1
|
Sarkar A, Jones ZR, Parashar M, Druga E, Akkiraju A, Conti S, Krishnamoorthi P, Nachuri S, Aman P, Hashemi M, Nunn N, Torelli MD, Gilbert B, Wilson KR, Shenderova OA, Tanjore D, Ajoy A. High-precision chemical quantum sensing in flowing monodisperse microdroplets. SCIENCE ADVANCES 2024; 10:eadp4033. [PMID: 39661672 PMCID: PMC11633744 DOI: 10.1126/sciadv.adp4033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024]
Abstract
A method is presented for high-precision chemical detection that integrates quantum sensing with droplet microfluidics. Using nanodiamonds (ND) with fluorescent nitrogen-vacancy (NV) centers as quantum sensors, rapidly flowing microdroplets containing analyte molecules are analyzed. A noise-suppressed mode of optically detected magnetic resonance is enabled by pairing controllable flow with microwave control of NV electronic spins, to detect analyte-induced signals of a few hundredths of a percent of the ND fluorescence. Using this method, paramagnetic ions in droplets are detected with low limit-of-detection using small analyte volumes, with exceptional measurement stability over >103 s. In addition, these droplets are used as microconfinement chambers by co-encapsulating ND quantum sensors with various analytes such as single cells, suggesting wide-ranging applications including single-cell metabolomics and real-time intracellular measurements from bioreactors. Important advances are enabled by this work, including portable chemical testing devices, amplification-free chemical assays, and chemical imaging tools for probing reactions within microenvironments.
Collapse
Affiliation(s)
- Adrisha Sarkar
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zachary R. Jones
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Advanced Biofuels and Bioproducts Process Development Unit (ABPDU), Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley,CA 94720, USA
| | - Madhur Parashar
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Emanuel Druga
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Amala Akkiraju
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sophie Conti
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Pranav Krishnamoorthi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Srisai Nachuri
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Parker Aman
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mohammad Hashemi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas Nunn
- Adamas Nanotechnologies Inc., Raleigh, NC 27617, USA
| | | | - Benjamin Gilbert
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kevin R. Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Deepti Tanjore
- Advanced Biofuels and Bioproducts Process Development Unit (ABPDU), Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley,CA 94720, USA
| | - Ashok Ajoy
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- CIFAR Azrieli Global Scholars Program, 661 University Ave, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
2
|
Flinn B, Rance GA, Cull WJ, Cardillo-Zallo I, Pitcairn J, Cliffe MJ, Fay MW, Tyler AJ, Weare BL, Stoppiello CT, Davies ES, Mather ML, Khlobystov AN. Sensing the Spin State of Room-Temperature Switchable Cyanometallate Frameworks with Nitrogen-Vacancy Centers in Nanodiamonds. ACS NANO 2024; 18:7148-7160. [PMID: 38383159 PMCID: PMC10919078 DOI: 10.1021/acsnano.3c11820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Room-temperature magnetically switchable materials play a vital role in current and upcoming quantum technologies, such as spintronics, molecular switches, and data storage devices. The increasing miniaturization of device architectures produces a need to develop analytical tools capable of precisely probing spin information at the single-particle level. In this work, we demonstrate a methodology using negatively charged nitrogen vacancies (NV-) in fluorescent nanodiamond (FND) particles to probe the magnetic switching of a spin crossover (SCO) metal-organic framework (MOF), [Fe(1,6-naphthyridine)2(Ag(CN)2)2] material (1), and a single-molecule photomagnet [X(18-crown-6)(H2O)3]Fe(CN)6·2H2O, where X = Eu and Dy (materials 2a and 2b, respectively), in response to heat, light, and electron beam exposure. We employ correlative light-electron microscopy using transmission electron microscopy (TEM) finder grids to accurately image and sense spin-spin interacting particles down to the single-particle level. We used surface-sensitive optically detected magnetic resonance (ODMR) and magnetic modulation (MM) of FND photoluminescence (PL) to sense spins to a distance of ca. 10-30 nm. We show that ODMR and MM sensing was not sensitive to the temperature-induced SCO of FeII in 1 as formation of paramagnetic FeIII through surface oxidation (detected by X-ray photoelectron spectroscopy) on heating obscured the signal of bulk SCO switching. We found that proximal FNDs could effectively sense the chemical transformations induced by the 200 keV electron beam in 1, namely, AgI → Ag0 and FeII → FeIII. However, transformations induced by the electron beam are irreversible as they substantially disrupt the structure of MOF particles. Finally, we demonstrate NV- sensing of reversible photomagnetic switching, FeIII + (18-crown-6) ⇆ FeII + (18-crown-6)+ •, triggered in 2a and 2b by 405 nm light. The photoredox process of 2a and 2b proved to be the best candidate for room-temperature single-particle magnetic switching utilizing FNDs as a sensor, which could have applications into next-generation quantum technologies.
