1
|
Liu S, Li Y, Yang Y, Li X, Wang L, Xiao X, Li CZ. Lateral flow analysis test strips based on aggregation-induced emission technique: Principle, design, and application. Biosens Bioelectron 2025; 272:117058. [PMID: 39746282 DOI: 10.1016/j.bios.2024.117058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
This review examines the potential of aggregation-induced luminescence (AIE) materials in lateral flow assays (LFA) to enhance the sensitivity and specificity of a range of assay applications. LFA is a straightforward and effective paper-based platform for the rapid detection of target analytes in mixtures. Its simple design, low cost, and ease of operation are among the most attractive advantages of LFA. The signal reporting label, which constitutes the core component of LFA detection, is of paramount importance for enhancing the sensitivity of the detection process. The sensitivity of traditional LFA signal labels is insufficient for the detection of biomarkers at low concentrations. To address this issue, AIE materials have been developed in recent years. These materials can significantly enhance the luminescence intensity at high concentrations or in aggregated states, exhibiting excellent photostability and a high signal-to-noise ratio. They possess the advantages of high quantum yields, good photostability, and strong fluorescence, rendering them suitable for a variety of applications, including medical diagnostics, food safety, and environmental monitoring. This review therefore provides an overview of the operational principles of AIE and LFA, details the selection of AIE materials, the design of the platform and their applications, and reviews the latest research. Notable examples include the detection of viral pathogens, bacterial and mycotoxin contamination, antibiotic residues, and pesticide residues. The integration of AIE materials in LFA technology has demonstrated the potential for rapid, accurate, and cost-effective diagnostics. However, challenges remain in large-scale synthesis and multiplexed assays. The paper concludes with a discussion of current limitations and future directions for the technology.
Collapse
Affiliation(s)
- Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yongqi Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yunchao Yang
- Department of Gastroenterology and Hepatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Xue Li
- Juxintang (Chengdu) Biotechnology Co., Ltd., Chengdu, 641400, China
| | - Lijun Wang
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
| | - Xun Xiao
- Department of Gastroenterology and Hepatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Chen-Zhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China; Juxintang (Chengdu) Biotechnology Co., Ltd., Chengdu, 641400, China.
| |
Collapse
|
2
|
Gao F, Liu M, Wang W, Lou J, Chang Y, Xia N. Aggregation-induced emission-based competitive immunoassays for "signal-on" detection of proteins with multifunctional metal-organic frameworks as signal tags. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125088. [PMID: 39241398 DOI: 10.1016/j.saa.2024.125088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
An aggregation-induced emission (AIE)-based strategy was proposed for fluorescence immunoassays of protein biomarkers using Cu-based metal-organic frameworks (Cu-MOFs) to load recombinant targets and enzymes for dual signal amplification. The immunosensing platform was built based on the sequestration and consumption of the substrates of pyrophosphate (PPi) ions by Cu-MOFs and enzymatic catalysis. The negatively charged PPi could trigger the aggregation of positively charged tetraphenylethene (TPE)-substituted pyridinium salt nanoparticles (TPE-Py NPs) by electrostatic interactions, lighting up the fluorescence due to the AIE phenomenon. The consumption of PPi by the captured Cu-MOFs through the Cu2+-PPi chelation interaction and ALP-enzymatic hydrolysis depressed the aggregation of TPE-Py NPs. Capture of the tested targets in samples by the antibodies on the plate surface could prevent the attachment of target/ALP-loaded Cu-MOFs due to the competitive immunoreactions. The "signal-on" competitive immunoassay was applied for the detection of procalcitonin (PCT) as the model analyte with a linear range of 0.01-10 pg/mL and a detection limit down to 8 pg/mL. The conceptual integration of AIE with enzymatic and MOFs-based dual signal amplification endowed fluorescence immunoassays with high sensitivity and selectivity. The surface modification of Cu-MOFs with hexahistine (His6)-tagged recombinant proteins through metal coordination interactions should be evaluable for the design of novel biosensors.
