real-time imaging of endogenous cysteine and in situ diagnosis of cervical cancer in vivo. Anal Chim Acta 2023; 1239:340713. [PMID: 36628718 DOI: 10.1016/j.aca.2022.340713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Cysteine (Cys), one of cellular biothiols in the organism, is associated with many diseases, such as Parkinson's disease, Alzheimer's disease, liver damage, rheumatoid arthritis, and cancer. However, activatable fluorescence/photoacoustic (FL/PA) probes for non-invasive, real-time, and deep imaging of Cys in vivo are still lacking, and this hinders the diagnosis of Cys-related diseases. Herein, we designed and synthesized a novel activated FL/PA dual-modality cyanine-base probe (FP700) for real-time detection of Cys. The probe FP700 was established with near-infrared emissive dye cyanin as the fluorophore, linking with 2, 4-dinitrobenzenesulfonyl group as the recognition moiety for Cys. Using the FP700, we found that the FP700 exhibited intensive "turn-on" FL/PA signals under the excitation of 700 nm, which realized noninvasive in vivo detection of exogenous Cys. Significantly, FP700 accurately detected endogenous Cys though the FL/PA dual-mode imaging technology in tumor-bearing mice and obtain 3D PA diagnostic images with deep penetration depth and spatial resolution. Thus, the new dual-modality probe FP700 has advantage of high potential for deep tumor diagnosis of Cys in vivo, which may provide a new approach for the detection of cervical cancer and identification of its potential therapeutic targets.
Collapse
Affiliation(s)
- Xiang Zou
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Yuping Zhao
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China.
| |
Collapse
|
10
|
Liu R, Xu Y, Zhang N, Qu S, Zeng W, Li R, Dai Z. Nanotechnology for Enhancing Medical Imaging. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
11
|
Tian F, Li F, Ren L, Wang Q, Jiang C, Zhang Y, Li M, Song X, Zhang S. Acoustic-Based Theranostic Probes Activated by Tumor Microenvironment for Accurate Tumor Diagnosis and Assisted Tumor Therapy. ACS Sens 2022; 7:3611-3633. [PMID: 36455009 DOI: 10.1021/acssensors.2c02129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Acoustic-based imaging techniques, including ultrasonography and photoacoustic imaging, are powerful noninvasive approaches for tumor imaging owing to sound transmission facilitation, deep tissue penetration, and high spatiotemporal resolution. Usually, imaging modes were classified into "always-on" mode and "activatable" mode. Conventional "always-on" acoustic-based probes often have difficulty distinguishing lesion regions of interest from surrounding healthy tissues due to poor target-to-background signal ratios. As compared, activatable probes have attracted attention with improved sensitivity, which can boost or amplify imaging signals only in response to specific biomolecular recognition or interactions. The tumor microenvironment (TME) exhibits abnormal physiological conditions that can be used to identify tumor sections from normal tissues. Various types of organic dyes and biomaterials can react with TME, leading to obvious changes in their optical properties. The TME also affects the self-assembly or aggregation state of nanoparticles, which can be used to design activatable imaging probes. Moreover, acoustic-based imaging probes and therapeutic agents can be coencapsulated into one nanocarrier to develop nanotheranostic probes, achieving tumor imaging and cooperative therapy. Satisfactorily, ultrasound waves not only accelerate the release of encapsulated therapeutic agents but also activate therapeutic agents to exert or enhance their therapeutic performance. Meanwhile, various photoacoustic probes can convert photon energy into heat under irradiation, achieving photoacoustic imaging and cooperative photothermal therapy. In this review, we focus on the recently developed TME-triggered ultrasound and photoacoustic theranostic probes for precise tumor imaging and targeted tumor therapy.
Collapse
Affiliation(s)
- Feng Tian
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Fengyan Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Linlin Ren
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Qi Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Chengfang Jiang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Yuqi Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Mengmeng Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Xinyue Song
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| |
Collapse
|
12
|
Jin Z, Ling C, Li Y, Zhou J, Li K, Yim W, Yeung J, Chang YC, He T, Cheng Y, Fajtová P, Retout M, O'Donoghue AJ, Jokerst JV. Spacer Matters: All-Peptide-Based Ligand for Promoting Interfacial Proteolysis and Plasmonic Coupling. NANO LETTERS 2022; 22:8932-8940. [PMID: 36346642 DOI: 10.1021/acs.nanolett.2c03052] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plasmonic coupling via nanoparticle assembly is a popular signal-generation method in bioanalytical sensors. Here, we customized an all-peptide-based ligand that carries an anchoring group, polyproline spacer, biomolecular recognition, and zwitterionic domains for functionalizing gold nanoparticles (AuNPs) as a colorimetric enzyme sensor. Our results underscore the importance of the polyproline module, which enables the SARS-CoV-2 main protease (Mpro) to recognize the peptidic ligand on nanosurfaces for subsequent plasmonic coupling via Coulombic interactions. AuNP aggregation is favored by the lowered surface potential due to enzymatic unveiling of the zwitterionic module. Therefore, this system provides a naked-eye measure for Mpro. No proteolysis occurs on AuNPs modified with a control ligand lacking a spacer domain. Overall, this all-peptide-based ligand does not require complex molecular conjugations and hence offers a simple and promising route for plasmonic sensing other proteases.