Collapse
Affiliation(s)
- Bradley
T. Flinn
- School
of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Graham A. Rance
- Nanoscale
and Microscale Research Centre, University
of Nottingham, Nottingham, NG7 2RD, United
Kingdom
| | - William J. Cull
- School
of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Ian Cardillo-Zallo
- School
of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Jem Pitcairn
- School
of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- School
of Chemistry, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Matthew J. Cliffe
- School
of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Michael W. Fay
- Nanoscale
and Microscale Research Centre, University
of Nottingham, Nottingham, NG7 2RD, United
Kingdom
| | - Ashley J. Tyler
- Optics
and Photonics Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, United
Kingdom
| | - Benjamin L. Weare
- Nanoscale
and Microscale Research Centre, University
of Nottingham, Nottingham, NG7 2RD, United
Kingdom
| | - Craig T. Stoppiello
- Centre
for Microscopy and Microanalysis, University
of Queensland, St. Lucia, 4072, Australia
| | - E. Stephen Davies
- School
of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Melissa L. Mather
- Optics
and Photonics Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, United
Kingdom
| | - Andrei N. Khlobystov
- School
of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- Nanoscale
and Microscale Research Centre, University
of Nottingham, Nottingham, NG7 2RD, United
Kingdom
| |
Collapse
|
3
|
Xu F, Zhang S, Ma L, Hou Y, Li J, Denisenko A, Li Z, Spatz J, Wrachtrup J, Lei H, Cao Y, Wei Q, Chu Z. Quantum-enhanced diamond molecular tension microscopy for quantifying cellular forces. SCIENCE ADVANCES 2024; 10:eadi5300. [PMID: 38266085 PMCID: PMC10807811 DOI: 10.1126/sciadv.adi5300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
The constant interplay and information exchange between cells and the microenvironment are essential to their survival and ability to execute biological functions. To date, a few leading technologies such as traction force microscopy, optical/magnetic tweezers, and molecular tension-based fluorescence microscopy are broadly used in measuring cellular forces. However, the considerable limitations, regarding the sensitivity and ambiguities in data interpretation, are hindering our thorough understanding of mechanobiology. Here, we propose an innovative approach, namely, quantum-enhanced diamond molecular tension microscopy (QDMTM), to precisely quantify the integrin-based cell adhesive forces. Specifically, we construct a force-sensing platform by conjugating the magnetic nanotags labeled, force-responsive polymer to the surface of a diamond membrane containing nitrogen-vacancy centers. Notably, the cellular forces will be converted into detectable magnetic variations in QDMTM. After careful validation, we achieved the quantitative cellular force mapping by correlating measurement with the established theoretical model. We anticipate our method can be routinely used in studies like cell-cell or cell-material interactions and mechanotransduction.