Collapse
Affiliation(s)
- Fengli Gao
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Meiling Liu
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Weiqiang Wang
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Jiaxin Lou
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Yong Chang
- Shiyan Key Laboratory of Biological Resources and Eco-environmental Protection, Department of Chemistry and Environmental Engineering, Hanjiang Normal University, Shiyan 442000 China.
| | - Ning Xia
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China.
| |
Collapse
|
3
|
Liu S, Sun C, Zhang X, Shu R, Zhang J, Wang B, Wang K, Dou L, Huang L, Yang Q, Wang J. Advances in enhancement-type signal tracers and analysis strategies driven Lateral flow immunoassay for guaranteeing the agri-food safety. Biosens Bioelectron 2025; 268:116920. [PMID: 39531800 DOI: 10.1016/j.bios.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
As a classical and continuously developing on-site sensor, Lateral flow immunoassay (LFIA) exhibits promising potential for advanced point-of-care testing (POCT). Especially given the significance of agri-food in human dietary structure and the ever-increasing agri-food safety concerns, improved analysis performance of LFIA is urgently required. Recently, flourishing enhancement-type signal tracers (STs) and brilliant enhancement-type analysis strategies have been actively pursued in the development of LFIA because these patterns endow immense feasibility in manufacturing target-oriented sensing platforms. To facilitate further advancements in this field, this review comprehensively examines the recent developments in enhancement-type STs (e.g., load-, green-, recognizable-, Janus-, and dyestuffs-type STs) and enhancement-type analysis strategies (e.g. immuno-network, in-situ growth, nanozymes, multi-signal readout, and software-assisted quantitative analytical strategies) that significantly improve precise analysis efficiency. Moreover, by conducting a comprehensive evaluation of the major advancements and aiming to identify future trends in LFIA-based sensor, the objective of this review is to provide recommendations for future research based on the challenges and opportunities of LFIA.
Collapse
Affiliation(s)
- Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chenyang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiyue Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiayi Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Biao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kexin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Leina Dou
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lunjie Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, Sichuan, China
| | - Qingyu Yang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
4
|
Huang X, Wu J, Xing X, Wang Y, Wu C, Li S, Wang S. Ultrabright aggregation-induced materials for the highly sensitive detection of Ag + and T-2 toxin. Food Chem 2025; 471:142838. [PMID: 39818095 DOI: 10.1016/j.foodchem.2025.142838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Heavy metals and mycotoxins are important contaminants in food pollution. Sensitive, reliable, and rapid detection of heavy metals and mycotoxins is crucial for human health. In this work, imidazole-functionalized aggregation-induced emission (AIE) molecule tetra-(4-pyridylphenyl) ethylene (TPPE) was used as a precise and specific probe for Ag+ detection, with a limit of detection (LOD) of 0.0318 μM. Meanwhile, a large amount of hydrophobic TPPE molecules were loaded into the amphiphilic block copolymer F127 to form ultrabright fluorescent microspheres (TPPENPs). Lateral flow immunochromatography (LFIA) based on immunoprobe (TPPENPs-Ab) has been successfully developed. The LOD of TPPENPs-LFIA for T-2 toxin was 0.13 μg/L, which was 13.31-fold and 8.62-fold more sensitive than that of gold nanoparticles-based LFIA and ordinary fluorescent microspheres-based LFIA, respectively. TPPENPs-LFIA was employed to detect T-2 toxin in actual grain samples, with a spiked recovery rate of 71.69 - 111.13 %. This assay offers a promising strategy and new idea for multi-target detection.
Collapse
Affiliation(s)
- Xufang Huang
- State Key Laboratory for Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jing Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Xiaorui Xing
- State Key Laboratory for Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yi Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Changzheng Wu
- Foshan Haitian (Gaoming) Flavoring and Food Limited Liability Company, Guangdong 528511, China.
