1
|
de Los Santos-Ramirez JM, Boyas-Chavez PG, Cerrillos-Ordoñez A, Mata-Gomez M, Gallo-Villanueva RC, Perez-Gonzalez VH. Trends and challenges in microfluidic methods for protein manipulation-A review. Electrophoresis 2024; 45:69-100. [PMID: 37259641 DOI: 10.1002/elps.202300056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
Proteins are important molecules involved in an immensely large number of biological processes. Being capable of manipulating proteins is critical for developing reliable and affordable techniques to analyze and/or detect them. Such techniques would enable the production of therapeutic agents for the treatment of diseases or other biotechnological applications (e.g., bioreactors or biocatalysis). Microfluidic technology represents a potential solution to protein manipulation challenges because of the diverse phenomena that can be exploited to achieve micro- and nanoparticle manipulation. In this review, we discuss recent contributions made in the field of protein manipulation in microfluidic systems using different physicochemical principles and techniques, some of which are miniaturized versions of already established macro-scale techniques.
Collapse
Affiliation(s)
| | - Pablo G Boyas-Chavez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | | | - Marco Mata-Gomez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | | | | |
Collapse
|
2
|
Cai C, Ma S, Li F, Tan Z. Aqueous two-phase system based on pH-responsive polymeric deep eutectic solvent for efficient extraction of aromatic amino acids. Food Chem 2024; 430:137029. [PMID: 37523819 DOI: 10.1016/j.foodchem.2023.137029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Recently, more and more attention has been paid to the construction of stimulus-responsive aqueous two-phase systems (ATPSs) for the extraction and separation of various bioactive compounds. In this work, an ATPS based on a pH-responsive polymeric deep eutectic solvent (PDES) and phosphate salt was constructed for the first time. The pH-response properties of the PDES were studied through a series of experiments. Additionally, the phase formation mechanism was studied through experiments and simulations. This novel PDES-based ATPS was used to extract aromatic amino acids (AAAs). The extraction efficiencies for tyrosine (Tyr), phenylalanine (Phe), and tryptophan (Trp) reached 95.25%, 99.05%, and 99.10%, respectively. By adjusting pH, PDES was recycled and reused. This novel and recyclable PDES-based ATPS could be an efficient method for the extraction of AAAs, which could also be applied used as a versatile and sustainable method for the extraction of other bioactive compounds in the future.
Collapse
Affiliation(s)
- Changyong Cai
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Shaoping Ma
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Fenfang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhijian Tan
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
3
|
Halko R, Hagarová I, Andruch V. Innovative approaches in cloud-point extraction. J Chromatogr A 2023; 1701:464053. [PMID: 37207414 DOI: 10.1016/j.chroma.2023.464053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/21/2023]
Abstract
Cloud-point extraction (CPE) is a pre-treatment technique for the extraction and preconcentration of different chemical compounds, such as metal ions, pesticides, drugs, phenols, vitamins etc., from various samples. CPE is based on the phenomenon of two phases (micellar and aqueous) forming after the heating of an aqueous isotropic solution of a non-ionic or zwitterionic surfactant above the cloud-point temperature. If analytes are added to the surfactant solution under suitable conditions, they should be extracted into the micellar phase, also called the surfactant-rich phase. Recently, the traditional CPE procedure is being increasingly replaced by improved CPE procedures. In this study, recent advances in CPE over the last three years (2020 - 2022), including the application of various innovative approaches, are reviewed. In addition to the basic principle of CPE, alternative extraction media in CPE, CPE supported by various auxiliary energies, a different modified CPE procedure and the use nanomaterials and solid-phase extraction in combination with CPE are presented and discussed. Finally, some future trends for improved CPE are presented.
Collapse
Affiliation(s)
- Radoslav Halko
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava IV, Slovak Republic.