Collapse
Affiliation(s)
- Feng Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Shuxiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Linjie Ma
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yong Hou
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Jie Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Andrej Denisenko
- 3rd Institute of Physics, Research Center SCoPE and IQST, University of Stuttgart, 70569 Stuttgart, Germany
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Joachim Spatz
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), University of Heidelberg, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Jörg Wrachtrup
- 3rd Institute of Physics, Research Center SCoPE and IQST, University of Stuttgart, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Hai Lei
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
4
|
Flinn BT, Radu V, Fay MW, Tyler AJ, Pitcairn J, Cliffe MJ, Weare BL, Stoppiello CT, Mather ML, Khlobystov AN. Nitrogen vacancy defects in single-particle nanodiamonds sense paramagnetic transition metal spin noise from nanoparticles on a transmission electron microscopy grid. NANOSCALE ADVANCES 2023; 5:6423-6434. [PMID: 38024305 PMCID: PMC10662216 DOI: 10.1039/d3na00155e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/15/2023] [Indexed: 12/01/2023]
Abstract
Spin-active nanomaterials play a vital role in current and upcoming quantum technologies, such as spintronics, data storage and computing. To advance the design and application of these materials, methods to link size, shape, structure, and chemical composition with functional magnetic properties at the nanoscale level are needed. In this work, we combine the power of two local probes, namely, Nitrogen Vacancy (NV) spin-active defects in diamond and an electron beam, within experimental platforms used in electron microscopy. Negatively charged NVs within fluorescent nanodiamond (FND) particles are used to sense the local paramagnetic environment of Rb0.5Co1.3[Fe(CN)6]·3.7H2O nanoparticles (NPs), a Prussian blue analogue (PBA), as a function of FND-PBA distance (order of 10 nm) and local PBA concentration. We demonstrate perturbation of NV spins by proximal electron spins of transition metals within NPs, as detected by changes in the photoluminescence (PL) of NVs. Workflows are reported and demonstrated that employ a Transmission Electron Microscope (TEM) finder grid to spatially correlate functional and structural features of the same unique NP studied using NV sensing, based on a combination of Optically Detected Magnetic Resonance (ODMR) and Magnetic Modulation (MM) of NV PL, within TEM imaging modalities. Significantly, spin-spin dipole interactions were detected between NVs in a single FND and paramagnetic metal centre spin fluctuations in NPs through a carbon film barrier of 13 nm thickness, evidenced by TEM tilt series imaging and Electron Energy-Loss Spectroscopy (EELS), opening new avenues to sense magnetic materials encapsulated in or between thin-layered nanostructures. The measurement strategies reported herein provide a pathway towards solid-state quantitative NV sensing with atomic-scale theoretical spatial resolution, critical to the development of quantum technologies, such as memory storage and molecular switching nanodevices.
Collapse
Affiliation(s)
- Bradley T Flinn
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Valentin Radu
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Michael W Fay
- Nanoscale and Microscale Research Centre, University of Nottingham Nottingham NG7 1QL UK
| | - Ashley J Tyler
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Jem Pitcairn
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Matthew J Cliffe
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Benjamin L Weare
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Craig T Stoppiello
- Centre for Microscopy and Microanalysis, University of Queensland. St Lucia 4072 Australia
| | - Melissa L Mather
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Andrei N Khlobystov
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
- Nanoscale and Microscale Research Centre, University of Nottingham Nottingham NG7 1QL UK
| |
Collapse
|
5
|
Blankenship B, Jones Z, Zhao N, Singh H, Sarkar A, Li R, Suh E, Chen A, Grigoropoulos CP, Ajoy A. Complex Three-Dimensional Microscale Structures for Quantum Sensing Applications. NANO LETTERS 2023; 23:9272-9279. [PMID: 37811908 PMCID: PMC10603797 DOI: 10.1021/acs.nanolett.3c02251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/28/2023] [Indexed: 10/10/2023]
Abstract
We present a novel method for fabricating highly customizable three-dimensional structures hosting quantum sensors based on nitrogen vacancy (NV) centers using two-photon polymerization. This approach overcomes challenges associated with structuring traditional single-crystal quantum sensing platforms and enables the creation of complex, fully three-dimensional, sensor assemblies with submicroscale resolutions (down to 400 nm) and large fields of view (>1 mm). By embedding NV center-containing nanoparticles in exemplary structures, we demonstrate high sensitivity optical sensing of temperature and magnetic fields at the microscale. Our work showcases the potential for integrating quantum sensors with advanced manufacturing techniques, facilitating the incorporation of sensors into existing microfluidic and electronic platforms, and opening new avenues for widespread utilization of quantum sensors in various applications.