| | - Shijie Li
- State Key Laboratory for Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Shuo Wang
- State Key Laboratory for Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
5
|
Wang X, He T, Dou L, Ma L, Yu X, Wang Z, Wen K. Development of a β-lactamase-based aggregation-induced emission lateral flow strip for the detection of clavulanic acid in Milk. Food Chem X 2024; 24:101950. [PMID: 39659681 PMCID: PMC11629266 DOI: 10.1016/j.fochx.2024.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 12/12/2024] Open
Abstract
Lack of biorecognition elements significantly hinders the development of rapid detection methods for clavulanic acid (CA). To address this, we expressed Class A β-lactamases PC1 in vitro and demonstrated its high affinity for CA. Then we investigated the recognition mechanisms of PC1 for CA and identified key contact amino acids: Ser70, Lys73, Ser130, Glu166, and Lys234. Furthermore, PC1 was utilized as a novel biorecognition element to establish a "pseudo-immuno" lateral flow strip (LFS) for CA detection. Aggregation-induced emission fluorescence microspheres (AIE@FM) and biotin-streptavidin (Bio-SA) were integrated to improve the detection performance of PC1-based LFS. Results showed that the sensitivity (cut-off value) of PC1-based AIE(Bio-SA)-LFS was enhanced 2-fold and 4-fold compared to basic AIE@FM-LFS and traditional Au-based LFS, respectively. Eventually, the proposed PC1-based AIE(Bio-SA)-LFS was successfully verified in milk samples with a cut-off value of 20 ng mL-1. This study provides a powerful tool for on-site CA monitoring for the first time.
Collapse
Affiliation(s)
- Xiaonan Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, PR China
| | - Tong He
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, PR China
| | - Leina Dou
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, PR China
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Licai Ma
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, PR China
| | - Xuezhi Yu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, PR China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, PR China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, PR China
| |
Collapse
|
6
|
Lai X, Huang S, Zhang G, Ang EH, Yuan H, Su L, Liu C, Deng S, Lai W. Efficient green synthesis of biocompatible MPN fluorescent microspheres via hydrophobic-force-driven strategy for enhanced immunochromatographic assays. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136390. [PMID: 39500194 DOI: 10.1016/j.jhazmat.2024.136390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 12/01/2024]
Abstract
The unique fluorescence properties of aggregation-induced emission (AIE) fluorescent microspheres (FMs) make them ideal signal markers. Traditional synthesis methods are complex, labor-intensive, and hazardous, leading to AIEFMs that lack biocompatibility and require further modification for immunoprobe preparation. This study introduces a novel hydrophobic force-driven method for rapid synthesis of highly biocompatible FMs (H-FMs), demonstrating their benefits in immunochromatographic assay (ICA) applications. The metal-polyphenol network (MPN) shell around the AIEgen core structure of H-FMs is quickly and safely formed by depositing MPN onto AIEgen nano-aggregates, achieving high dye utilization, affordability, and design flexibility, while producing H-FMs with fluorescence across 300-800 nm. The excellent biocompatibility of H-FMs eliminates the need for additional modifications, allowing antibodies to be coupled swiftly (within 10 min) with a high coupling efficiency of 93.4 %. The resulting immunoprobes exhibit strong target recognition and 90.6 % fluorescence retention over 30 days. These features support their application in double antibody sandwich and competitive ICA formats, with detection limits of 9.62 × 10² CFU/mL for E. coli O157:H7 and 0.0081 ng/mL for AFM1. This study provides new insights into designing fluorescent probes for safety monitoring of hazardous materials in the environment.
Collapse
Affiliation(s)
- Xiaocui Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China; Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| | - Shijin Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Ganggang Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| | - Hongxin Yuan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Liu Su
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Cong Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Shengliang Deng
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Weihua Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
7
|
Duo Y, Han L, Yang Y, Wang Z, Wang L, Chen J, Xiang Z, Yoon J, Luo G, Tang BZ. Aggregation-Induced Emission Luminogen: Role in Biopsy for Precision Medicine. Chem Rev 2024; 124:11242-11347. [PMID: 39380213 PMCID: PMC11503637 DOI: 10.1021/acs.chemrev.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Biopsy, including tissue and liquid biopsy, offers comprehensive and real-time physiological and pathological information for disease detection, diagnosis, and monitoring. Fluorescent probes are frequently selected to obtain adequate information on pathological processes in a rapid and minimally invasive manner based on their advantages for biopsy. However, conventional fluorescent probes have been found to show aggregation-caused quenching (ACQ) properties, impeding greater progresses in this area. Since the discovery of aggregation-induced emission luminogen (AIEgen) have promoted rapid advancements in molecular bionanomaterials owing to their unique properties, including high quantum yield (QY) and signal-to-noise ratio (SNR), etc. This review seeks to present the latest advances in AIEgen-based biofluorescent probes for biopsy in real or artificial samples, and also the key properties of these AIE probes. This review is divided into: (i) tissue biopsy based on smart AIEgens, (ii) blood sample biopsy based on smart AIEgens, (iii) urine sample biopsy based on smart AIEgens, (iv) saliva sample biopsy based on smart AIEgens, (v) biopsy of other liquid samples based on smart AIEgens, and (vi) perspectives and conclusion. This review could provide additional guidance to motivate interest and bolster more innovative ideas for further exploring the applications of various smart AIEgens in precision medicine.
