1
|
Shahid Z, Veenuttranon K, Lu X, Chen J. Recent Advances in the Fabrication and Application of Electrochemical Paper-Based Analytical Devices. BIOSENSORS 2024; 14:561. [PMID: 39590020 PMCID: PMC11592294 DOI: 10.3390/bios14110561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
In response to growing environmental concerns, the scientific community is increasingly incorporating green chemistry principles into modern analytical techniques. Electrochemical paper-based analytical devices (ePADs) have emerged as a sustainable and efficient alternative to conventional analytical devices, offering robust applications in point-of-care testing, personalized healthcare, environmental monitoring, and food safety. ePADs align with green chemistry by minimizing reagent use, reducing energy consumption, and being disposable, making them ideal for eco-friendly and cost-effective analyses. Their user-friendly interface, alongside sensitive and selective detection capabilities, has driven their popularity in recent years. This review traces the evolution of ePADs from simple designs to complex multilayered structures that optimize analyte flow and improve detection. It also delves into innovative electrode fabrication methods, assessing key advantages, limitations, and modification strategies for enhanced sensitivity. Application-focused sections explore recent advancements in using ePADs for detecting diseases, monitoring environmental hazards like heavy metals and bacterial contamination, and screening contaminants in food. The integration of cutting-edge technologies, such as wearable wireless devices and the Internet of Things (IoT), further positions ePADs at the forefront of point-of-care testing (POCT). Finally, the review identifies key research gaps and proposes future directions for the field.
Collapse
Affiliation(s)
- Zarfashan Shahid
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.S.); (K.V.); (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kornautchaya Veenuttranon
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.S.); (K.V.); (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianbo Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.S.); (K.V.); (J.C.)
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.S.); (K.V.); (J.C.)
| |
Collapse
|
2
|
Colozza N, Mazzaracchio V, Arduini F. Paper-Based Electrochemical (Bio)Sensors for the Detection of Target Analytes in Liquid, Aerosol, and Solid Samples. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:127-147. [PMID: 38640070 DOI: 10.1146/annurev-anchem-061522-034228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
The last decade has been incredibly fruitful in proving the multifunctionality of paper for delivering innovative electrochemical (bio)sensors. The paper material exhibits unprecedented versatility to deal with complex liquid matrices and facilitate analytical detection in aerosol and solid phases. Such remarkable capabilities are feasible by exploiting the intrinsic features of paper, including porosity, capillary forces, and its easy modification, which allow for the fine designing of a paper device. In this review, we shed light on the most relevant paper-based electrochemical (bio)sensors published in the literature so far to identify the smart functional roles that paper can play to bridge the gap between academic research and real-world applications in the biomedical, environmental, agrifood, and security fields. Our analysis aims to highlight how paper's multifarious properties can be artfully harnessed for breaking the boundaries of the most classical applications of electrochemical (bio)sensors.
Collapse
Affiliation(s)
- Noemi Colozza
- 1Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy;
- 2Sense4Med S.R.L., Rome, Italy
| | - Vincenzo Mazzaracchio
- 1Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy;
| | - Fabiana Arduini
- 1Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy;
- 2Sense4Med S.R.L., Rome, Italy
| |
Collapse
|
3
|
Rocha J, de Oliveira JC, Bettini J, Strauss M, Selmi GS, Okazaki AK, de Oliveira RF, Lima RS, Santhiago M. Tuning the Chemical and Electrochemical Properties of Paper-Based Carbon Electrodes by Pyrolysis of Polydopamine. ACS MEASUREMENT SCIENCE AU 2024; 4:188-200. [PMID: 38645575 PMCID: PMC11027207 DOI: 10.1021/acsmeasuresciau.3c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 04/23/2024]
Abstract
Electrochemical paper-based analytical devices represent an important platform for portable, low-cost, affordable, and decentralized diagnostics. For this kind of application, chemical functionalization plays a pivotal role to ensure high clinical performance by tuning surface properties and the area of electrodes. However, controlling different surface properties of electrodes by using a single functionalization route is still challenging. In this work, we attempted to tune the wettability, chemical composition, and electroactive area of carbon-paper-based devices by thermally treating polydopamine (PDA) at different temperatures. PDA films were deposited onto pyrolyzed paper (PP) electrodes and thermally treated in the range of 300-1000 °C. After deposition of PDA, the surface is rich in nitrogen and oxygen, it is superhydrophilic, and it has a high electroactive area. As the temperature increases, the surface becomes hydrophobic, and the electroactive area decreases. The surface modifications were followed by Raman, X-ray photoelectron microscopy (XPS), laser scanning confocal microscopy (LSCM), contact angle, scanning electron microscopy (SEM-EDS), electrical measurements, transmission electron microscopy (TEM), and electrochemical experiments. In addition, the chemical composition of nitrogen species can be tuned on the surface. As a proof of concept, we employed PDA-treated surfaces to anchor [AuCl4]- ions. After electrochemical reduction, we observed that it is possible to control the size of the nanoparticles on the surface. Our route opens a new avenue to add versatility to electrochemical interfaces in the field of paper-based electrochemical biosensors.
Collapse
Affiliation(s)
- Jaqueline
F. Rocha
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
- Federal
University of ABC, São Paulo, Santo André 09210-580, Brazil
| | - Julia C. de Oliveira
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
| | - Jefferson Bettini
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
| | - Mathias Strauss
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
| | - Guilherme S. Selmi
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
- Universidade
Estadual de Campinas, Instituto de Física
Gleb Wataghin, São Paulo, Campinas 13083-859, Brazil
| | - Anderson K. Okazaki
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
| | - Rafael F. de Oliveira
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
- Universidade
Estadual de Campinas, Instituto de Física
Gleb Wataghin, São Paulo, Campinas 13083-859, Brazil
| | - Renato S. Lima
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
- Federal
University of ABC, São Paulo, Santo André 09210-580, Brazil
- Institute
of Chemistry, University of Campinas, São Paulo, Campinas 13083-970, Brazil
- São
Carlos Institute of Chemistry, University
of São Paulo, São Paulo, São Carlos 09210-580, Brazil
| | - Murilo Santhiago
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
- Federal
University of ABC, São Paulo, Santo André 09210-580, Brazil
| |
Collapse
|
4
|
Rocha JF, Hasimoto LH, Santhiago M. Recent progress and future perspectives of polydopamine nanofilms toward functional electrochemical sensors. Anal Bioanal Chem 2023; 415:3799-3816. [PMID: 36645457 PMCID: PMC9841946 DOI: 10.1007/s00216-023-04522-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/17/2023]
Abstract
Since its discovery in 2007, polydopamine nanofilms have been widely used in many areas for surface functionalization. The simple and low-cost preparation method of the nanofilms with tunable thickness can incorporate amine and oxygen-rich chemical groups in virtually any interface. The remarkable advantages of this route have been successfully used in the field of electrochemical sensors. The self-adhesive properties of polydopamine are used to attach nanomaterials onto the electrode's surface and add chemical groups that can be explored to immobilize recognizing species for the development of biosensors. Thus, the combination of 2D materials, nanoparticles, and other materials with polydopamine has been successfully demonstrated to improve the selectivity and sensitivity of electrochemical sensors. In this review, we highlight some interesting properties of polydopamine and some applications where polydopamine plays an important role in the field of electrochemical sensors.
Collapse
Affiliation(s)
- Jaqueline F Rocha
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil
| | - Leonardo H Hasimoto
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil
| | - Murilo Santhiago
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, 13083-970, Brazil.
- Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil.
| |
Collapse
|
5
|
de Lima Tinoco MV, Fujii LR, Nicoliche CYN, Giordano GF, Barbosa JA, da Rocha JF, Dos Santos GT, Bettini J, Santhiago M, Strauss M, Lima RS. Scalable and green formation of graphitic nanolayers produces highly conductive pyrolyzed paper toward sensitive electrochemical sensors. NANOSCALE 2023; 15:6201-6214. [PMID: 36917005 DOI: 10.1039/d2nr07080d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
While pyrolyzed paper (PP) is a green and abundant material that can provide functionalized electrodes with wide detection windows for a plethora of targets, it poses long-standing challenges against sensing assays such as poor electrical conductivity, with resistivities generally higher than 200.0 mΩ cm (e.g., gold and silver show resistivities 1000-fold lower, ∼0.2 mΩ cm). In this regard, the fundamental hypothesis that drives this work is whether a scalable, cost-effective, and eco-friendly strategy is capable of significantly reducing the resistivity of PP electrodes toward the development of sensitive electrochemical sensors, whether faradaic or capacitive. We address this hypothesis by simply annealing PP under an isopropanol atmosphere for 1 h, reaching resistivities as low as 7 mΩ cm. Specifically, the annealing of PP at 800 or 1000 °C under isopropanol vapor leads to the formation of a highly graphitic nanolayer (∼15 nm) on the PP surface, boosting conductivity as the delocalization of π electrons stemming from carbon sp2 is favored. The reduction of carbonyl groups and the deposition of dehydrated isopropanol during the annealing process are hypothesized herein as the dominant PP graphitization mechanisms. Electrochemical analyses demonstrated the capability of the annealed PP to increase the charge-transfer kinetics, with the optimum heterogeneous standard rate constant being roughly 3.6 × 10-3 cm s-1. This value is larger than the constants reported for other carbon electrodes and indium tin oxide. Furthermore, freestanding fingers of the annealed PP were prototyped using a knife plotter to fabricate impedimetric on-leaf electrodes. These wearable sensors ensured the real-time and in situ monitoring of the loss of water content from soy leaves, outperforming non-annealed electrodes in terms of reproducibility and sensitivity. Such an application is of pivotal importance for precision agriculture and development of agricultural inputs. This work addresses the foundations for the achievement of conductive PP in a scalable, low-cost, simple, and eco-friendly way, i.e. without producing any liquid chemical waste, providing new opportunities to translate PP-based sensitive electrochemical devices into practical use.
Collapse
Affiliation(s)
- Marcos V de Lima Tinoco
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Lucas R Fujii
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Caroline Y N Nicoliche
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Gabriela F Giordano
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Julia A Barbosa
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
| | - Jaqueline F da Rocha
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Gabriel T Dos Santos
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- Material Science, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90010-150, Brazil
| | - Jefferson Bettini
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Murilo Santhiago
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Mathias Strauss
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Renato S Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| |
Collapse
|
6
|
Coronado-Apodaca KG, Rodríguez-De Luna S, Araújo R, Oyervides-Muñoz MA, González-Meza GM, Parra-Arroyo L, Sosa-Hernandez JE, Iqbal HM, Parra-Saldivar R. Occurrence, transport, and detection techniques of emerging pollutants in groundwater. MethodsX 2023; 10:102160. [PMID: 37095869 PMCID: PMC10122002 DOI: 10.1016/j.mex.2023.102160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Emerging pollutants (EPs) are a group of different contaminants, such as hormones, pesticides, heavy metals, and drugs, usually found in concentrations between the order of ng and µg per liter. The global population's daily city and agro-industrial activities release EPs into the environment. Due to the chemical nature of EPs and deficient wastewater treatment and management, they are transported to superficial and groundwater through the natural water cycle, where they can potentially cause harmful effects on living organisms. Recent efforts have focused on developing technology that allows EPs quantification and monitoring in real-time and in situ. The newly developed technology aims to provide accessible groundwater management that detects and treats EPs while avoiding their contact with living beings and their toxic effects. This review presents some of the recently reported techniques that have been applied to advance the detection of EPs in groundwater and potential technologies that can be used for EP removal.
Collapse
|
7
|
Giordano GF, Ferreira LF, Bezerra ÍRS, Barbosa JA, Costa JNY, Pimentel GJC, Lima RS. Machine learning toward high-performance electrochemical sensors. Anal Bioanal Chem 2023:10.1007/s00216-023-04514-z. [PMID: 36637495 PMCID: PMC9838410 DOI: 10.1007/s00216-023-04514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023]
Abstract
The so-coined fourth paradigm in science has reached the sensing area, with the use of machine learning (ML) toward data-driven improvements in sensitivity, reproducibility, and accuracy, along with the determination of multiple targets from a single measurement using multi-output regression models. Particularly, the use of supervised ML models trained on large data sets produced by electrical and electrochemical bio/sensors has emerged as an impacting trend in the literature by allowing accurate analyses even in the presence of usual issues such as electrode fouling, poor signal-to-noise ratio, chemical interferences, and matrix effects. In this trend article, apart from an outlook for the coming years, we present examples from the literature that demonstrate how helpful ML algorithms can be for dispensing the adoption of experimental methods to address the aforesaid interfering issues, ultimately contributing to translate testing technologies into on-site, practical, and daily applications.
Collapse
Affiliation(s)
- Gabriela F. Giordano
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil
| | - Larissa F. Ferreira
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil ,Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970 Brazil
| | - Ítalo R. S. Bezerra
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil ,Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Júlia A. Barbosa
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil ,São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590 Brazil
| | - Juliana N. Y. Costa
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil ,Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Gabriel J. C. Pimentel
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil ,School of Sciences, São Paulo State University, Bauru, São Paulo 17033-360 Brazil
| | - Renato S. Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil ,Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970 Brazil ,Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil ,São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590 Brazil
| |
Collapse
|
8
|
Anushka, Bandopadhyay A, Das PK. Paper based microfluidic devices: a review of fabrication techniques and applications. THE EUROPEAN PHYSICAL JOURNAL. SPECIAL TOPICS 2022; 232:781-815. [PMID: 36532608 PMCID: PMC9743133 DOI: 10.1140/epjs/s11734-022-00727-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/09/2022] [Indexed: 06/14/2023]
Abstract
A wide range of applications are possible with paper-based analytical devices, which are low priced, easy to fabricate and operate, and require no specialized equipment. Paper-based microfluidics offers the design of miniaturized POC devices to be applied in the health, environment, food, and energy sector employing the ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment free and Deliverable to end users) principle of WHO. Therefore, this field is growing very rapidly and ample research is being done. This review focuses on fabrication and detection techniques reported to date. Additionally, this review emphasises on the application of this technology in the area of medical diagnosis, energy generation, environmental monitoring, and food quality control. This review also presents the theoretical analysis of fluid flow in porous media for the efficient handling and control of fluids. The limitations of PAD have also been discussed with an emphasis to concern on the transformation of such devices from laboratory to the consumer.
Collapse
Affiliation(s)
- Anushka
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Aditya Bandopadhyay
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Prasanta Kumar Das
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| |
Collapse
|
9
|
Sari SR, Tominaga M. Progress and current trends in the electrochemical determination of phosphate ions for environmental and biological monitoring applications. ANAL SCI 2022; 39:629-642. [PMID: 36464720 DOI: 10.1007/s44211-022-00228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
The determination of phosphate ions in biological testing is critical for environmental safety. A reliable and accurate method is required to measure the true phosphate ion concentrations; in this regard, the electrochemical method is preferable because of its simple operation, fast response, and high sensitivity. By compiling existing electroanalytical techniques, researchers can compare the advantages and disadvantages of each method. This review examines the progress and recent advances in electrochemical sensing strategies adapted for the determination of phosphate ions in the environmental and during biological monitoring. We first discuss the history of phosphorus and the development of methods to detect phosphates. The recognition elements of phosphate ion sensors for environmental applications include metal-based, nanomaterial-based, carbon-based, and enzymatic electrodes. Phosphate determination in biological samples, such as blood serum, drugs, and other biological fluids, such as urine and saliva, as well as phosphate esters, is also discussed. The final part of our review addresses the current challenges that phosphate sensing technology faces and illustrates future opportunities for more reliable phosphate detection.
Collapse
Affiliation(s)
- Shaimah Rinda Sari
- Graduate School of Science and Engineering, Saga University, Saga, 840-8502, Japan
| | - Masato Tominaga
- Graduate School of Science and Engineering, Saga University, Saga, 840-8502, Japan.
| |
Collapse
|
10
|
Wei H, Luan Y, Pan D. All-in-one portable microsystem for on-site electrochemical determination of phosphate in turbid coastal waters. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
de Brito Ayres L, Brooks J, Whitehead K, Garcia CD. Rapid Detection of Staphylococcus aureus Using Paper-Derived Electrochemical Biosensors. Anal Chem 2022; 94:16847-16854. [DOI: 10.1021/acs.analchem.2c03970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Lucas de Brito Ayres
- Department of Chemistry, Clemson University, Clemson 29634, South Carolina, United States
| | - Jordan Brooks
- Department of Chemistry, Clemson University, Clemson 29634, South Carolina, United States
| | - Kristi Whitehead
- Department of Biological Sciences, Clemson University, Clemson 29634, South Carolina, United States
| | - Carlos D. Garcia
- Department of Chemistry, Clemson University, Clemson 29634, South Carolina, United States
| |
Collapse
|
12
|
Zheng Y, Li Y, Fan L, Yao H, Zhang Z. An amphiprotic paper-based electrode for glucose detection based on layered carbon nanotubes with silver and polystyrene particles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1268-1278. [PMID: 35274112 DOI: 10.1039/d1ay01950c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, a flexible amphiprotic amino-bonded carbon nanotube-Ag nanoparticle/polystyrene (CNT-NH2-Ag/PS) paper electrode was fabricated to measure glucose in human body fluids by a combination of vacuum filtration and high temperature baking. The front side of the fabricated paper electrode was hydrophobic and conductive, whereas its back side was hydrophilic and nonconductive. In the fabrication process, the coating sequence of CNT-NH2, Ag and PS was critical to determine the performance of the resulting CNT-NH2-Ag/PS electrode besides other parameters (e.g., amount of soluble starch, PS and Ag nanoparticles, type and amount of CNT-NH2, and electrode sensing area). Based on a series of experimental observations, the possible mechanism of glucose detection on the paper electrode was proposed, in which glucose was more favorable to migrate to the hydrophilic back side of the paper and interact with the active species (e.g., O2-) on the electrode surface. The electrochemical results showed that the CNT-NH2-Ag/PS paper electrode maintained stable electrochemical properties even after five cycles of use and 60 days of storage in air. The amphiprotic paper electrode demonstrated excellent sensing performance for glucose with a linear range of 1 μM to 1000 μM, a low detection limit of 0.2 μM, and a sensitivity of 31 333.0 μA mM-1 cm-2. The fabricated paper electrode was also successfully applied to detect different levels of glucose in complex human body fluids such as saliva, urine, and serum. These features make this type of paper electrode promising for glucose measurement.
Collapse
Affiliation(s)
- Yajun Zheng
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Yu Li
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Libin Fan
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Hedan Yao
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Zhiping Zhang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| |
Collapse
|
13
|
Barbosa JA, Freitas VMS, Vidotto LHB, Schleder GR, de Oliveira RAG, da Rocha JF, Kubota LT, Vieira LCS, Tolentino HCN, Neckel IT, Gobbi AL, Santhiago M, Lima RS. Biocompatible Wearable Electrodes on Leaves toward the On-Site Monitoring of Water Loss from Plants. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22989-23001. [PMID: 35311272 DOI: 10.1021/acsami.2c02943] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Impedimetric wearable sensors are a promising strategy for determining the loss of water content (LWC) from leaves because they can afford on-site and nondestructive quantification of cellular water from a single measurement. Because the water content is a key marker of leaf health, monitoring of the LWC can lend key insights into daily practice in precision agriculture, toxicity studies, and the development of agricultural inputs. Ongoing challenges with this monitoring are the on-leaf adhesion, compatibility, scalability, and reproducibility of the electrodes, especially when subjected to long-term measurements. This paper introduces a set of sensing material, technological, and data processing solutions that overwhelm such obstacles. Mass-production-suitable electrodes consisting of stand-alone Ni films obtained by well-established microfabrication methods or ecofriendly pyrolyzed paper enabled reproducible determination of the LWC from soy leaves with optimized sensibilities of 27.0 (Ni) and 17.5 kΩ %-1 (paper). The freestanding design of the Ni electrodes was further key to delivering high on-leaf adhesion and long-term compatibility. Their impedances remained unchanged under the action of wind at velocities of up to 2.00 m s-1, whereas X-ray nanoprobe fluorescence assays allowed us to confirm the Ni sensor compatibility by the monitoring of the soy leaf health in an electrode-exposed area. Both electrodes operated through direct transfer of the conductive materials on hairy soy leaves using an ordinary adhesive tape. We used a hand-held and low-power potentiostat with wireless connection to a smartphone to determine the LWC over 24 h. Impressively, a machine-learning model was able to convert the sensing responses into a simple mathematical equation that gauged the impairments on the water content at two temperatures (30 and 20 °C) with reduced root-mean-square errors (0.1% up to 0.3%). These data suggest broad applicability of the platform by enabling direct determination of the LWC from leaves even at variable temperatures. Overall, our findings may help to pave the way for translating "sense-act" technologies into practice toward the on-site and remote investigation of plant drought stress. These platforms can provide key information for aiding efficient data-driven management and guiding decision-making steps.