Collapse
Affiliation(s)
- Brian
W. Blankenship
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Zachary Jones
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Advanced
Biofuels and Bioproducts Process Development Unit, E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Naichen Zhao
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Harpreet Singh
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Adrisha Sarkar
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Runxuan Li
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Erin Suh
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Alan Chen
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Costas P. Grigoropoulos
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Ashok Ajoy
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- CIFAR
Azrieli Global Scholars Program, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
6
|
Suwa M, Tsukahara S, Watarai H. Applications of magnetic and electromagnetic forces in micro-analytical systems. LAB ON A CHIP 2023; 23:1097-1127. [PMID: 36636900 DOI: 10.1039/d2lc00702a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Novel applications of magnetic fields in analytical chemistry have become a remarkable trend in the last two decades. Various magnetic forces have been employed for the migration, orientation, manipulation, and trapping of microparticles, and new analytical platforms for separating and detecting molecules have been proposed. Magnetic materials such as functional magnetic nanoparticles, magnetic nanocomposites, and specially designed magnetic solids and liquids have also been developed for analytical purposes. Numerous attractive applications of magnetic and electromagnetic forces on magnetic and non-magnetic materials have been studied, but fundamental studies to understand the working principles of magnetic forces have been challenging. These studies will form a new field of magneto-analytical science, which should be developed as an interdisciplinary field. In this review, essential pioneering works and recent attractive developments are presented.
Collapse
Affiliation(s)
- M Suwa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - S Tsukahara
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - H Watarai
- R3 Institute for Newly-Emerging Science Design, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
7
|
Chen Y, Lin Q, Cheng H, Huang H, Shao J, Ye Y, Liu GS, Chen L, Luo Y, Chen Z. Nanodiamond-Based Optical-Fiber Quantum Probe for Magnetic Field and Biological Sensing. ACS Sens 2022; 7:3660-3670. [PMID: 36454224 DOI: 10.1021/acssensors.2c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Owing to the unique electronic spin properties, nitrogen-vacancy (NV) centers hosted in diamond have emerged as a powerful quantum tool for detecting various physical parameters and biological species. In this work, an optical-fiber quantum probe, configured by chemically modifying nanodiamonds on the surface of a cone fiber tip, is developed. Based on the continuous-wave optically detected magnetic resonance method and lock-in amplification technique, it is found that the sensing performance of probes can be engineered by varying the nanodiamond dispersion concentration and modification duration during the chemical modification process. Combined with a pair of magnetic flux concentrators, the magnetic field detection sensitivity has reached 0.57 nT/Hz1/2@1 Hz, a new record among the fiber magnetometers based on nanodiamonds. Taking Gd3+ as the demo, the capability of probes in paramagnetic species detection is also demonstrated experimentally. Our work provides a new approach to develop NV centers as quantum probes featuring high integration, multifunction, high sensitivity, etc.
Collapse
Affiliation(s)
- Yaofei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, Guangdong 510632, China.,Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qianyu Lin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, Guangdong 510632, China.,Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Hongda Cheng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, Guangdong 510632, China.,Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Huanhuan Huang
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jie Shao
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yingying Ye
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Gui-Shi Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, Guangdong 510632, China.,Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Lei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, Guangdong 510632, China.,Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yunhan Luo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, Guangdong 510632, China.,Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China.,Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Educational Institutes, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhe Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, Guangdong 510632, China.,Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China.,Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Educational Institutes, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
8
|
Olivares-Postigo D, Gorrini F, Bitonto V, Ackermann J, Giri R, Krueger A, Bifone A. Divergent Effects of Laser Irradiation on Ensembles of Nitrogen-Vacancy Centers in Bulk and Nanodiamonds: Implications for Biosensing. NANOSCALE RESEARCH LETTERS 2022; 17:95. [PMID: 36161373 PMCID: PMC9512947 DOI: 10.1186/s11671-022-03723-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Ensembles of negatively charged nitrogen-vacancy centers (NV-) in diamond have been proposed for sensing of magnetic fields and paramagnetic agents, and as a source of spin-order for the hyperpolarization of nuclei in magnetic resonance applications. To this end, strongly fluorescent nanodiamonds (NDs) represent promising materials, with large surface areas and dense ensembles of NV-. However, surface effects tend to favor the less useful neutral form, the NV0 centers, and strategies to increase the density of shallow NV- centers have been proposed, including irradiation with strong laser power (Gorrini in ACS Appl Mater Interfaces. 13:43221-43232, 2021). Here, we study the fluorescence properties and optically detected magnetic resonance (ODMR) of NV- centers as a function of laser power in strongly fluorescent bulk diamond and in nanodiamonds obtained by nanomilling of the native material. In bulk diamond, we find that increasing laser power increases ODMR contrast, consistent with a power-dependent increase in spin-polarization. Conversely, in nanodiamonds we observe a non-monotonic behavior, with a decrease in ODMR contrast at higher laser power. We hypothesize that this phenomenon may be ascribed to more efficient NV-→NV0 photoconversion in nanodiamonds compared to bulk diamond, resulting in depletion of the NV- pool. A similar behavior is shown for NDs internalized in macrophage cells under the typical experimental conditions of imaging bioassays. Our results suggest strong laser irradiation is not an effective strategy in NDs, where the interplay between surface effects and local microenvironment determine the optimal experimental conditions.