| | - Ingrid Hagarová
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava IV, Slovak Republic
| | - Vasil Andruch
- Department of Analytical Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice 041 80, Slovak Republic
| |
Collapse
|
4
|
Liang Y, Deng L, Feng Z, Ouyang Q, Wu X, Quan W, Zhu Y, Ye H, Wu K, Luo H. A Chitosan-Based Flocculation Method for Efficient Recovery of High-Purity B-Phycoerythrin from a Low Concentration of Phycobilin in Wastewater. Molecules 2023; 28:molecules28083600. [PMID: 37110834 PMCID: PMC10143359 DOI: 10.3390/molecules28083600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Increasing the yield and purity of B-phycoerythrin (B-PE) can improve the economic state of microalgae industrial processing. One method of cost reduction involves the recovery of remaining B-PE from wastewater. In this study, we developed a chitosan (CS)-based flocculation technique for the efficient recovery of B-PE from a low concentration of phycobilin in wastewater. We investigated the effects of the molecular weight of chitosan, B-PE/CS mass ratio, and solution pH on the flocculation efficiency of CS and the effects of phosphate buffer concentration and pH on the recovery rate of B-PE. The maximum flocculation efficiency of CS, recovery rate, and purity index of B-PE were 97.19% ± 0.59%, 72.07% ± 1.37%, and 3.20 ± 0.025 (drug grade), respectively. The structural stability and activity of B-PE were maintained during the recovery process. Economic evaluation revealed that our CS-based flocculation method is more economical than the ammonium sulfate precipitation method is. Furthermore, the bridging effect and electrostatic interaction play important roles in B-PE/CS complex flocculation process. Hence, our study provides an efficient and economical method to recover high-purity B-PE from a low concentration of phycobilin in wastewater, which promoted the application of B-PE as a natural pigment protein in food and chemical applications.
Collapse
Affiliation(s)
- Yingye Liang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Luming Deng
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
| | - Zhenhui Feng
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Qianqian Ouyang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- Zhanjiang Engineering Research Center for Algae High-Value Utilization, Zhanjiang 524023, China
| | - Xia Wu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Zhanjiang Engineering Research Center for Algae High-Value Utilization, Zhanjiang 524023, China
| | - Weiyan Quan
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- Zhanjiang Engineering Research Center for Algae High-Value Utilization, Zhanjiang 524023, China
| | - Yuzhen Zhu
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- Zhanjiang Engineering Research Center for Algae High-Value Utilization, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Hua Ye
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
| | - Kefeng Wu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Hui Luo
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- Zhanjiang Engineering Research Center for Algae High-Value Utilization, Zhanjiang 524023, China
| |
Collapse
|
5
|
Liberti D, Imbimbo P, Giustino E, D’Elia L, Ferraro G, Casillo A, Illiano A, Pinto G, Di Meo MC, Alvarez-Rivera G, Corsaro MM, Amoresano A, Zarrelli A, Ibáñez E, Merlino A, Monti DM. Inside out Porphyridium cruentum: Beyond the Conventional Biorefinery Concept. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:381-389. [PMID: 36643001 PMCID: PMC9832536 DOI: 10.1021/acssuschemeng.2c05869] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Indexed: 05/31/2023]
Abstract
Here, an unprecedented biorefinery approach has been designed to recover high-added value bioproducts starting from the culture ofPorphyridium cruentum. This unicellular marine red alga can secrete and accumulate high-value compounds that can find applications in a wide variety of industrial fields. 300 ± 67 mg/L of exopolysaccharides were obtained from cell culture medium; phycoerythrin was efficiently extracted (40% of total extract) and isolated by single chromatography, with a purity grade that allowed the crystal structure determination at 1.60 Å; a twofold increase in β-carotene yield was obtained from the residual biomass; the final residual biomass was found to be enriched in saturated fatty acids. Thus, for the first time, a complete exploitation ofP. cruentumculture was set up.
Collapse
Affiliation(s)
- Davide Liberti
- Department
of Chemical Sciences, University of Naples
Federico II, via Cinthia 4, Naples80126, Italy
| | - Paola Imbimbo
- Department
of Chemical Sciences, University of Naples
Federico II, via Cinthia 4, Naples80126, Italy
| | - Enrica Giustino
- Department
of Chemical Sciences, University of Naples
Federico II, via Cinthia 4, Naples80126, Italy
| | - Luigi D’Elia
- Department
of Chemical Sciences, University of Naples
Federico II, via Cinthia 4, Naples80126, Italy
| | - Giarita Ferraro
- Department
of Chemical Sciences, University of Naples
Federico II, via Cinthia 4, Naples80126, Italy
| | - Angela Casillo
- Department
of Chemical Sciences, University of Naples
Federico II, via Cinthia 4, Naples80126, Italy
| | - Anna Illiano
- Department
of Chemical Sciences, University of Naples
Federico II, via Cinthia 4, Naples80126, Italy
| | - Gabriella Pinto
- Department
of Chemical Sciences, University of Naples
Federico II, via Cinthia 4, Naples80126, Italy
| | - Maria Chiara Di Meo
- Department
of Sciences and Technologies (DST), University