Collapse
Affiliation(s)
- Júlia A Barbosa
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 09210-580, Brazil
| | - Vitoria M S Freitas
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Faculty of Chemical Engineering, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Lourenço H B Vidotto
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Gabriel R Schleder
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Ricardo A G de Oliveira
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Jaqueline F da Rocha
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Lauro T Kubota
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Luis C S Vieira
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Hélio C N Tolentino
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Itamar T Neckel
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Angelo L Gobbi
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Murilo Santhiago
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Renato S Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 09210-580, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| |
Collapse
|
14
|
Zhang H, Li X, Zhu Q, Wang Z. The recent development of nanomaterials enhanced paper-based electrochemical analytical devices. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Nicoliche CYN, Pascon AM, Bezerra ÍRS, de Castro ACH, Martos GR, Bettini J, Alves WA, Santhiago M, Lima RS. In Situ Nanocoating on Porous Pyrolyzed Paper Enables Antibiofouling and Sensitive Electrochemical Analyses in Biological Fluids. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2522-2533. [PMID: 34990106 DOI: 10.1021/acsami.1c18778] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Electrochemical detection in complex biofluids is a long-standing challenge as electrode biofouling hampers its sensing performance and commercial translation. To overcome this drawback, pyrolyzed paper as porous electrode coupled with the drop casting of an off-the-shelf polysorbate, that is, Tween 20 (T20), is described here by taking advantage of the in situ formation of a hydrophilic nanocoating (2 nm layer of T20). The latter prevents biofouling while providing the capillarity of samples through paper pores, leveraging redox reactions across both only partially fouled and fresh electrodic surfaces with increasing detection areas. The nanometric thickness of this blocking layer is also essential by not significantly impairing the electron-transfer kinetics. These phenomena behave synergistically to enhance the sensibility that further increases over long-term exposures (4 h) in biological fluids. While the state-of-the-art antibiofouling strategies compromise the sensibility, this approach leads to peak currents that are up to 12.5-fold higher than the original currents after 1 h exposure to unprocessed human plasma. Label-free impedimetric immunoassays through modular bioconjugation by directly anchoring spike protein on gold nanoparticles are also allowed, as demonstrated for the COVID-19 screening of patient sera. The scalability and simplicity of the platform combined with its unique ability to operate in biofluids with enhanced sensibility provide the generation of promising biosensing technologies toward real-world applications in point-of-care diagnostics, mass testing, and in-home monitoring of chronic diseases.
Collapse
Affiliation(s)
- Caroline Y N Nicoliche
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Aline M Pascon
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Ítalo R S Bezerra
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Ana C H de Castro
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Gabriel R Martos
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
- Faculty of Chemistry, Pontifical Catholic University of Campinas, Campinas, São Paulo 13087-571, Brazil
| | - Jefferson Bettini
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
| | - Wendel A Alves
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Murilo Santhiago
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Renato S Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
| |
Collapse
|