Collapse
Affiliation(s)
- Domingo Olivares-Postigo
- Center for Neuroscience and Cognitive Systems, Istituto Italiano Di Tecnologia, Corso Bettini 31, 38068, Rovereto, Trento, Italy.
- Molecular Biology Center, University of Torino, via Nizza 52, 10126, Turin, Italy.
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126, Turin, Italy.
| | - Federico Gorrini
- Molecular Biology Center, University of Torino, via Nizza 52, 10126, Turin, Italy
- Center for Sustainable Future Technologies, Istituto Italiano Di Tecnologia, via Livorno 60, 10144, Turin, Italy
| | - Valeria Bitonto
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126, Turin, Italy
| | - Johannes Ackermann
- Institut Für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Rakshyakar Giri
- Center for Neuroscience and Cognitive Systems, Istituto Italiano Di Tecnologia, Corso Bettini 31, 38068, Rovereto, Trento, Italy
| | - Anke Krueger
- Institut Für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Wilhelm Conrad Röntgen Center for Complex Materials Research (RCCM), Julius-Maximilians University Würzburg, 97074, Würzburg, Germany
| | - Angelo Bifone
- Molecular Biology Center, University of Torino, via Nizza 52, 10126, Turin, Italy.
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126, Turin, Italy.
- Center for Sustainable Future Technologies, Istituto Italiano Di Tecnologia, via Livorno 60, 10144, Turin, Italy.
| |
Collapse
|
9
|
Keppler MA, Steelman ZA, Coker ZN, Nesládek M, Hemmer PR, Yakovlev VV, Bixler JN. Dynamic nitrogen vacancy magnetometry by single-shot optical streaking microscopy. PHOTONICS RESEARCH 2022; 10:2147-2156. [PMID: 37303834 PMCID: PMC10256238 DOI: 10.1364/prj.455634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/15/2022] [Indexed: 06/13/2023]
Abstract
Nitrogen vacancy diamonds have emerged as sensitive solid-state magnetic field sensors capable of producing diffraction limited and sub-diffraction field images. Here, for the first time, to our knowledge, we extend those measurements to high-speed imaging, which can be readily applied to analyze currents and magnetic field dynamics in circuits on a microscopic scale. To overcome detector acquisition rate limitations, we designed an optical streaking nitrogen vacancy microscope to acquire two-dimensional spatiotemporal kymograms. We demonstrate magnetic field wave imaging with micro-scale spatial extent and ~400 μs temporal resolution. In validating this system, we detected magnetic fields down to 10 μT for 40 Hz magnetic fields using single-shot imaging and captured the spatial transit of an electromagnetic needle at streak rates as high as 110 μm/ms. This design has the capability to be readily extended to full 3D video acquisition by utilizing compressed sensing techniques and a potential for further improvement of spatial resolution, acquisition speed, and sensitivity. The device opens opportunities to many potential applications where transient magnetic events can be isolated to a single spatial axis, such as acquiring spatially propagating action potentials for brain imaging and remotely interrogating integrated circuits.