Collapse
Affiliation(s)
- Zhicheng Jin
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Chuxuan Ling
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Yi Li
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Jiajing Zhou
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Ke Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore 138634
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Justin Yeung
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Yu-Ci Chang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Tengyu He
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Yong Cheng
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Maurice Retout
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
13
|
Retout M, Jin Z, Tsujimoto J, Mantri Y, Borum R, Creyer MN, Yim W, He T, Chang YC, Jokerst JV. Di-Arginine Additives for Dissociation of Gold Nanoparticle Aggregates: A Matrix-Insensitive Approach with Applications in Protease Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52553-52565. [PMID: 36346346 PMCID: PMC10464667 DOI: 10.1021/acsami.2c17531] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We report the reversible aggregation of gold nanoparticles (AuNPs) assemblies via a di-arginine peptide additive and thiolated PEGs (HS-PEGs). The AuNPs were first aggregated by attractive forces between the citrate-capped surface and the arginine side chains. We found that the HS-PEG thiol group has a higher affinity for the AuNP surface, thus leading to redispersion and colloidal stability. In turn, there was a robust and obvious color change due to on/off plasmonic coupling. The assemblies' dissociation was directly related to the HS-PEG structural properties such as their size or charge. As an example, HS-PEGs with a molecular weight below 1 kDa could dissociate 100% of the assemblies and restore the exact optical properties of the initial AuNP suspension (prior to the assembly). Surprisingly, the dissociation capacity of HS-PEGs was not affected by the composition of the operating medium and could be performed in complex matrices such as plasma, saliva, bile, urine, cell lysates, or even seawater. The high affinity of thiols for the gold surface encompasses by far the one of endogenous molecules and is thus favored. Moreover, starting with AuNPs already aggregated ensured the absence of a background signal as the dissociation of the assemblies was far from spontaneous. Remarkably, it was possible to dry the AuNP assemblies and solubilize them back with HS-PEGs, improving the colorimetric signal generation. We used this system for protease sensing in biological fluids. Trypsin was chosen as the model enzyme, and highly positively charged peptides were conjugated to HS-PEG molecules as cleavage substrates. The increase of positive charge of the HS-PEG-peptide conjugate quenched the dissociation capacity of the HS-PEG molecules, which could only be restored by the proteolytic cleavage. Picomolar limit of detection was obtained as well as the detection in saliva or urine.
Collapse
Affiliation(s)
- Maurice Retout
- Department of NanoEngineering, University of California, San Diego, La Jolla, California92093, United States
| | - Zhicheng Jin
- Department of NanoEngineering, University of California, San Diego, La Jolla, California92093, United States
| | - Jason Tsujimoto
- Department of Bioengineering, University of California, San Diego, La Jolla, California92093, United States
| | - Yash Mantri
- Department of Bioengineering, University of California, San Diego, La Jolla, California92093, United States
| | - Raina Borum
- Department of NanoEngineering, University of California, San Diego, La Jolla, California92093, United States
| | - Matthew N Creyer
- Department of NanoEngineering, University of California, San Diego, La Jolla, California92093, United States
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California92093, United States
| | - Tengyu He
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California92093, United States
| | - Yu-Ci Chang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California92093, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla, California92093, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California92093, United States
| |
Collapse
|
14
|
Borum RM, Moore C, Mantri Y, Xu M, Jokerst JV. Supramolecular Loading of DNA Hydrogels with Dye-Drug Conjugates for Real-Time Photoacoustic Monitoring of Chemotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204330. [PMID: 36403233 PMCID: PMC9811488 DOI: 10.1002/advs.202204330] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/18/2022] [Indexed: 06/16/2023]
Abstract
A longstanding problem with conventional cancer therapy is the nonspecific distribution of chemotherapeutics. Monitoring drug release in vivo via noninvasive bioimaging can thus have value, but it is difficult to distinguish loaded from released drug in live tissue. Here, this work describes an injectable supramolecular hydrogel that allows slow and trackable release of doxorubicin (Dox) via photoacoustic (PA) tomography. Dox is covalently linked with photoacoustic methylene blue (MB) to monitor Dox before, during, and after release from the hydrogel carrier. The conjugate (MB-Dox) possesses an IC50 of 161.4 × 10-9 m against human ovarian carcinoma (SKOV3) cells and loads into a DNA-clad hydrogel with 91.3% loading efficiency due to MB-Dox's inherent intramolecular affinity to DNA. The hydrogel is biodegradable by nuclease digestion, which causes gradual release of MB-Dox. This release rate is tunable based on the wt% of the hydrogel. This hydrogel maintains distinct PA contrast on the order of days when injected in vivo and demonstrates activatable PA spectral shifts during hydrogel degradation. The released and loaded payload can be imaged relative to live tissue via PA and ultrasound signal being overlaid in real-time. The hydrogel slowed the rate of the murine intraperitoneal tumor growth 72.2% more than free Dox.