Collapse
Affiliation(s)
- Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Lei Han
- College of
Chemistry and Pharmaceutical Sciences, Qingdao
Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong China
| | - Yaoqiang Yang
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Zhifeng Wang
- Department
of Urology, Henan Provincial People’s Hospital, Zhengzhou University
People’s Hospital, Henan University
People’s Hospital, Zhengzhou, 450003, China
| | - Lirong Wang
- State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jingyi Chen
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Zhongyuan Xiang
- Department
of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Guanghong Luo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen 518172, Guangdong China
| |
Collapse
|
8
|
Gong H, Cai G, Chen C, Chen F, Cai C. Construction of a monoclonal molecular imprinted sensor with high affinity for specific recognition of influenza a virus subtype. Talanta 2024; 278:126568. [PMID: 39018763 DOI: 10.1016/j.talanta.2024.126568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Although molecular imprinting technology has been widely used in the construction of virus sensors, it is still a great challenge to identify subtypes viruses specifically because of their high similarity in morphology, size and structure. Here, a monoclonal molecular imprinted polymers (MIPs) sensor for recognition of H5N1 is constructed to permit the accurate distinguishing of H5N1 from other influenza A virus (IAV) subtypes. Firstly, H5N1 are immobilized on magnetic microspheres to produce H5N1-MagNPs, then the high affinity nanogel H5N1-MIPs is prepared by solid phase imprinting technique. When H5N1-MIPs is combined with MagNP-H5N1, different concentrations of H5N1 are added for competitive substitution. The quantitative detection of H5N1 is realized by the change of fluorescence intensity of supernatant. As expected, the constructed sensor shows satisfactory selectivity, and can identify the target virus from highly similar IAV subtypes, such as H1N1, H7N9 and H9N2. The sensor was highly sensitive, with a detection limit of 0.58 fM, and a selectivity factor that is comparable to that of other small MIPs sensors is achieved. In addition, the proposed sensor is cheap, with a cost of only RMB 0.08 yuan. The proposed monoclonal sensor provides a new method for the specific recognition of designated virus subtype, which is expected to be used for large-scale screening and accurate treatment of infected people.
Collapse
Affiliation(s)
- Hang Gong
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China; The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| | - Ganping Cai
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Chunyan Chen
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Feng Chen
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Changqun Cai
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
9
|
Dong Z, Song B, Ma H, Gao X, Zhang W, Yuan J. A strategy to enhance the water solubility of luminescent β-diketonate-Europium(III) complexes for time-gated luminescence bioassays. Talanta 2024; 274:126000. [PMID: 38608630 DOI: 10.1016/j.talanta.2024.126000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Luminescent β-diketonate-europium(III) complexes have been found a wide range of applications in time-gated luminescence (TGL) bioassays, but their poor water solubility is a main problem that limits their effective uses. In this work we propose a simple and general strategy to enhance the water solubility of luminescent β-diketonate-europium(III) complexes that permits facile synthesis and purification. By introducing the fluorinated carboxylic acid group into the structures of β-diketone ligands, two highly water-soluble and luminescent Eu3+ complexes, PBBHD-Eu3+ and CPBBHD-Eu3+, were designed and synthesized. An excellent solubility exceeding 20 mg/mL for PBBHD-Eu3+ was found in a pure aqueous buffer, while it also displayed strong and long-lived luminescence (quantum yield φ = 26%, lifetime τ = 0.49 ms). After the carboxyl groups of PBBHD-Eu3+ were activated, the PBBHD-Eu3+-labeled streptavidin-bovine serum albumin (SA-BSA) conjugate was prepared, and successfully used for the immunoassay of human α-fetoprotein (AFP) and the imaging of an environmental pathogen Giardia lamblia under TGL mode, which demonstrated the practicability of PBBHD-Eu3+ for highly sensitive TGL bioassays. The carboxyl groups of PBBHD can also be easily derivatized with other reactive chemical groups, which enables PBBHD-Eu3+ to meet diverse requirements of biolabeling technique, to provide new opportunities for developing functional europium(III) complex biolabels serving for TGL bioassays.