Collapse
Affiliation(s)
- Mark A. Keppler
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
- SAIC, JBSA Fort Sam Houston, Texas 78234, USA
| | - Zachary A. Steelman
- National Research Council Research Associateship Program, Washington, DC 20001, USA
| | | | - Miloš Nesládek
- IMOMEC Division, IMEC, B-3590 Diepenbeek, Belgium
- Institute for Materials Research (IMO), Hasselt University, B-3590 Diepenbeek, Belgium
- Czech Technical University in Prague, 27201 Kladno, Czech Republic
| | - Philip R. Hemmer
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Vladislav V. Yakovlev
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Joel N. Bixler
- Bioeffects Division, Airman System Directorate, Air Force Research Laboratory, JBSA Fort Sam Houston, Texas 78234, USA
| |
Collapse
|
10
|
Humbert M, Hallez Y, Larrey V, Fournel F, Palleau E, Paillard V, Cuche A, Ressier L. Versatile, rapid and robust nano-positioning of single-photon emitters by AFM-nanoxerography. NANOTECHNOLOGY 2022; 33:215301. [PMID: 35105827 DOI: 10.1088/1361-6528/ac50f1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Atomic force microscopy (AFM) nanoxerography was successfully used to direct the assembly of colloidal nanodiamonds (NDs) containing nitrogen-vacancy (NV) centres on electrostatically patterned surfaces. This study reveals that the number of deposited NDs can be controlled by tuning the surface potentials of positively charged dots on a negatively charged background written by AFM in a thin PMMA electret film, yielding assemblies down to a unique single-photon emitter with very good selectivity. The mechanisms of the ND directed assembly are attested by numerical simulations. This robust deterministic nano-positioning of quantum emitters thus offers great opportunities for ultimate applications in nanophotonics for quantum technologies.
Collapse
Affiliation(s)
- M Humbert
- Université de Toulouse, INSA-UPS-CNRS, LPCNO, 135 avenue de Rangueil, F-31077 Toulouse Cedex 4, France
- CEMES-CNRS, Université de Toulouse, CNRS, UPS, 29 rue Jeanne Marvig, 31055 Toulouse Cedex, France
| | - Y Hallez
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - V Larrey
- Université Grenoble Alpes, CEA, LETI, 17 Avenue des Martyrs, F-38000 Grenoble, France
| | - F Fournel
- Université Grenoble Alpes, CEA, LETI, 17 Avenue des Martyrs, F-38000 Grenoble, France
| | - E Palleau
- Université de Toulouse, INSA-UPS-CNRS, LPCNO, 135 avenue de Rangueil, F-31077 Toulouse Cedex 4, France
| | - V Paillard
- CEMES-CNRS, Université de Toulouse, CNRS, UPS, 29 rue Jeanne Marvig, 31055 Toulouse Cedex, France
| | - A Cuche
- CEMES-CNRS, Université de Toulouse, CNRS, UPS, 29 rue Jeanne Marvig, 31055 Toulouse Cedex, France
| | - L Ressier
- Université de Toulouse, INSA-UPS-CNRS, LPCNO, 135 avenue de Rangueil, F-31077 Toulouse Cedex 4, France
| |
Collapse
|
11
|
Multiplexed sensing of biomolecules with optically detected magnetic resonance of nitrogen-vacancy centers in diamond. Proc Natl Acad Sci U S A 2021; 118:2112664118. [PMID: 34903662 DOI: 10.1073/pnas.2112664118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2021] [Indexed: 01/21/2023] Open
Abstract
In the past decade, a great effort has been devoted to develop new biosensor platforms for the detection of a wide range of analytes. Among the various approaches, magneto-DNA assay platforms have received extended interest for high sensitive and specific detection of targets with a simultaneous manipulation capacity. Here, using nitrogen-vacancy quantum centers in diamond as transducers for magnetic nanotags (MNTs), a hydrogel-based, multiplexed magneto-DNA assay is presented. Near-background-free sensing with diamond-based imaging combined with noninvasive control of chemically robust nanotags renders it a promising platform for applications in medical diagnostics, life science, and pharmaceutical drug research. To demonstrate its potential for practical applications, we employed the sensor platform in the sandwich DNA hybridization process and achieved a limit of detection in the attomolar range with single-base mismatch differentiation.
Collapse
|
12
|
Gorrini F, Dorigoni C, Olivares-Postigo D, Giri R, Aprà P, Picollo F, Bifone A. Long-Lived Ensembles of Shallow NV - Centers in Flat and Nanostructured Diamonds by Photoconversion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43221-43232. [PMID: 34468122 PMCID: PMC8447188 DOI: 10.1021/acsami.1c09825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/02/2021] [Indexed: 05/29/2023]
Abstract
Shallow, negatively charged nitrogen-vacancy centers (NV-) in diamond have been proposed for high-sensitivity magnetometry and spin-polarization transfer applications. However, surface effects tend to favor and stabilize the less useful neutral form, the NV0 centers. Here, we report the effects of green laser irradiation on ensembles of nanometer-shallow NV centers in flat and nanostructured diamond surfaces as a function of laser power in a range not previously explored (up to 150 mW/μm2). Fluorescence spectroscopy, optically detected magnetic resonance (ODMR), and charge-photoconversion detection are applied to characterize the properties and dynamics of NV- and NV0 centers. We demonstrate that high laser power strongly promotes photoconversion of NV0 to NV- centers. Surprisingly, the excess NV- population is stable over a timescale of 100 ms after switching off the laser, resulting in long-lived enrichment of shallow NV-. The beneficial effect of photoconversion is less marked in nanostructured samples. Our results are important to inform the design of samples and experimental procedures for applications relying on ensembles of shallow NV- centers in diamond.
Collapse
Affiliation(s)
- Federico Gorrini
- Istituto
Italiano di Tecnologia, Center for Sustainable
Future Technologies, via Livorno 60, 10144 Torino, Italy
- Molecular
Biology Center, University of Torino, via Nizza 52, 10126 Torino, Italy
| | - Carla Dorigoni
- Istituto
Italiano di Tecnologia, Center for Neuroscience
and Cognitive System, corso Bettini 31, 38068 Rovereto (Tn), Italy
| | - Domingo Olivares-Postigo
- Molecular
Biology Center, University of Torino, via Nizza 52, 10126 Torino, Italy
- Istituto
Italiano di Tecnologia, Center for Neuroscience
and Cognitive System, corso Bettini 31, 38068 Rovereto (Tn), Italy
- Department
of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126 Torino, Italy
| | - Rakshyakar Giri
- Istituto
Italiano di Tecnologia, Center for Neuroscience
and Cognitive System, corso Bettini 31, 38068 Rovereto (Tn), Italy
| | - Pietro Aprà
- Department
of Physics and “NIS Inter-departmental Centre”, University of Torino, Via Pietro Giuria, 1, 10125 Torino, Italy
- National
Institute of Nuclear Physics, Section of Torino, Torino 10125, Italy
| | - Federico Picollo
- Department
of Physics and “NIS Inter-departmental Centre”, University of Torino, Via Pietro Giuria, 1, 10125 Torino, Italy
- National
Institute of Nuclear Physics, Section of Torino, Torino 10125, Italy
| | - Angelo Bifone
- Istituto
Italiano di Tecnologia, Center for Sustainable
Future Technologies, via Livorno 60, 10144 Torino, Italy
- Molecular
Biology Center, University of Torino, via Nizza 52, 10126 Torino, Italy
- Department
of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
13
|
Zhang T, Pramanik G, Zhang K, Gulka M, Wang L, Jing J, Xu F, Li Z, Wei Q, Cigler P, Chu Z. Toward Quantitative Bio-sensing with Nitrogen-Vacancy Center in Diamond. ACS Sens 2021; 6:2077-2107. [PMID: 34038091 DOI: 10.1021/acssensors.1c00415] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The long-dreamed-of capability of monitoring the molecular machinery in living systems has not been realized yet, mainly due to the technical limitations of current sensing technologies. However, recently emerging quantum sensors are showing great promise for molecular detection and imaging. One of such sensing qubits is the nitrogen-vacancy (NV) center, a photoluminescent impurity in a diamond lattice with unique room-temperature optical and spin properties. This atomic-sized quantum emitter has the ability to quantitatively measure nanoscale electromagnetic fields via optical means at ambient conditions. Moreover, the unlimited photostability of NV centers, combined with the excellent diamond biocompatibility and the possibility of diamond nanoparticles internalization into the living cells, makes NV-based sensors one of the most promising and versatile platforms for various life-science applications. In this review, we will summarize the latest developments of NV-based quantum sensing with a focus on biomedical applications, including measurements of magnetic biomaterials, intracellular temperature, localized physiological species, action potentials, and electronic and nuclear spins. We will also outline the main unresolved challenges and provide future perspectives of many promising aspects of NV-based bio-sensing.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Goutam Pramanik
- UGC DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700106, India
| | - Kai Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Michal Gulka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Lingzhi Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jixiang Jing
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Feng Xu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Qiang Wei
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065 Chengdu, China
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
14
|
Yu CJ, von Kugelgen S, Laorenza DW, Freedman DE. A Molecular Approach to Quantum Sensing. ACS CENTRAL SCIENCE 2021; 7:712-723. [PMID: 34079892 PMCID: PMC8161477 DOI: 10.1021/acscentsci.0c00737] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 06/09/2023]
Abstract
The second quantum revolution hinges on the creation of materials that unite atomic structural precision with electronic and structural tunability. A molecular approach to quantum information science (QIS) promises to enable the bottom-up creation of quantum systems. Within the broad reach of QIS, which spans fields ranging from quantum computation to quantum communication, we will focus on quantum sensing. Quantum sensing harnesses quantum control to interrogate the world around us. A broadly applicable class of quantum sensors would feature adaptable environmental compatibility, control over distance from the target analyte, and a tunable energy range of interaction. Molecules enable customizable "designer" quantum sensors with tunable functionality and compatibility across a range of environments. These capabilities offer the potential to bring unmatched sensitivity and spatial resolution to address a wide range of sensing tasks from the characterization of dynamic biological processes to the detection of emergent phenomena in condensed matter. In this Outlook, we outline the concepts and design criteria central to quantum sensors and look toward the next generation of designer quantum sensors based on new classes of molecular sensors.
Collapse
|
15
|
Barton J, Gulka M, Tarabek J, Mindarava Y, Wang Z, Schimer J, Raabova H, Bednar J, Plenio MB, Jelezko F, Nesladek M, Cigler P. Nanoscale Dynamic Readout of a Chemical Redox Process Using Radicals Coupled with Nitrogen-Vacancy Centers in Nanodiamonds. ACS NANO 2020; 14:12938-12950. [PMID: 32790348 DOI: 10.1021/acsnano.0c04010] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Biocompatible nanoscale probes for sensitive detection of paramagnetic species and molecules associated with their (bio)chemical transformations would provide a desirable tool for a better understanding of cellular redox processes. Here, we describe an analytical tool based on quantum sensing techniques. We magnetically coupled negatively charged nitrogen-vacancy (NV) centers in nanodiamonds (NDs) with nitroxide radicals present in a bioinert polymer coating of the NDs. We demonstrated that the T1 spin relaxation time of the NV centers is very sensitive to the number of nitroxide radicals, with a resolution down to ∼10 spins per ND (detection of approximately 10-23 mol in a localized volume). The detection is based on T1 shortening upon the radical attachment, and we propose a theoretical model describing this phenomenon. We further show that this colloidally stable, water-soluble system can be used dynamically for spatiotemporal readout of a redox chemical process (oxidation of ascorbic acid) occurring near the ND surface in an aqueous environment under ambient conditions.
Collapse
Affiliation(s)
- Jan Barton
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czechia
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Michal Gulka
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna sq. 3105, 27201 Kladno, Czechia
- IMOMEC Division, IMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Jan Tarabek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czechia
| | - Yuliya Mindarava
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Zhenyu Wang
- Institute of Theoretical Physics and IQST, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Jiri Schimer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czechia
| | - Helena Raabova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czechia
| | - Jan Bednar
- Institute for Advanced Biosciences, UMR 5309, Allée des Alpes, 38700 la Tronche, France
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czechia
| | - Martin B Plenio
- Institute of Theoretical Physics and IQST, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Fedor Jelezko
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Milos Nesladek
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna sq. 3105, 27201 Kladno, Czechia
- IMOMEC Division, IMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czechia
| |
Collapse
|