Collapse
Affiliation(s)
- Raina M. Borum
- Department of NanoEngineeringUniversity of California, San Diego9500 Gilman DriveLa JollaCalifornia92093United States
| | - Colman Moore
- Department of NanoEngineeringUniversity of California, San Diego9500 Gilman DriveLa JollaCalifornia92093United States
| | - Yash Mantri
- Department of BioEngineeringUniversity of California, San Diego9500 Gilman DriveLa JollaCalifornia92093United States
| | - Ming Xu
- Department of NanoEngineeringUniversity of California, San Diego9500 Gilman DriveLa JollaCalifornia92093United States
| | - Jesse V. Jokerst
- Department of NanoEngineeringUniversity of California, San Diego9500 Gilman DriveLa JollaCalifornia92093United States
- Department of RadiologyUniversity of California, San Diego9500 Gilman DriveLa JollaCalifornia92093United States
- Materials Science ProgramUniversity of California, San Diego9500 Gilman DriveLa JollaCalifornia92093United States
| |
Collapse
|
15
|
Xiao H, Yang X, Yang L, Yang D, Luo Y, Yang HP, Tao Z, Xiao X, Li Q. Cucurbit [8] uril-based supramolecular fluorescent biomaterials for cytotoxicity and imaging studies of kidney cells. Front Chem 2022; 10:974607. [PMID: 36092664 PMCID: PMC9451006 DOI: 10.3389/fchem.2022.974607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
An accurate diagnosis of acute kidney injury (AKI) at the early stage is critical to not only allow preventative treatments in time but also forecast probable medication toxicity for preventing AKI from starting and progressing to severe kidney damage and death. Therefore, supramolecular fluorescent biomaterials based on Q [8] and PEG-APTS have been prepared herein. This study has found that the unique properties of outer surface methine and the positive density of Q [8] can form a stable assembly with PEG-APTS, and has provided the possibility for the faster crossing of the glomerular filtration barrier to enter into the resident cells of the kidney. In addition to the excellent fluorescence properties, the as-synthesized biomaterial Q [8]@PEG-APTS has possessed significantly low biological toxicity. Most importantly, the accumulation of Q [8]@PEG-APTS in large amounts in cytoplasm and nucleus of HK2 and HMCs cells, respectively, within 24 h enabled distinguishing kidney cells when diagnosing and providing some foundation for early AKI.
Collapse
Affiliation(s)
- Han Xiao
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xia Yang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Yang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Dan Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang, China
| | - Yang Luo
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang, China
| | - Hai-Ping Yang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang, China
| | - Qiu Li
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
16
|
Gallo G, Barcick U, Coelho C, Salardani M, Camacho MF, Cajado-Carvalho D, Loures FV, Serrano SMT, Hardy L, Zelanis A, Würtele M. A proteomics-MM/PBSA dual approach for the analysis of SARS-CoV-2 main protease substrate peptide specificity. Peptides 2022; 154:170814. [PMID: 35644302 PMCID: PMC9134770 DOI: 10.1016/j.peptides.2022.170814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
The main protease Mpro of SARS-CoV-2 is a well-studied major drug target. Additionally, it has been linked to this virus' pathogenicity, possibly through off-target effects. It is also an interesting diagnostic target. To obtain more data on possible substrates as well as to assess the enzyme's primary specificity a two-step approach was introduced. First, Terminal Amine Isobaric Labeling of Substrates (TAILS) was employed to identify novel Mpro cleavage sites in a mouse lung proteome library. In a second step, using a structural homology model, the MM/PBSA variant MM/GBSA (Molecular Mechanics Poisson-Boltzmann/Generalized Born Surface Area) free binding energy calculations were carried out to determine relevant interacting amino acids. As a result, 58 unique cleavage sites were detected, including six that displayed glutamine at the P1 position. Furthermore, modeling results indicated that Mpro has a far higher potential promiscuity towards substrates than expected. The combination of proteomics and MM/PBSA modeling analysis can thus be useful for elucidating the specificity of Mpro, and thus open novel perspectives for the development of future peptidomimetic drugs against COVID-19, as well as diagnostic tools.
Collapse
Affiliation(s)
- Gloria Gallo
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Uilla Barcick
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Camila Coelho
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Murilo Salardani
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Maurício F Camacho
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Daniela Cajado-Carvalho
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Flávio V Loures
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Solange M T Serrano
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Leon Hardy
- Department of Physics, University of South Florida, Tampa, United States
| | - André Zelanis
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Martin Würtele
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil.