of Sannio, Benevento82100, Italy
| | - Gerardo Alvarez-Rivera
- Laboratory
of Foodomics, Institute of Food Science
Research, CIAL, CSIC, Nicolás Cabrera 9, Madrid28049, Spain
| | - Maria Michela Corsaro
- Department
of Chemical Sciences, University of Naples
Federico II, via Cinthia 4, Naples80126, Italy
| | - Angela Amoresano
- Department
of Chemical Sciences, University of Naples
Federico II, via Cinthia 4, Naples80126, Italy
| | - Armando Zarrelli
- Department
of Chemical Sciences, University of Naples
Federico II, via Cinthia 4, Naples80126, Italy
| | - Elena Ibáñez
- Laboratory
of Foodomics, Institute of Food Science
Research, CIAL, CSIC, Nicolás Cabrera 9, Madrid28049, Spain
| | - Antonello Merlino
- Department
of Chemical Sciences, University of Naples
Federico II, via Cinthia 4, Naples80126, Italy
| | - Daria Maria Monti
- Department
of Chemical Sciences, University of Naples
Federico II, via Cinthia 4, Naples80126, Italy
| |
Collapse
|
6
|
Kovaleski G, Kholany M, Dias LMS, Correia SFH, Ferreira RAS, Coutinho JAP, Ventura SPM. Extraction and purification of phycobiliproteins from algae and their applications. Front Chem 2022; 10:1065355. [PMID: 36531328 PMCID: PMC9752866 DOI: 10.3389/fchem.2022.1065355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/14/2022] [Indexed: 09/02/2023] Open
Abstract
Microalgae, macroalgae and cyanobacteria are photosynthetic microorganisms, prokaryotic or eukaryotic, living in saline or freshwater environments. These have been recognized as valuable carbon sources, able to be used for food, feed, chemicals, and biopharmaceuticals. From the range of valuable compounds produced by these cells, some of the most interesting are the pigments, including chlorophylls, carotenoids, and phycobiliproteins. Phycobiliproteins are photosynthetic light-harvesting and water-soluble proteins. In this work, the downstream processes being applied to recover fluorescent proteins from marine and freshwater biomass are reviewed. The various types of biomasses, namely macroalgae, microalgae, and cyanobacteria, are highlighted and the solvents and techniques applied in the extraction and purification of the fluorescent proteins, as well as their main applications while being fluorescent/luminescent are discussed. In the end, a critical perspective on how the phycobiliproteins business may benefit from the development of cost-effective downstream processes and their integration with the final application demands, namely regarding their stability, will be provided.
Collapse
Affiliation(s)
- Gabriela Kovaleski
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
- Department of Physics, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - Mariam Kholany
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - Lília M. S. Dias
- Department of Physics, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | | | - Rute A. S. Ferreira
- Department of Physics, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - João A. P. Coutinho
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - Sónia P. M. Ventura
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
7
|
Ramu Ganesan A, Kannan M, Karthick Rajan D, Pillay AA, Shanmugam M, Sathishkumar P, Johansen J, Tiwari BK. Phycoerythrin: a pink pigment from red sources (rhodophyta) for a greener biorefining approach to food applications. Crit Rev Food Sci Nutr 2022; 63:10928-10946. [PMID: 35648055 DOI: 10.1080/10408398.2022.2081962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phycoerythrin (PE) is a photosensitive red pigment from phycobiliprotein family predominantly present in the red algae. The concentration of PE depends on photon flux density (PFD) and the quality of light absorbed by the algae tissue. This necessitates robust techniques to extract PE from the embedded cell-wall matrix of the algal frond. Similarly, PE is sensitive to various factors which influence its stability and purity of PE. The PE is extracted from Red algae through different extraction techniques. This review explores an integrative approach of fractionating PE for the scaling-up process and commercialization. The mechanism for stabilizing PE pigment in food was critically evaluated for further retaining this pigment within the food system. The challenges and possibilities of employing efficient extraction for industrial adoption are meticulously estimated. The techniques involved in the sustainable way of extracting PE pigments improved at a laboratory scale in the past decade. Although, the complexity of industrial-scale biorefining was found to be a bottleneck. The extraction of PE using benign chemicals would be safe for food applications to promote health benefits. The precise selection of encapsulation technique with enhanced sensitivity and selectivity of the membrane would bring better stability of PE in the food matrix.
Collapse
Affiliation(s)
- Abirami Ramu Ganesan
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Torggården, Bodø, Norway
| | - Mohan Kannan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu, India
| | - Durairaj Karthick Rajan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, India
| | - Arti A Pillay
- School of Applied Sciences, College of Engineering, Science and Technology (CEST), Fiji National University, Nasinu, Fiji
| | - Munisamy Shanmugam
- Research and Development Division (DSIR- Lab), Aquagri Processing Private Limited, Tamil Nadu, India
| | - Palanivel Sathishkumar
- Department of Biomaterials, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, