1
|
Hu Y, Pan Z, De Bock M, Tan TX, Wang Y, Shi Y, Yan N, Yetisen AK. A wearable microneedle patch incorporating reversible FRET-based hydrogel sensors for continuous glucose monitoring. Biosens Bioelectron 2024; 262:116542. [PMID: 38991372 DOI: 10.1016/j.bios.2024.116542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024]
Abstract
Continuous glucose monitors are crucial for diabetes management, but invasive sampling, signal drift and frequent calibrations restrict their widespread usage. Microneedle sensors are emerging as a minimally-invasive platform for real-time monitoring of clinical parameters in interstitial fluid. Herein, a painless and flexible microneedle sensing patch is constructed by a mechanically-strong microneedle base and a thin layer of fluorescent hydrogel sensor for on-site, accurate, and continuous glucose monitoring. The Förster resonance energy transfer (FRET)-based hydrogel sensors are fabricated by facile photopolymerizations of acryloylated FRET pairs and glucose-specific phenylboronic acid. The optimized hydrogel sensor enables quantification of glucose with reversibility, high selectivity, and signal stability against photobleaching. Poly (ethylene glycol diacrylate)-co-polyacrylamide hydrogel is utilized as the microneedle base, facilitating effective skin piercing and biofluid extraction. The integrated microneedle sensor patch displays a sensitivity of 0.029 mM-1 in the (patho)physiological range, a low detection limit of 0.193 mM, and a response time of 7.7 min in human serum. Hypoglycemia, euglycemia and hyperglycemia are continuously monitored over 6 h simulated meal and rest activities in a porcine skin model. This microneedle sensor with high transdermal analytical performance offers a powerful tool for continuous diabetes monitoring at point-of-care settings.
Collapse
Affiliation(s)
- Yubing Hu
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.
| | - Zhisheng Pan
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Marieke De Bock
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Tai Xuan Tan
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Yuhuai Wang
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yuqi Shi
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Neng Yan
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
2
|
Schedler B, Yukhnovets O, Lindner L, Meyer A, Fitter J. The Thermodynamic Fingerprints of Ultra-Tight Nanobody-Antigen Binding Probed via Two-Color Single-Molecule Coincidence Detection. Int J Mol Sci 2023; 24:16379. [PMID: 38003569 PMCID: PMC10671529 DOI: 10.3390/ijms242216379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Life on the molecular scale is based on a versatile interplay of biomolecules, a feature that is relevant for the formation of macromolecular complexes. Fluorescence-based two-color coincidence detection is widely used to characterize molecular binding and was recently improved by a brightness-gated version which gives more accurate results. We developed and established protocols which make use of coincidence detection to quantify binding fractions between interaction partners labeled with fluorescence dyes of different colors. Since the applied technique is intrinsically related to single-molecule detection, the concentration of diffusing molecules for confocal detection is typically in the low picomolar regime. This makes the approach a powerful tool for determining bi-molecular binding affinities, in terms of KD values, in this regime. We demonstrated the reliability of our approach by analyzing very strong nanobody-EGFP binding. By measuring the affinity at different temperatures, we were able to determine the thermodynamic parameters of the binding interaction. The results show that the ultra-tight binding is dominated by entropic contributions.
Collapse
Affiliation(s)
- Benno Schedler
- AG Biophysik, I. Physikalisches Institut (IA), RWTH Aachen University, 52074 Aachen, Germany; (B.S.); (O.Y.); (L.L.); (A.M.)
| | - Olessya Yukhnovets
- AG Biophysik, I. Physikalisches Institut (IA), RWTH Aachen University, 52074 Aachen, Germany; (B.S.); (O.Y.); (L.L.); (A.M.)
| | - Lennart Lindner
- AG Biophysik, I. Physikalisches Institut (IA), RWTH Aachen University, 52074 Aachen, Germany; (B.S.); (O.Y.); (L.L.); (A.M.)
| | - Alida Meyer
- AG Biophysik, I. Physikalisches Institut (IA), RWTH Aachen University, 52074 Aachen, Germany; (B.S.); (O.Y.); (L.L.); (A.M.)
| | - Jörg Fitter
- AG Biophysik, I. Physikalisches Institut (IA), RWTH Aachen University, 52074 Aachen, Germany; (B.S.); (O.Y.); (L.L.); (A.M.)
- ER-C-3 Structural Biology & IBI-6 Cellular Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
3
|
Löwe M, Hänsch S, Hachani E, Schmitt L, Weidtkamp-Peters S, Kedrov A. Probing macromolecular crowding at the lipid membrane interface with genetically-encoded sensors. Protein Sci 2023; 32:e4797. [PMID: 37779215 PMCID: PMC10578116 DOI: 10.1002/pro.4797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Biochemical processes within the living cell occur in a highly crowded environment, where macromolecules, first of all proteins and nucleic acids, occupy up to 30% of the volume. The phenomenon of macromolecular crowding is not an exclusive feature of the cytoplasm and can be observed in the densely protein-packed, nonhomogeneous cellular membranes and at the membrane interfaces. Crowding affects diffusional and conformational dynamics of proteins within the lipid bilayer, alters kinetic and thermodynamic properties of biochemical reactions, and modulates the membrane organization. Despite its importance, the non-invasive quantification of the membrane crowding is not trivial. Here, we developed a genetically-encoded fluorescence-based sensor for probing the macromolecular crowding at the membrane interfaces. Two sensor variants, both composed of fluorescent proteins and a membrane anchor, but differing by flexible linker domains were characterized in vitro, and the procedures for the membrane reconstitution were established. Steric pressure induced by membrane-tethered synthetic and protein crowders altered the sensors' conformation, causing increase in the intramolecular Förster's resonance energy transfer. Notably, the effect of protein crowders only weakly correlated with their molecular weight, suggesting that other factors, such as shape and charge contribute to the crowding via the quinary interactions. Finally, measurements performed in inner membrane vesicles of Escherichia coli validated the crowding-dependent dynamics of the sensors in the physiologically relevant environment. The sensors offer broad opportunities to study interfacial crowding in a complex environment of native membranes, and thus add to the toolbox of methods for studying membrane dynamics and proteostasis.
Collapse
Affiliation(s)
- Maryna Löwe
- Synthetic Membrane Systems, Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Hänsch
- Center for Advanced imaging, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Eymen Hachani
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Alexej Kedrov
- Synthetic Membrane Systems, Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
Gantz M, Neun S, Medcalf EJ, van Vliet LD, Hollfelder F. Ultrahigh-Throughput Enzyme Engineering and Discovery in In Vitro Compartments. Chem Rev 2023; 123:5571-5611. [PMID: 37126602 PMCID: PMC10176489 DOI: 10.1021/acs.chemrev.2c00910] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Indexed: 05/03/2023]
Abstract
Novel and improved biocatalysts are increasingly sourced from libraries via experimental screening. The success of such campaigns is crucially dependent on the number of candidates tested. Water-in-oil emulsion droplets can replace the classical test tube, to provide in vitro compartments as an alternative screening format, containing genotype and phenotype and enabling a readout of function. The scale-down to micrometer droplet diameters and picoliter volumes brings about a >107-fold volume reduction compared to 96-well-plate screening. Droplets made in automated microfluidic devices can be integrated into modular workflows to set up multistep screening protocols involving various detection modes to sort >107 variants a day with kHz frequencies. The repertoire of assays available for droplet screening covers all seven enzyme commission (EC) number classes, setting the stage for widespread use of droplet microfluidics in everyday biochemical experiments. We review the practicalities of adapting droplet screening for enzyme discovery and for detailed kinetic characterization. These new ways of working will not just accelerate discovery experiments currently limited by screening capacity but profoundly change the paradigms we can probe. By interfacing the results of ultrahigh-throughput droplet screening with next-generation sequencing and deep learning, strategies for directed evolution can be implemented, examined, and evaluated.
Collapse
Affiliation(s)
| | | | | | | | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| |
Collapse
|
5
|
Joy B, Cai Y, Bono DC, Sarkar D. Cell Rover-a miniaturized magnetostrictive antenna for wireless operation inside living cells. Nat Commun 2022; 13:5210. [PMID: 36138011 PMCID: PMC9499948 DOI: 10.1038/s41467-022-32862-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
An intracellular antenna can open up new horizons for fundamental and applied biology. Here, we introduce the Cell Rover, a magnetostrictive antenna which can operate wirelessly inside a living cell and is compatible with 3D biological systems. It is sub-mm in size, acoustically actuated by an AC magnetic field and resonantly operated at low MHz frequencies, which is ideal for living systems. We developed an injection scheme involving non-uniform magnetic fields for intracellular injection of the Cell Rovers and demonstrated their operation in fully opaque, stage VI Xenopus oocytes, for which real-time imaging with conventional technologies is challenging. We also show that they provide a pathway for multiplexing applications to individually address multiple cells or to tune to more than one antenna within the same cell for versatile functionalities. This technology forms the foundation stone that can enable the integration of future capabilities such as smart sensing, modulation as well as energy harvesting to power in-cell nanoelectronic computing and can potentially bring the prowess of information technology inside a living cell. This could lead to unprecedented opportunities for fundamental understanding of biology as well as diagnostics and therapeutics.
Collapse
Affiliation(s)
- Baju Joy
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yubin Cai
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David C Bono
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Deblina Sarkar
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
6
|
Development of a Real-Time Pectic Oligosaccharide-Detecting Biosensor Using the Rapid and Flexible Computational Identification of Non-Disruptive Conjugation Sites (CINC) Biosensor Design Platform. SENSORS 2022; 22:s22030948. [PMID: 35161692 PMCID: PMC8839585 DOI: 10.3390/s22030948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 01/25/2023]
Abstract
Fluorescently labeled, solute-binding proteins that change their fluorescent output in response to ligand binding are frequently used as biosensors for a wide range of applications. We have previously developed a "Computational Identification of Non-disruptive Conjugation sites" (CINC) approach, an in silico pipeline utilizing molecular dynamics simulations for the rapid design and construction of novel protein-fluorophore conjugate-type biosensors. Here, we report an improved in silico scoring algorithm for use in CINC and its use in the construction of an oligogalacturonide-detecting biosensor set. Using both 4,5-unsaturated and saturated oligogalacturonides, we demonstrate that signal transmission from the ligand-binding pocket of the starting protein scaffold to the CINC-selected reporter positions is effective for multiple different ligands. The utility of an oligogalacturonide-detecting biosensor is shown in Carbohydrate Active Enzyme (CAZyme) activity assays, where the biosensor is used to follow product release upon polygalacturonic acid (PGA) depolymerization in real time. The oligogalacturonide-detecting biosensor set represents a novel enabling tool integral to our rapidly expanding platform for biosensor-based carbohydrate detection, and moving forward, the CINC pipeline will continue to enable the rational design of biomolecular tools to detect additional chemically distinct oligosaccharides and other solutes.
Collapse
|
7
|
Van Genechten W, Van Dijck P, Demuyser L. Fluorescent toys 'n' tools lighting the way in fungal research. FEMS Microbiol Rev 2021; 45:fuab013. [PMID: 33595628 PMCID: PMC8498796 DOI: 10.1093/femsre/fuab013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Although largely overlooked compared to bacterial infections, fungal infections pose a significant threat to the health of humans and other organisms. Many pathogenic fungi, especially Candida species, are extremely versatile and flexible in adapting to various host niches and stressful situations. This leads to high pathogenicity and increasing resistance to existing drugs. Due to the high level of conservation between fungi and mammalian cells, it is hard to find fungus-specific drug targets for novel therapy development. In this respect, it is vital to understand how these fungi function on a molecular, cellular as well as organismal level. Fluorescence imaging allows for detailed analysis of molecular mechanisms, cellular structures and interactions on different levels. In this manuscript, we provide researchers with an elaborate and contemporary overview of fluorescence techniques that can be used to study fungal pathogens. We focus on the available fluorescent labelling techniques and guide our readers through the different relevant applications of fluorescent imaging, from subcellular events to multispecies interactions and diagnostics. As well as cautioning researchers for potential challenges and obstacles, we offer hands-on tips and tricks for efficient experimentation and share our expert-view on future developments and possible improvements.
Collapse
Affiliation(s)
- Wouter Van Genechten
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200g, 3001 Leuven-Heverlee, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| | - Liesbeth Demuyser
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| |
Collapse
|
8
|
Reinartz I, Sarter M, Otten J, Höfig H, Pohl M, Schug A, Stadler AM, Fitter J. Structural Analysis of a Genetically Encoded FRET Biosensor by SAXS and MD Simulations. SENSORS 2021; 21:s21124144. [PMID: 34208740 PMCID: PMC8234384 DOI: 10.3390/s21124144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/27/2022]
Abstract
Inspired by the modular architecture of natural signaling proteins, ligand binding proteins are equipped with two fluorescent proteins (FPs) in order to obtain Förster resonance energy transfer (FRET)-based biosensors. Here, we investigated a glucose sensor where the donor and acceptor FPs were attached to a glucose binding protein using a variety of different linker sequences. For three resulting sensor constructs the corresponding glucose induced conformational changes were measured by small angle X-ray scattering (SAXS) and compared to recently published single molecule FRET results (Höfig et al., ACS Sensors, 2018). For one construct which exhibits a high change in energy transfer and a large change of the radius of gyration upon ligand binding, we performed coarse-grained molecular dynamics simulations for the ligand-free and the ligand-bound state. Our analysis indicates that a carefully designed attachment of the donor FP is crucial for the proper transfer of the glucose induced conformational change of the glucose binding protein into a well pronounced FRET signal change as measured in this sensor construct. Since the other FP (acceptor) does not experience such a glucose induced alteration, it becomes apparent that only one of the FPs needs to have a well-adjusted attachment to the glucose binding protein.