| |
Collapse
|
17
|
Moore C, Cheng Y, Tjokro N, Zhang B, Kerr M, Hayati M, Chang KCJ, Shah N, Chen C, Jokerst JV. A Photoacoustic-Fluorescent Imaging Probe for Proteolytic Gingipains Expressed by Porphyromonas gingivalis. Angew Chem Int Ed Engl 2022; 61:e202201843. [PMID: 35583940 PMCID: PMC9296565 DOI: 10.1002/anie.202201843] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 11/07/2022]
Abstract
Porphyromonas gingivalis is a keystone pathogen in periodontal disease. We herein report a dual-modal fluorescent and photoacoustic imaging probe for the detection of gingipain proteases secreted by P. gingivalis. Upon proteolytic cleavage by Arg-specific gingipain (RgpB), five-fold photoacoustic enhancement and >100-fold fluorescence activation was measured with detection limits of 1.1 nM RgpB and 5.0E4 CFU mL-1 bacteria in vitro. RgpB activity was imaged in porcine jaws with low-nanomolar sensitivity. Diagnostic efficacy was evaluated in gingival crevicular fluid samples from subjects with and without periodontal disease, wherein activation was correlated to qPCR-based detection of P. gingivalis (Pearson's r=0.71). Finally, photoacoustic imaging of RgpB-cleaved probe was achieved in murine brains ex vivo, with relevance and potential utility for disease models of general infection by P. gingivalis, motivated by the recent biological link between gingipain and Alzheimer's disease.
Collapse
Affiliation(s)
- Colman Moore
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093. USA
| | - Yong Cheng
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093. USA
| | - Natalia Tjokro
- Herman Ostrow School of Dentistry, University of Southern California, 925 West 34 Street, Los Angeles, CA 90089. USA
| | - Brendan Zhang
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093. USA
| | - Matthew Kerr
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093. USA
| | - Mohammed Hayati
- Herman Ostrow School of Dentistry, University of Southern California, 925 West 34 Street, Los Angeles, CA 90089. USA
| | - Kai Chiao Joe Chang
- Herman Ostrow School of Dentistry, University of Southern California, 925 West 34 Street, Los Angeles, CA 90089. USA
| | - Nisarg Shah
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093. USA
| | - Casey Chen
- Herman Ostrow School of Dentistry, University of Southern California, 925 West 34 Street, Los Angeles, CA 90089. USA
| | - Jesse V. Jokerst
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093. USA
- Materials Science Program, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093. USA
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093. USA
| |
Collapse
|
18
|
Lian J, Wang Y, Sun X, Shi Q, Meng F. Progress on Multifunction Enzyme-Activated Organic Fluorescent Probes for Bioimaging. Front Chem 2022; 10:935586. [PMID: 35910747 PMCID: PMC9326025 DOI: 10.3389/fchem.2022.935586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Bioimaging techniques are of increasing importance in clinical and related fields, which also have been successfully applied in the in vivo/in vitro imaging system. Due to the vital factor of enzymes in biological systems, enzyme-activated fluorophores, which could turn “on” the fluorescence signal from an “off” state, offer non-invasive and effective potential for the accurate bioimaging of particular cells, tissues, or bacteria. Comparing with the traditional imaging probes, enzyme-activated organic small fluorophores can visualize living cells within small animals with high sensitivity, high imaging resolution, non-invasiveness, and real-time feedback. In this mini review, well-designed enzyme-activated organic fluorescent probes with multiple functions are exclusively reviewed through the latest development and progress, focusing on probe design strategy, fluorescence property, enzyme activation process, and bioimaging applications. It is worth noting that multi-enzyme-activated strategies, which could avoid the production of “false-positive” signals in complex biological systems, effectively provide high selective and real-time bioimaging, indicating the exciting potential of intraoperative fluorescence imaging and diagnosis tools.
Collapse
Affiliation(s)
- Jie Lian
- College of Criminal Investigation, People’s Public Security University of China, Beijing, China
| | - Yipeng Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| | - Xiaomeng Sun
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| | - Quanshi Shi
- Department of Burns and Plastic Surgery, Zaozhuang Hospital of Shandong Healthcare Industry Development Group, Zaozhuang, China
| | - Fanda Meng
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- *Correspondence: Fanda Meng,
| |
Collapse
|
19
|
Moore C, Cheng Y, Tjokro N, Zhang B, Kerr M, Hayati M, Chang KCJ, Shah N, Chen C, Jokerst JV. A Photoacoustic‐Fluorescent Imaging Probe for Proteolytic Gingipains Expressed by
Porphyromonas gingivalis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Colman Moore
- Department of NanoEngineering University of California, San Diego 9500 Gilman Dr. La Jolla CA 92093 USA
| | - Yong Cheng
- Department of NanoEngineering University of California, San Diego 9500 Gilman Dr. La Jolla CA 92093 USA
| | - Natalia Tjokro
- Herman Ostrow School of Dentistry University of Southern California 925 West 34th Street Los Angeles CA 90089 USA
| | - Brendan Zhang
- Department of NanoEngineering University of California, San Diego 9500 Gilman Dr. La Jolla CA 92093 USA
- Current address: Diazyme Laboratories Inc
| | - Matthew Kerr
- Department of NanoEngineering University of California, San Diego 9500 Gilman Dr. La Jolla CA 92093 USA
| | - Mohammed Hayati
- Herman Ostrow School of Dentistry University of Southern California 925 West 34th Street Los Angeles CA 90089 USA
| | - Kai Chiao Joe Chang
- Herman Ostrow School of Dentistry University of Southern California 925 West 34th Street Los Angeles CA 90089 USA
| | - Nisarg Shah
- Department of NanoEngineering University of California, San Diego 9500 Gilman Dr. La Jolla CA 92093 USA
| | - Casey Chen
- Herman Ostrow School of Dentistry University of Southern California 925 West 34th Street Los Angeles CA 90089 USA
| | - Jesse V. Jokerst
- Department of NanoEngineering University of California, San Diego 9500 Gilman Dr. La Jolla CA 92093 USA
- Materials Science Program University of California, San Diego 9500 Gilman Dr. La Jolla CA 92093 USA
- Department of Radiology University of California, San Diego 9500 Gilman Dr. La Jolla CA 92093 USA
| |
Collapse
|
20
|
Mantri Y, Dorobek TR, Tsujimoto J, Penny WF, Garimella PS, Jokerst JV. Monitoring peripheral hemodynamic response to changes in blood pressure via photoacoustic imaging. PHOTOACOUSTICS 2022; 26:100345. [PMID: 35295617 PMCID: PMC8918860 DOI: 10.1016/j.pacs.2022.100345] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 05/18/2023]
Abstract
Chronic wounds and amputations are common in chronic kidney disease patients needing hemodialysis (HD). HD is often complicated by drops in blood pressure (BP) called intra-dialytic hypotension. Whether intra-dialytic hypotension is associated with detectable changes in foot perfusion, a risk factor for wound formation and impaired healing remains unknown. Photoacoustic (PA) imaging is ideally suited to study perfusion changes. We scanned the feet of 20 HD and 11 healthy subjects. HD patients were scanned before and after a dialysis session whereas healthy subjects were scanned twice at rest and once after a 10 min exercise period while BP was elevated. Healthy (r = 0.70, p < 0.0001) and HD subjects (r = 0.43, p < 0.01) showed a significant correlation between PA intensity and systolic BP. Furthermore, HD cohort showed a significantly reduced PA response to changes in BP compared to the healthy controls (p < 0.0001), showing that PA can monitor hemodynamic changes due to changes in BP.
Collapse
Affiliation(s)
- Yash Mantri
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Tyler R. Dorobek
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Jason Tsujimoto
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - William F. Penny
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Pranav S. Garimella
- Department of Nephrology – Hypertension, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jesse V. Jokerst
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
- Materials Science Program, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
- Correspondence to: University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
21
|
Xu L, Zhan W, Deng Y, Liu X, Gao G, Sun X, Liang G. ROS Turn Nanoparticle Fluorescence on for Imaging Staphylococcus aureus Infection In Vivo. Adv Healthc Mater 2022; 11:e2200453. [PMID: 35521978 DOI: 10.1002/adhm.202200453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/09/2022] [Indexed: 11/07/2022]
Abstract
Direct, noninvasive, and real-time imaging of Staphylococcus aureus (S. aureus) infection is of great value for quick diagnosis of related disease in clinic, but remains challenging. Herein, employing a rationally designed near-infrared fluorescence probe Cys(StB u)-EDA-Thioketal-Lys(Cy5.5)-CBT (TK-CBT) and a CBT-Cys click reaction, the fluorescence-quenched nanoparticles TK-CBT-NPs are facilely prepared. Upon oxidation by the abundant reactive oxygen species in S. aureus-infected macrophages, TK-CBT-NPs are fractured, turning the fluorescence "on" for imaging infections in vitro and in vivo. Specifically, TK-CBT-NPs show a 6.1-fold fluorescence imaging signal enhancement of the macrophages that are infected by S. aureus for 20 h in vitro. At 4 h postinjection, TK-CBT-NPs show a 2.8-fold fluorescence imaging signal enhancement of the sites in mice that are infected by S. aureus for 24 h. It is anticipated that TK-CBT-NPs could be applied for diagnosis of S. aureus infections in clinic in the near future.
Collapse
Affiliation(s)
- Lingling Xu
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing 210096 P. R. China
| | - Wenjun Zhan
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing 210096 P. R. China
| | - Yu Deng
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing 210096 P. R. China
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing 210096 P. R. China
| | - Ge Gao
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing 210096 P. R. China
| | - Xianbao Sun
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing 210096 P. R. China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing 210096 P. R. China
| |
Collapse
|
22
|
Retout M, Mantri Y, Jin Z, Zhou J, Noël G, Donovan B, Yim W, Jokerst JV. Peptide-Induced Fractal Assembly of Silver Nanoparticles for Visual Detection of Disease Biomarkers. ACS NANO 2022; 16:6165-6175. [PMID: 35377141 PMCID: PMC9530071 DOI: 10.1021/acsnano.1c11643] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We report the peptide-programmed fractal assembly of silver nanoparticles (AgNPs) in a diffusion-limited aggregation (DLA) mode, and this change in morphology generates a significant color change. We show that peptides with specific repetitions of defined amino acids (i.e., arginine, histidine, or phenylalanine) can induce assembly and coalescence of the AgNPs (20 nm) into a hyperbranched structure (AgFSs) (∼2 μm). The dynamic process of this assembly was systematically investigated, and the extinction of the nanostructures can be modulated from 400 to 600 nm by varying the peptide sequences and molar ratio. According to this rationale, two strategies of SARS-CoV-2 detection were investigated. The activity of the main protease (Mpro) involved in SARS-CoV-2 was validated with a peptide substrate that can bridge the AgNPs after the proteolytic cleavage. A sub-nanomolar limit of detection (0.5 nM) and the capacity to distinguish by the naked eye in a wide concentration range (1.25-30 nM) were achieved. Next, a multichannel sensor-array based on multiplex peptides that can visually distinguish SARS-CoV-2 proteases from influenza proteases in doped human samples was investigated.
Collapse
Affiliation(s)
| | | | | | | | - Grégoire Noël
- Functional and Evolutionary Entomology-Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | | | | | | |
Collapse
|
23
|
Zhang Q, Liu G, Ou L. Electrochemical Biosensor for the Detection of SARS-CoV-2 Main Protease and Its Inhibitor Ebselen. INT J ELECTROCHEM SC 2022; 17:220421. [PMID: 37359208 PMCID: PMC10276345 DOI: 10.20964/2022.04.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/24/2022] [Indexed: 10/14/2023]
Abstract
This work reported an electrochemical method for the detection of SARS-CoV-2 major protease (Mpro). Specifically, ferrocene (Fc)-labeled peptide substrates were immobilized on the gold nanoparticles (AuNPs)-modified electrode. Cleavage of the peptides by Mpro led to the release of Fc tags and the decrease of the electrochemical signals. The analytical performance of the biosensor for analysis of Mpro was investigated. Inhibiting the activity of Mpro prevented the cleavage of the peptide substrates. The method was successfully used to evaluate the inhibition efficiency of a well-known inhibitor.
Collapse
Affiliation(s)
- Qiongyu Zhang
- School of Fundamental Sciences, Yongzhou Vocational Technical College, Yongzhou 425100, Hunan, People's Republic of China
| | - Gang Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, Henan, People's Republic of China
| | - Lingbin Ou
- School of Fundamental Sciences, Yongzhou Vocational Technical College, Yongzhou 425100, Hunan, People's Republic of China
| |
Collapse
|
24
|
Kim J, Yu AM, Kubelick KP, Emelianov SY. Gold nanoparticles conjugated with DNA aptamer for photoacoustic detection of human matrix metalloproteinase-9. PHOTOACOUSTICS 2022; 25:100307. [PMID: 34703762 PMCID: PMC8521288 DOI: 10.1016/j.pacs.2021.100307] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/07/2021] [Accepted: 09/24/2021] [Indexed: 05/11/2023]
Abstract
Matrix metalloproteinase-9 (MMP-9) plays major roles in extracellular matrix (ECM) remodeling and membrane protein cleavage, suggesting a high correlation with cancer cell invasion and tumor metastasis. Here, we present a contrast agent based on a DNA aptamer that can selectively target human MMP-9 in the tumor microenvironment (TME) with high affinity and sensitivity. Surface modification of plasmonic gold nanospheres with the MMP-9 aptamer and its complementary sequences allows the nanospheres to aggregate in the presence of human MMP-9 through DNA displacement and hybridization. Aggregation of gold nanospheres enhances the optical absorption in the first near-infrared window (NIR-I) due to the plasmon coupling effect, thereby allowing us to detect the aggregated gold nanospheres within the TME via ultrasound-guided photoacoustic (US/PA) imaging. Selective and sensitive detection of human MMP-9 via US/PA imaging is demonstrated in solution of nanosensors with the pre-treatment of human MMP-9, in vitro in cell culture, and in vivo in a xenograft murine model of human breast cancer.
Collapse
Affiliation(s)
- Jinhwan Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anthony M. Yu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Kelsey P. Kubelick
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Stanislav Y. Emelianov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Correspondence to: School of Electrical & Computer Engineering, and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA.
| |
Collapse
|
25
|
Zhao Z, Swartchick CB, Chan J. Targeted contrast agents and activatable probes for photoacoustic imaging of cancer. Chem Soc Rev 2022; 51:829-868. [PMID: 35094040 PMCID: PMC9549347 DOI: 10.1039/d0cs00771d] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photoacoustic (PA) imaging has emerged as a powerful technique for the high resolution visualization of biological processes within deep tissue. Through the development and application of exogenous targeted contrast agents and activatable probes that can respond to a given cancer biomarker, researchers can image molecular events in vivo during cancer progression. This information can provide valuable details that can facilitate cancer diagnosis and therapy monitoring. In this tutorial review, we provide a step-by-step guide to select a cancer biomarker and subsequent approaches to design imaging agents for in vivo use. We envision this information will be a useful summary to those in the field, new members to the community, and graduate students taking advanced imaging coursework. We also highlight notable examples from the recent literature, with emphasis on the molecular designs and their in vivo PA imaging performance. To conclude, we provide our outlook and future perspective in this exciting field.
Collapse
Affiliation(s)
- Zhenxiang Zhao
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| | - Chelsea B Swartchick
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| |
Collapse
|
26
|
Wang C, Du W, Wu C, Dan S, Sun M, Zhang T, Wang B, Yuan Y, Liang G. Cathespin B-Initiated Cypate Nanoparticle Formation for Tumor Photoacoustic Imaging. Angew Chem Int Ed Engl 2022; 61:e202114766. [PMID: 34878207 DOI: 10.1002/anie.202114766] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 12/30/2022]
Abstract
Cathepsin B (CTSB) is a lysosomal protease that is overexpressed in the early stage of many cancer types. Precise evaluation of CTSB expression in vivo may provide a promising method for the early diagnosis of cancers. By virtue of the high-resolution PA imaging modality, a "smart" photoacoustic (PA) probe Cypate-CBT, which can self-assemble to cypate-containing nanoparticles in response to abundant GSH and CTSB inside tumor cells, was developed for the sensitive and specific detection of CTSB activity. Compared with unmodified Cypate, our probe Cypate-CBT exhibited a 4.9-fold or 4.7-fold PA signal enhancement in CTSB-overexpressing MDA-MB-231 cancer cells or tumors, respectively, revealing intracellular accumulation of the probe after CTSB-initiated self-assembly. We expect Cypate-CBT to be employed as an effective PA imaging agent for clinical diagnosis of cancer at early stages.
Collapse
Affiliation(s)
- Chenchen Wang
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei Du
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Chenfan Wu
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shan Dan
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Miao Sun
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Tong Zhang
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Bin Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Yue Yuan
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Gaolin Liang
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
27
|
Wang C, Du W, Wu C, Dan S, Sun M, Zhang T, Wang B, Yuan Y, Liang G. Cathespin B‐Initiated Cypate Nanoparticle Formation for Tumor Photoacoustic Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chenchen Wang
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Wei Du
- Institute of Food Safety and Environment Monitoring College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Chenfan Wu
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Shan Dan
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education Institutes of Physical Science and Information Technology Anhui University Hefei Anhui 230601 China
| | - Miao Sun
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education Institutes of Physical Science and Information Technology Anhui University Hefei Anhui 230601 China
| | - Tong Zhang
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Bin Wang
- Department of Anesthesiology The Second Affiliated Hospital of Anhui Medical University Hefei Anhui 230601 China
| | - Yue Yuan
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Gaolin Liang
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University Nanjing Jiangsu 210096 China
| |
Collapse
|
28
|
Zhang Y, Wang G, Li Q, Jiang Y, Chen W, Zhao M, Liang G, Miao Q. Acidity-Activated Charge Conversion of 177Lu-Labeled Nanoagent for the Enhanced Photodynamic Radionuclide Therapy of Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3875-3884. [PMID: 35021621 DOI: 10.1021/acsami.1c21860] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanomaterials in combination with radionuclide therapy (RNT) provide new opportunities for cancer treatment. However, nanomaterials with efficient tumor accumulation have been less exploited for effective radionuclide-based therapy. Here, we report glycol chitosan-based nanoparticles (GCP-NPs) with acidic pH-dependent surface charge conversion for efficient radionuclide-based combination therapy. The nanoplatform can change the surface charge of nanoparticles from slight negative to positive in the acidic tumor microenvironment, which facilitates cellular internalization and penetration and thus improves the tumor accumulation efficiency of nanomaterials. Radiolabeling of GCP-NPs with 99mTc enables in vivo radioactive imaging in the mouse subcutaneous tumor model, showing 8.1-fold enhanced tumor uptake relative to pH-insensitive control nanoparticles (termed as GCOP-NPs). Afterward, therapeutic radioisotope 177Lu-labeled GCP-NPs (177Lu-GCP-NPs) that utilize RNT synergistic with photodynamic therapy (PDT) derived from conjugated pyropheophorbide-a within nanoparticles endow superior antitumor efficacy in living cells and tumor-bearing mouse model. More importantly, the combination of RNT and PDT using 177Lu-GCP-NPs can effectively inhibit lung metastasis and eliminate splenomegaly, which is not possible for individual RNT or PDT. Therefore, this study proposes a facile radionuclide-based combination therapy strategy toward complete cancer remission.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qing Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yue Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Wan Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Min Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
29
|
Feng Y, Liu G, La M, Liu L. Colorimetric and Electrochemical Methods for the Detection of SARS-CoV-2 Main Protease by Peptide-Triggered Assembly of Gold Nanoparticles. Molecules 2022; 27:molecules27030615. [PMID: 35163874 PMCID: PMC8840628 DOI: 10.3390/molecules27030615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) has been regarded as one of the ideal targets for the development of antiviral drugs. The currently used methods for the probing of Mpro activity and the screening of its inhibitors require the use of a double-labeled peptide substrate. In this work, we suggested that the label-free peptide substrate could induce the aggregation of AuNPs through the electrostatic interactions, and the cleavage of the peptide by the Mpro inhibited the aggregation of AuNPs. This fact allowed for the visual analysis of Mpro activity by observing the color change of the AuNPs suspension. Furthermore, the co-assembly of AuNPs and peptide was achieved on the peptide-covered electrode surface. Cleavage of the peptide substrate by the Mpro limited the formation of AuNPs/peptide assembles, thus allowing for the development of a simple and sensitive electrochemical method for Mpro detection in serum samples. The change of the electrochemical signal was easily monitored by electrochemical impedance spectroscopy (EIS). The detection limits of the colorimetric and electrochemical methods are 10 and 0.1 pM, respectively. This work should be valuable for the development of effective antiviral drugs and the design of novel optical and electrical biosensors.
Collapse
Affiliation(s)
- Yunxiao Feng
- College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, China;
| | - Gang Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450011, China
| | - Ming La
- College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, China;
- Correspondence: (M.L.); (L.L.)
| | - Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
- Correspondence: (M.L.); (L.L.)
| |
Collapse
|
30
|
Yuan M, Wu Y, Zhao C, Chen Z, Su L, Yang H, Song J. Activated molecular probes for enzyme recognition and detection. Theranostics 2022; 12:1459-1485. [PMID: 35154500 PMCID: PMC8771559 DOI: 10.7150/thno.66676] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Exploring and understanding the interaction of changes in the activities of various enzymes, such as proteases, phosphatases, and oxidoreductases with tumor invasion, proliferation, and metastasis is of great significance for early cancer diagnosis. To detect the activity of tumor-related enzymes, various molecular probes have been developed with different imaging methods, including optical imaging, photoacoustic imaging (PAI), magnetic resonance imaging, positron emission tomography, and so on. In this review, we first describe the biological functions of various enzymes and the selectively recognized chemical linkers or groups. Subsequently, we systematically summarize the design mechanism of imaging probes and different imaging methods. Finally, we explore the challenges and development prospects in the field of enzyme activity detection. This comprehensive review will provide more insight into the design and development of enzyme activated molecular probes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jibin Song
- MOE key laboratory for analytical science of food safety and biology Institution, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
31
|
Nanotechnology for Enhancing Medical Imaging. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_8-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
32
|
Huang J, Zhang X, Fu K, Wei G, Su Z. Stimulus-responsive nanomaterials under physical regulation for biomedical applications. J Mater Chem B 2021; 9:9642-9657. [PMID: 34807221 DOI: 10.1039/d1tb02130c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer is a growing threat to human beings. Traditional treatments for malignant tumors usually involve invasive means to healthy human tissues, such as surgical treatment and chemotherapy. In recent years the use of specific stimulus-responsive materials in combination with some non-contact, non-invasive stimuli can lead to better efficacy and has become an important area of research. It promises to develop personalized treatment systems for four types of physical stimuli: light, ultrasound, magnetic field, and temperature. Nanomaterials that are responsive to these stimuli can be used to enhance drug delivery, cancer treatment, and tissue engineering. This paper reviews the principles of the stimuli mentioned above, their effects on materials, and how they work with nanomaterials. For this aim, we focus on specific applications in controlled drug release, cancer therapy, tissue engineering, and virus detection, with particular reference to recent photothermal, photodynamic, sonodynamic, magnetothermal, radiation, and other types of therapies. It is instructive for the future development of stimulus-responsive nanomaterials for these aspects.
Collapse
Affiliation(s)
- Jinzhu Huang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Kun Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
33
|
Weng J, Wang Y, Zhang Y, Ye D. An Activatable Near-Infrared Fluorescence Probe for in Vivo Imaging of Acute Kidney Injury by Targeting Phosphatidylserine and Caspase-3. J Am Chem Soc 2021; 143:18294-18304. [PMID: 34672197 DOI: 10.1021/jacs.1c08898] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Renal-clearable and target-responsive near-infrared (NIR) fluorescent imaging probes have been promising for in vivo diagnosis of acute kidney injury (AKI). However, designing an imaging probe that is renal-clearable and concurrently responsive toward multiple molecular targets to facilitate early detection of AKI with improved sensitivity and specificity is challenging. Herein, by leveraging the receptor-mediated binding and retention effect along with enzyme-triggered fluorescence activation, we design and synthesize an activatable small-molecule NIR fluorescent probe (1-DPA2) using a "one-pot sequential click reaction" approach. 1-DPA2 can target both the externalized phosphatidylserine (PS) and active caspase-3 (Casp-3), two essential biomarkers of apoptosis, producing enhanced 808 nm NIR fluorescence and a high signal-to-background ratio (SBR) amenable to detecting the onset of cisplatin-induced AKI in mice as early as 24 h post-treatment with cisplatin. We not only monitor the gradual activation of Casp-3 in the kidney of mice upon AKI progression but also can report on the progressive recovery of kidney functions in AKI mice following N-acetyl-l-cysteine (NAC) therapy via real-time fluorescence imaging by 1-DPA2. This study demonstrates the ability of 1-DPA2 for longitudinal monitoring of renal cell apoptosis by concurrently targeting PS externalization and Casp-3 activation, which is efficient for early diagnosis of AKI and useful for prediction of potential drug nephrotoxicity as well as in vivo screening of anti-AKI drugs' efficacy.
Collapse
Affiliation(s)
- Jianhui Weng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|