Collapse
Affiliation(s)
- Zhiyuan Dong
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Hua Ma
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xiaona Gao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Wenzhu Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jingli Yuan
- College of Life Science, Dalian Minzu University, 18 Liaohe West Road, Jinzhou New District, Dalian, 116600, China.
| |
Collapse
|
10
|
Kim EJ, Jeon HB, Kang MJ, Lee J. Dynamic Imaging of Lipid Droplets in Cells and Tissues by Using Dioxaborine Barbiturate-Based Fluorogenic Probes. Anal Chem 2024; 96:8356-8364. [PMID: 38753674 DOI: 10.1021/acs.analchem.3c05368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Lipids are essential for various cellular functions, including energy storage, membrane flexibility, and signaling molecule production. Maintaining proper lipid levels is important to prevent health problems such as cancer, neurodegenerative disorders, cardiovascular diseases, obesity, and diabetes. Monitoring cellular lipid droplets (LDs) in real-time with high resolution can provide insights into LD-related pathways and diseases owing to the dynamic nature of LDs. Fluorescence-based imaging is widely used for tracking LDs in live cells and animal models. However, the current fluorophores have limitations such as poor photostability and high background staining. Herein, we developed a novel fluorogenic probe based on a push-pull interaction combined with aggregation-induced emission enhancement (AIEE) for dynamic imaging of LDs. Probe 1 exhibits favorable membrane permeability and spectroscopic characteristics, allowing specific imaging of cellular LDs and time-lapse imaging of LD accumulation. This probe can also be used to examine LDs in fruit fly tissues in various metabolic states, serving as a highly versatile and specific tool for dynamic LD imaging in cellular and tissue environments.
Collapse
Affiliation(s)
- Eun-Ji Kim
- Department of Next-Generation Applied Science and School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul 01133, Republic of Korea
| | - Hye-Bin Jeon
- Department of Next-Generation Applied Science and School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul 01133, Republic of Korea
| | - Min-Ji Kang
- Department of Pharmacology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Jiyoun Lee
- Department of Next-Generation Applied Science and School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul 01133, Republic of Korea
| |
Collapse
|
11
|
Liu Y, Zhou S, Liu Z. Synthesis, structure, photophysical property, stability of tetraphenylethylene-based boranil, and applications in cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123730. [PMID: 38061107 DOI: 10.1016/j.saa.2023.123730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
A new family of tetraphenylethylene-based N,O-chelated boranil complexes (TPE-BAs) with aggregation-induced emission (AIE) characteristics were developed. X-ray crystallographic analysis indicated that the terminal substituents on the aniline moiety significantly affected the intermolecular stacking mode, thereby influencing the photophysical properties. The stabilities of these compounds are closely related to the substituents on the aniline moiety. Electron-donor-substituted TPE-BA-OMe exhibited the best stability, whereas the electron-acceptor-substituted compounds exhibited poor stability. Benefitting from its AIE properties and suitable lipophilicity, TPE-BA-OMe served as an excellent fluorescent probe for the specific bioimaging of lipid droplets in living cells.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Shimin Zhou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; Shenzhen Research Institute of Shandong University, Shenzhen 518057, China.