Collapse
Affiliation(s)
- Ines Reinartz
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany;
- HIDSS4Health-Helmholtz Information and Data Science School for Health, 76344 Eggenstein-Leopoldshafen, Germany
| | - Mona Sarter
- I Physikalisches Institut (IA), AG Biophysik, RWTH Aachen University, 52074 Aachen, Germany; (M.S.); (H.H.)
- Forschungszentrum Jülich, IBI-8/JCNS-1, 52428 Jülich, Germany;
| | - Julia Otten
- Forschungszentrum Jülich, IBG-1, 52426 Jülich, Germany; (J.O.); (M.P.)
| | - Henning Höfig
- I Physikalisches Institut (IA), AG Biophysik, RWTH Aachen University, 52074 Aachen, Germany; (M.S.); (H.H.)
- Forschungszentrum Jülich, IBI-6, 52428 Jülich, Germany
| | - Martina Pohl
- Forschungszentrum Jülich, IBG-1, 52426 Jülich, Germany; (J.O.); (M.P.)
| | - Alexander Schug
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany;
- Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Andreas M. Stadler
- Forschungszentrum Jülich, IBI-8/JCNS-1, 52428 Jülich, Germany;
- Institut für Physikalische Chemie, RWTH Aachen University, 52074 Aachen, Germany
| | - Jörg Fitter
- I Physikalisches Institut (IA), AG Biophysik, RWTH Aachen University, 52074 Aachen, Germany; (M.S.); (H.H.)
- Forschungszentrum Jülich, IBI-6, 52428 Jülich, Germany
- Correspondence: ; Tel.: +49-241-80-27209
| |
Collapse
|
9
|
Basak S, Sakia N, Dougherty L, Guo Z, Wu F, Mindlin F, Lary JW, Cole JL, Ding F, Bowen ME. Probing Interdomain Linkers and Protein Supertertiary Structure In Vitro and in Live Cells with Fluorescent Protein Resonance Energy Transfer. J Mol Biol 2021; 433:166793. [PMID: 33388290 DOI: 10.1016/j.jmb.2020.166793] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022]
Abstract
Many proteins are composed of independently-folded domains connected by flexible linkers. The primary sequence and length of such linkers can set the effective concentration for the tethered domains, which impacts rates of association and enzyme activity. The length of such linkers can be sensitive to environmental conditions, which raises questions as to how studies in dilute buffer relate to the highly-crowded cellular environment. To examine the role of linkers in domain separation, we measured Fluorescent Protein-Fluorescence Resonance Energy Transfer (FP-FRET) for a series of tandem FPs that varied in the length of their interdomain linkers. We used discrete molecular dynamics to map the underlying conformational distribution, which revealed intramolecular contact states that we confirmed with single molecule FRET. Simulations found that attached FPs increased linker length and slowed conformational dynamics relative to the bare linkers. This makes the CLYs poor sensors of inherent linker properties. However, we also showed that FP-FRET in CLYs was sensitive to solvent quality and macromolecular crowding making them potent environmental sensors. Finally, we targeted the same proteins to the plasma membrane of living mammalian cells to measure FP-FRET in cellulo. The measured FP-FRET when tethered to the plasma membrane was the same as that in dilute buffer. While caveats remain regarding photophysics, this suggests that the supertertiary conformational ensemble of these CLY proteins may not be affected by this specific cellular environment.
