1
|
Vaishag PV, Noh JS. A Comparative Review of Graphene and MXene-Based Composites towards Gas Sensing. Molecules 2024; 29:4558. [PMID: 39407488 PMCID: PMC11478074 DOI: 10.3390/molecules29194558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Graphene and MXenes have emerged as promising materials for gas sensing applications due to their unique properties and superior performance. This review focuses on the fabrication techniques, applications, and sensing mechanisms of graphene and MXene-based composites in gas sensing. Gas sensors are crucial in various fields, including healthcare, environmental monitoring, and industrial safety, for detecting and monitoring gases such as hydrogen sulfide (H2S), nitrogen dioxide (NO2), and ammonia (NH3). Conventional metal oxides like tin oxide (SnO2) and zinc oxide (ZnO) have been widely used, but graphene and MXenes offer enhanced sensitivity, selectivity, and response times. Graphene-based sensors can detect low concentrations of gases like H2S and NH3, while functionalization can improve their gas-specific selectivity. MXenes, a new class of two-dimensional materials, exhibit high electrical conductivity and tunable surface chemistry, making them suitable for selective and sensitive detection of various gases, including VOCs and humidity. Other materials, such as metal-organic frameworks (MOFs) and conducting polymers, have also shown potential in gas sensing applications, which may be doped into graphene and MXene layers to improve the sensitivity of the sensors.
Collapse
Affiliation(s)
| | - Jin-Seo Noh
- Department of Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
2
|
Ferreira R, Silva AP, Nunes-Pereira J. Current On-Skin Flexible Sensors, Materials, Manufacturing Approaches, and Study Trends for Health Monitoring: A Review. ACS Sens 2024; 9:1104-1133. [PMID: 38394033 PMCID: PMC10964246 DOI: 10.1021/acssensors.3c02555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Due to an ever-increasing amount of the population focusing more on their personal health, thanks to rising living standards, there is a pressing need to improve personal healthcare devices. These devices presently require laborious, time-consuming, and convoluted procedures that heavily rely on cumbersome equipment, causing discomfort and pain for the patients during invasive methods such as sample-gathering, blood sampling, and other traditional benchtop techniques. The solution lies in the development of new flexible sensors with temperature, humidity, strain, pressure, and sweat detection and monitoring capabilities, mimicking some of the sensory capabilities of the skin. In this review, a comprehensive presentation of the themes regarding flexible sensors, chosen materials, manufacturing processes, and trends was made. It was concluded that carbon-based composite materials, along with graphene and its derivates, have garnered significant interest due to their electromechanical stability, extraordinary electrical conductivity, high specific surface area, variety, and relatively low cost.
Collapse
Affiliation(s)
- Rodrigo
G. Ferreira
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Abílio P. Silva
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - João Nunes-Pereira
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
3
|
Yu H, Liu Y, Zhou G, Peng M. Multilayer Perceptron Algorithm-Assisted Flexible Piezoresistive PDMS/Chitosan/cMWCNT Sponge Pressure Sensor for Sedentary Healthcare Monitoring. ACS Sens 2023; 8:4391-4401. [PMID: 37939316 DOI: 10.1021/acssensors.3c01885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Recently, the health problems faced by sedentary workers have received increasing attention. In this study, a pressure sensor based on a poly(dimethylsiloxane) (PDMS)/carboxylated chitosan (CCS)/carboxylated multiwalled carbon nanotube (cMWCNT) sponge was prepared to realize a portable, sensitive, comfortable, and noninvasive healthcare monitoring system for sedentary workers. The proposed piezoresistive pressure sensor exhibited exceptional sensing performances with high sensitivity (147.74 kPa-1), an ultrawide detection range (22 Pa to 1.42 MPa), and reliable stability (over 3000 cycles). Furthermore, the obtained sensor displayed superior capability in detecting various human motion signals. Based on the 4 × 4 sensing array and multilayer perceptron (MLP) algorithm model, a smart cushion was developed to recognize five types of sitting postures and supply timely reminders to sedentary workers. The piezoresistive sponge pressure sensor proposed in this study reveals promising potential in the fields of wearable electronics, healthcare monitoring, and human-machine interface applications.
Collapse
Affiliation(s)
- He Yu
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yubing Liu
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Guanya Zhou
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Mugen Peng
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| |
Collapse
|
4
|
Savchenko A, Kireev D, Yin RT, Efimov IR, Molokanova E. Graphene-based cardiac sensors and actuators. Front Bioeng Biotechnol 2023; 11:1168667. [PMID: 37256116 PMCID: PMC10225741 DOI: 10.3389/fbioe.2023.1168667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023] Open
Abstract
Graphene, a 2D carbon allotrope, is revolutionizing many biomedical applications due to its unique mechanical, electrical, thermal, and optical properties. When bioengineers realized that these properties could dramatically enhance the performance of cardiac sensors and actuators and may offer fundamentally novel technological capabilities, the field exploded with numerous studies developing new graphene-based systems and testing their limits. Here we will review the link between specific properties of graphene and mechanisms of action of cardiac sensors and actuators, analyze the performance of these systems from inaugural studies to the present, and offer future perspectives.
Collapse
Affiliation(s)
| | - Dmitry Kireev
- Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Rose T. Yin
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | - Igor R. Efimov
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Chicago, IL, United States
| | - Elena Molokanova
- Nanotools Bioscience, La Jolla, CA, United States
- NeurANO Bioscience, La Jolla, CA,United States
| |
Collapse
|
5
|
Hu J, Ren P, Zhu G, Yang J, Li Y, Zong Z, Sun Z. Serpentine-inspired Strain Sensor with Predictable Cracks for Remote Bio-Mechanical Signal Monitoring. Macromol Rapid Commun 2022; 43:e2200372. [PMID: 35759398 DOI: 10.1002/marc.202200372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/11/2022] [Indexed: 11/08/2022]
Abstract
The flexible strain sensors have attracted intense interests due to their application as intelligent wearable electronic devices. However, it is still a huge challenge to achieve the flexible sensor with simultaneous high sensitivity, excellent durability and wide sensing region. In this work, a crack-based strain sensor with paired-serpentine conductive network is fabricated onto flexible film by screen printing. The innovative conductive network exhibits a controlled crack morphology during stretching, which endows the prepared sensor with outstanding sensing characteristics, including the high sensitivity (gauge factor up to 2391.5), wide detection (rang up to 132%), low strain detection limit, fast response time (about 40 ms), as well as excellent durability (more than 2000 stretching/releasing cycles). Benefiting from these excellent performances, full-range human body motions including subtle physiological signals and large motions are accurately detected by the prepared sensor. Besides, wearable electronic equipment integrated with wireless transmitter and the prepared strain sensor shows great potential for remote motion monitoring and intelligent mobile diagnosis for humans. This work provides an effective strategy for the fabrication of the novel strain sensors with highly comprehensive performance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jie Hu
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an Shaanxi, 710048, People's Republic of China
| | - Penggang Ren
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an Shaanxi, 710048, People's Republic of China.,College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu Sichuan, 610065, People's Republic of China
| | - Guanjun Zhu
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an Shaanxi, 710048, People's Republic of China
| | - Junjun Yang
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an Shaanxi, 710048, People's Republic of China
| | - Yanhao Li
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an Shaanxi, 710048, People's Republic of China
| | - Ze Zong
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an Shaanxi, 710048, People's Republic of China
| | - Zhenfeng Sun
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an Shaanxi, 710048, People's Republic of China
| |
Collapse
|
6
|
Xia Y, Gao C, Gao W. A review on elastic graphene aerogels: Design, preparation, and applications. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yuxing Xia
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Weiwei Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|