| |
Collapse
|
12
|
Wang Y, Zhang G, Xiao X, Shu X, Fei D, Guang Y, Zhou Y, Lai W. High-Performance Fluorescent Microspheres Based on Fluorescence Resonance Energy Transfer Mode for Lateral Flow Immunoassays. Anal Chem 2023; 95:17860-17867. [PMID: 38050676 DOI: 10.1021/acs.analchem.3c03986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The label with a large Stokes shift and strong fluorescence properties could improve the sensitivity of the lateral flow immunoassay (LFIA). Herein, two aggregation-induced emission (AIE) luminogens with spectral overlap were encapsulated in polymers by using the microemulsion method as a label, and the construction of a fluorescence resonance energy transfer mode was further verified via theoretical calculation and spectral analysis. Satisfactorily, the doped AIE polymer microspheres (DAIEPMs) exhibited a large Stokes shift of 285 nm and a 10.8-fold fluorescence enhancement compared to those of the AIEPMs loaded with acceptors. Benefiting from the excellent optical performance, DAIEPMs were applied to the LFIA for sensitive detection of chlorothalonil, which is an organochlorine pesticide. The limit of detection of the proposed DAIEPMs-LFIA was 1.2 pg/mL, which was 4.8-fold and 11.6-fold lower than those of quantum dot bead LFIA and gold nanoparticle LFIA, respectively. This work provides a new strategy to improve the optical properties of fluorescent materials and construct a sensitive and reliable detection platform.
Collapse
Affiliation(s)
- Yumeng Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Gan Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xiaoyue Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xinhui Shu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Dan Fei
- Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Yelan Guang
- Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Yaomin Zhou
- Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
13
|
Liu L, Chang Y, Lou J, Zhang S, Yi X. Overview on the Development of Alkaline-Phosphatase-Linked Optical Immunoassays. Molecules 2023; 28:6565. [PMID: 37764341 PMCID: PMC10536125 DOI: 10.3390/molecules28186565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The drive to achieve ultrasensitive target detection with exceptional efficiency and accuracy requires the advancement of immunoassays. Optical immunoassays have demonstrated significant potential in clinical diagnosis, food safety, environmental protection, and other fields. Through the innovative and feasible combination of enzyme catalysis and optical immunoassays, notable progress has been made in enhancing analytical performances. Among the kinds of reporter enzymes, alkaline phosphatase (ALP) stands out due to its high catalytic activity, elevated turnover number, and broad substrate specificity, rendering it an excellent candidate for the development of various immunoassays. This review provides a systematic evaluation of the advancements in optical immunoassays by employing ALP as the signal label, encompassing fluorescence, colorimetry, chemiluminescence, and surface-enhanced Raman scattering. Particular emphasis is placed on the fundamental signal amplification strategies employed in ALP-linked immunoassays. Furthermore, this work briefly discusses the proposed solutions and challenges that need to be addressed to further enhance the performances of ALP-linked immunoassays.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiaxin Lou
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Shuo Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
14
|
Liao Z, Zhou Q, Gao B. AIEgens-Doped Photonic Crystals for High Sensitivity Fluorescence Detection of Tumor Markers. BIOSENSORS 2023; 13:bios13020276. [PMID: 36832042 PMCID: PMC9953774 DOI: 10.3390/bios13020276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 05/30/2023]
Abstract
Detection of tumor markers is of great significance to preliminarily judge whether patients have malignant tumors. Fluorescence detection (FD) is an effective means to achieve sensitive detection of tumor markers. Currently, the increased sensitivity of FD has attracted research interest worldwide. Here, we have proposed a method of doping luminogens with aggregation-induced emission (AIEgens) into photonic crystals (PCs), which can significantly enhance the fluorescence intensity to achieve high sensitivity in the detection of tumor markers. PCs are made by scraping and self-assembling, which has the special effect of fluorescence enhancement. The combination of AIEgens and PCs can enhance the fluorescence intensity 4-7 times. These characteristics make it extremely sensitive. The limit of detection (LOD) for the detection of alpha-fetoprotein (AFP) in the AIE10 (Tetraphenyl ethylene-Br) doped PCs with a reflection peak of 520 nm is 0.0377 ng/mL. LOD for the detection of carcinoembryonic antigen (CEA) in the AIE25 (Tetraphenyl ethylene-NH2) doped PCs with a reflection peak of 590 nm is 0.0337 ng/mL. Our concept offers a good solution for highly sensitive detection of tumor markers.
Collapse
|