Collapse
Affiliation(s)
- Sujit Basak
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Nabanita Sakia
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978, USA
| | - Laura Dougherty
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Zhuojun Guo
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Fang Wu
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Frank Mindlin
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Jeffrey W Lary
- National Analytical Ultracentrifugation Facility, University of Connecticut, Storrs, CT 06269, USA
| | - James L Cole
- National Analytical Ultracentrifugation Facility, University of Connecticut, Storrs, CT 06269, USA; Department of Molecular and Cell Biology, and Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978, USA
| | - Mark E Bowen
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA.
| |
Collapse
|
10
|
Gräwe A, Stein V. Linker Engineering in the Context of Synthetic Protein Switches and Sensors. Trends Biotechnol 2020; 39:731-744. [PMID: 33293101 DOI: 10.1016/j.tibtech.2020.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Linkers play critical roles in the construction of synthetic protein switches and sensors as they functionally couple a receptor with an actuator. With an increasing number of molecular toolboxes and experimental strategies becoming available that can be applied to engineer protein switches and sensors with tailored response functions, optimising the connecting linkers remains an idiosyncratic and empiric process. This review aims to provide an in-depth analysis of linker motifs, the biophysical properties they confer, and how they impact the performance of synthetic protein switches and sensors while identifying trends, mechanisms, and strategies that underlie the most potent switches and sensors.
Collapse
Affiliation(s)
- Alexander Gräwe
- Department of Biology, TU Darmstadt, 64287 Darmstadt, Germany; Centre for Synthetic Biology, TU Darmstadt, 64283 Darmstadt, Germany
| | - Viktor Stein
- Department of Biology, TU Darmstadt, 64287 Darmstadt, Germany; Centre for Synthetic Biology, TU Darmstadt, 64283 Darmstadt, Germany.
| |
Collapse
|
11
|
Pittas T, Zuo W, Boersma AJ. Engineering crowding sensitivity into protein linkers. Methods Enzymol 2020; 647:51-81. [PMID: 33482994 DOI: 10.1016/bs.mie.2020.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The intracellular environment contains a high concentration of biomacromolecules that present steric barriers and ample surface area for weak chemical interactions. Consequently, these forces influence protein conformations and protein self-assembly, with an outcome that depends on the sum of the effects resulting from crowding. Linkers are disordered domains that lack tertiary structure, and this flexible nature would render them susceptible to compression or extension under crowded conditions, compared to the equilibrium conformation in a dilute buffer. The change in distance between the linked proteins can become essential where it attenuates protein activity. In this chapter, we first discuss the experimental findings in vitro and in the cell on how linkers and other relevant macromolecules are affected by crowding. We focus on the dependence on the linker's size, flexibility, and the intra- and intermolecular interactions. Although the experimental data on the systematic variation of proteins in a buffer and cells is limited, extrapolating the available insights allows us to propose a protocol on how to engineer the directionality of crowding effects in the linker. Finally, we describe a straightforward experimental protocol on the determination of crowding sensitivity in a buffer and cell.
Collapse
Affiliation(s)
- Theodoros Pittas
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Weiyan Zuo
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Arnold J Boersma
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
12
|
Abstract
Linker engineering constitutes a critical, yet frequently underestimated aspect in the construction of synthetic protein switches and sensors. Notably, systematic strategies to engineer linkers by predictive means remain largely elusive to date. This is primarily due to our insufficient understanding how the biophysical properties that underlie linker functions mediate the conformational transitions in artificially engineered protein switches and sensors. The construction of synthetic protein switches and sensors therefore heavily relies on experimental trial-and-error. Yet, methods for effectively generating linker diversity at the genetic level are scarce. Addressing this technical shortcoming, iterative functional linker cloning (iFLinkC) enables the combinatorial assembly of linker elements with functional domains from sequence verified repositories that are developed and stored in-house. The assembly process is highly scalable and given its recursive nature generates linker diversity in a combinatorial and exponential fashion based on a limited number of linker elements.
Collapse
|
13
|
|
14
|
Höfig H, Yukhnovets O, Remes C, Kempf N, Katranidis A, Kempe D, Fitter J. Brightness-gated two-color coincidence detection unravels two distinct mechanisms in bacterial protein translation initiation. Commun Biol 2019; 2:459. [PMID: 31840104 PMCID: PMC6897966 DOI: 10.1038/s42003-019-0709-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 11/22/2019] [Indexed: 01/19/2023] Open
Abstract
Life on the molecular scale is based on a complex interplay of biomolecules under which the ability of binding is crucial. Fluorescence based two-color coincidence detection (TCCD) is commonly used to characterize molecular binding, but suffers from an underestimation of coincident events. Here, we introduce a brightness-gated TCCD which overcomes this limitation and benchmark our approach with two custom-made calibration samples. Applied to a cell-free protein synthesis assay, brightness-gated TCCD unraveled a previously disregarded mode of translation initiation in bacteria.
Collapse
Affiliation(s)
- Henning Höfig
- I. Physikalisches Institut (IA), RWTH Aachen University, Aachen, Germany
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, Jülich, Germany
| | - Olessya Yukhnovets
- I. Physikalisches Institut (IA), RWTH Aachen University, Aachen, Germany
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, Jülich, Germany
| | - Cristina Remes
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, Jülich, Germany
- Present Address: Max Planck Institute for the Biology of Ageing, Cologne, Germany
| | - Noemie Kempf
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, Jülich, Germany
- Present Address: Laboratoire de Biologie Moléculaire Eucaryote LBME—Center for Integrative Biology CBI, University of Toulouse, Toulouse, France
| | | | - Daryan Kempe
- I. Physikalisches Institut (IA), RWTH Aachen University, Aachen, Germany
- Present Address: EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW Australia
| | - Jörg Fitter
- I. Physikalisches Institut (IA), RWTH Aachen University, Aachen, Germany
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
15
|
Otten J, Tenhaef N, Jansen RP, Döbber J, Jungbluth L, Noack S, Oldiges M, Wiechert W, Pohl M. A FRET-based biosensor for the quantification of glucose in culture supernatants of mL scale microbial cultivations. Microb Cell Fact 2019; 18:143. [PMID: 31434564 PMCID: PMC6704555 DOI: 10.1186/s12934-019-1193-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/14/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND In most microbial cultivations D-glucose is the main carbon and energy source. However, quantification of D-glucose especially in small scale is still challenging. Therefore, we developed a FRET-based glucose biosensor, which can be applied in microbioreactor-based cultivations. This sensor consists of a glucose binding protein sandwiched between two fluorescent proteins, constituting a FRET pair. Upon D-glucose binding the sensor undergoes a conformational change which is translated into a FRET-ratio change. RESULTS The selected sensor shows an apparent Kd below 1.5 mM D-glucose and a very high sensitivity of up to 70% FRET-ratio change between the unbound and the glucose-saturated state. The soluble sensor was successfully applied online to monitor the glucose concentration in an Escherichia coli culture. Additionally, this sensor was utilized in an at-line process for a Corynebacterium glutamicum culture as an example for a process with cell-specific background (e.g. autofluorescence) and medium-induced quenching. Immobilization of the sensor via HaloTag® enabled purification and covalent immobilization in one step and increased the stability during application, significantly. CONCLUSION A FRET-based glucose sensor was used to quantify D-glucose consumption in microtiter plate based cultivations. To the best of our knowledge, this is the first method reported for online quantification of D-glucose in microtiter plate based cultivations. In comparison to D-glucose analysis via an enzymatic assay and HPLC, the sensor performed equally well, but enabled much faster measurements, which allowed to speed up microbial strain development significantly.
Collapse
Affiliation(s)
- Julia Otten
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Niklas Tenhaef
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Roman P. Jansen
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Johannes Döbber
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Lisa Jungbluth
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Stephan Noack
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Marco Oldiges
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Wolfgang Wiechert
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Martina Pohl
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
16
|
Soleja N, Manzoor O, Khan P, Mohsin M. Engineering genetically encoded FRET-based nanosensors for real time display of arsenic (As 3+) dynamics in living cells. Sci Rep 2019; 9:11240. [PMID: 31375744 PMCID: PMC6677752 DOI: 10.1038/s41598-019-47682-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023] Open
Abstract
Arsenic poisoning has been a major concern that causes severe toxicological damages. Therefore, intricate and inclusive understanding of arsenic flux rates is required to ascertain the cellular concentration and establish the carcinogenetic mechanism of this toxicant at real time. The lack of sufficiently sensitive sensing systems has hampered research in this area. In this study, we constructed a fluorescent resonance energy transfer (FRET)-based nanosensor, named SenALiB (Sensor for Arsenic Linked Blackfoot disease) which contains a metalloregulatory arsenic-binding protein (ArsR) as the As3+ sensing element inserted between the FRET pair enhanced cyan fluorescent protein (ECFP) and Venus. SenALiB takes advantage of the ratiometic FRET readout which measures arsenic with high specificity and selectivity. SenALiB offers rapid detection response, is stable to pH changes and provides highly accurate, real-time optical readout in cell-based assays. SenALiB-676n with a binding constant (Kd) of 0.676 × 10−6 M is the most efficient affinity mutant and can be a versatile tool for dynamic measurement of arsenic concentration in both prokaryotes and eukaryotes in vivo in a non-invasive manner.
Collapse
Affiliation(s)
- Neha Soleja
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Ovais Manzoor
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohd Mohsin
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
17
|
Lochman L, Machacek M, Miletin M, Uhlířová Š, Lang K, Kirakci K, Zimcik P, Novakova V. Red-Emitting Fluorescence Sensors for Metal Cations: The Role of Counteranions and Sensing of SCN - in Biological Materials. ACS Sens 2019; 4:1552-1559. [PMID: 31094188 DOI: 10.1021/acssensors.9b00081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The spatiotemporal sensing of specific cationic and anionic species is crucial for understanding the processes occurring in living systems. Herein, we developed new fluorescence sensors derived from tetrapyrazinoporphyrazines (TPyzPzs) with a recognition moiety that consists of an aza-crown and supporting substituents. Their sensitivity and selectivity were compared by fluorescence titration experiments with the properties of known TPyzPzs (with either one aza-crown moiety or two of these moieties in a tweezer arrangement). Method of standard addition was employed for analyte quantification in saliva. For K+ recognition, the new derivatives had comparable or larger association constants with larger fluorescence enhancement factors compared to that with one aza-crown. Their fluorescence quantum yields in the ON state were 18× higher than that of TPyzPzs with a tweezer arrangement. Importantly, the sensitivity toward cations was strongly dependent on counteranions and increased as follows: NO3- < Br- < CF3SO3- < ClO4- ≪ SCN-. This trend resembles the chaotropic ability expressed by the Hofmeister series. The high selectivity toward KSCN was explained by synergic association of both K+ and SCN- with TPyzPz sensors. The sensing of SCN- was further exploited in a proof of concept study to quantify SCN- levels in the saliva of a smoker and to demonstrate the sensing ability of TPyzPzs under in vitro conditions.
Collapse
Affiliation(s)
- Lukas Lochman
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Miloslav Machacek
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Miroslav Miletin
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Štěpánka Uhlířová
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Kamil Lang
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic
| | - Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic
| | - Petr Zimcik
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Veronika Novakova
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| |
Collapse
|
18
|
Junker NO, Vaghefikia F, Albarghash A, Höfig H, Kempe D, Walter J, Otten J, Pohl M, Katranidis A, Wiegand S, Fitter J. Impact of Molecular Crowding on Translational Mobility and Conformational Properties of Biological Macromolecules. J Phys Chem B 2019; 123:4477-4486. [PMID: 31059260 DOI: 10.1021/acs.jpcb.9b01239] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Effects of molecular crowding on structural and dynamical properties of biological macromolecules do depend on the concentration of crowding agents but also on the molecular mass and the structural compactness of the crowder molecules. By employing fluorescence correlation spectroscopy (FCS), we investigated the translational mobility of several biological macromolecules ranging from 17 kDa to 2.7 MDa. Polyethylene glycol and Ficoll polymers of different molecular masses were used in buffer solutions to mimic a crowded environment. The reduction in translational mobility of the biological tracer molecules was analyzed as a function of crowder volume fractions and was generally more pronounced in PEG as compared to Ficoll solutions. For several crowding conditions, we observed a molecular sieving effect, in which the diffusion coefficient of larger tracer molecules is reduced to a larger extent than predicted by the Stokes-Einstein relation. By employing a FRET-based biosensor, we also showed that a multiprotein complex is significantly compacted in the presence of macromolecular crowders. Importantly, with respect to sensor in vivo applications, ligand concentration determining sensors would need a crowding specific calibration in order to deliver correct cytosolic ligand concentration.
Collapse
Affiliation(s)
- Niklas O Junker
- I. Physikalisches Institut (IA) , RWTH Aachen University , 52074 Aachen , Germany
| | - Farzaneh Vaghefikia
- I. Physikalisches Institut (IA) , RWTH Aachen University , 52074 Aachen , Germany
| | - Alyazan Albarghash
- I. Physikalisches Institut (IA) , RWTH Aachen University , 52074 Aachen , Germany
| | - Henning Höfig
- I. Physikalisches Institut (IA) , RWTH Aachen University , 52074 Aachen , Germany
| | - Daryan Kempe
- I. Physikalisches Institut (IA) , RWTH Aachen University , 52074 Aachen , Germany
| | - Julia Walter
- I. Physikalisches Institut (IA) , RWTH Aachen University , 52074 Aachen , Germany
| | | | | | | | - Simone Wiegand
- Physikalische Chemie , Universität zu Köln , 50923 Köln , Germany
| | - Jörg Fitter
- I. Physikalisches Institut (IA) , RWTH Aachen University , 52074 Aachen , Germany
| |
Collapse
|
19
|
Fujita H, Zhong C, Arai S, Suzuki M. Bright Dots and Smart Optical Microscopy to Probe Intracellular Events in Single Cells. Front Bioeng Biotechnol 2019; 6:204. [PMID: 30662896 PMCID: PMC6328461 DOI: 10.3389/fbioe.2018.00204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/12/2018] [Indexed: 11/13/2022] Open
Abstract
Probing intracellular events is a key step in developing new biomedical methodologies. Optical microscopy has been one of the best options to observe biological samples at single cell and sub-cellular resolutions. Morphological changes are readily detectable in brightfield images. When stained with fluorescent molecules, distributions of intracellular organelles, and biological molecules are made visible using fluorescence microscopes. In addition to these morphological views of cells, optical microscopy can reveal the chemical and physical status of defined intracellular spaces. This review begins with a brief overview of genetically encoded fluorescent probes and small fluorescent chemical dyes. Although these are the most common approaches, probing is also made possible by using tiny materials that are incorporated into cells. When these tiny materials emit enough photons, it is possible to draw conclusions about the environment in which the tiny material resides. Recent advances in these tiny but sufficiently bright fluorescent materials are nextly reviewed to show their applications in tracking target molecules and in temperature imaging of intracellular spots. The last section of this review addresses purely optical methods for reading intracellular status without staining with probes. These non-labeling methods are especially essential when biospecimens are thereafter required for in vivo uses, such as in regenerative medicine.
Collapse
Affiliation(s)
- Hideaki Fujita
- WASEDA Bioscience Research Institute in Singapore, Singapore, Singapore
| | - Chongxia Zhong
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Satoshi Arai
- Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
- PRIME-AMED, Tokyo, Japan
| | - Madoka Suzuki
- Institute for Protein Research, Osaka University, Osaka, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
20
|
Single-Molecule Studies on a FRET Biosensor: Lessons from a Comparison of Fluorescent Protein Equipped versus Dye-Labeled Species. Molecules 2018; 23:molecules23123105. [PMID: 30486450 PMCID: PMC6320824 DOI: 10.3390/molecules23123105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 11/16/2022] Open
Abstract
Bacterial periplasmic binding proteins (PBPs) undergo a pronounced ligand-induced conformational change which can be employed to monitor ligand concentrations. The most common strategy to take advantage of this conformational change for a biosensor design is to use a Förster resonance energy transfer (FRET) signal. This can be achieved by attaching either two fluorescent proteins (FPs) or two organic fluorescent dyes of different colors to the PBPs in order to obtain an optical readout signal which is closely related to the ligand concentration. In this study we compare a FP-equipped and a dye-labeled version of the glucose/galactose binding protein MglB at the single-molecule level. The comparison demonstrates that changes in the FRET signal upon glucose binding are more pronounced for the FP-equipped sensor construct as compared to the dye-labeled analog. Moreover, the FP-equipped sensor showed a strong increase of the FRET signal under crowding conditions whereas the dye-labeled sensor was not influenced by crowding. The choice of a labeling scheme should therefore be made depending on the application of a FRET-based sensor.
Collapse
|
21
|
Liu B, Mavrova SN, van den Berg J, Kristensen SK, Mantovanelli L, Veenhoff LM, Poolman B, Boersma AJ. Influence of Fluorescent Protein Maturation on FRET Measurements in Living Cells. ACS Sens 2018; 3:1735-1742. [PMID: 30168711 PMCID: PMC6167724 DOI: 10.1021/acssensors.8b00473] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Förster resonance
energy transfer (FRET)-based sensors are
a valuable tool to quantify cell biology, yet it remains necessary
to identify and prevent potential artifacts in order to exploit their
full potential. We show here that artifacts arising from slow donor
mCerulean3 maturation can be substantially diminished by constitutive
expression in both prokaryotic and eukaryotic cells, which can also
be achieved by incorporation of faster-maturing FRET donors. We developed
an improved version of the donor mTurquoise2 that matures faster than
the parent protein. Our analysis shows that using equal maturing fluorophores
in FRET-based sensors or using constitutive low expression conditions
helps to reduce maturation-induced artifacts, without the need of
additional noise-inducing spectral corrections. In general, we show
that monitoring and controlling the maturation of fluorescent proteins
in living cells is important and should be addressed in in
vivo applications of genetically encoded FRET sensors.
Collapse
Affiliation(s)
- Boqun Liu
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sara N. Mavrova
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jonas van den Berg
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sebastian K. Kristensen
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Luca Mantovanelli
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University
Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Arnold J. Boersma
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|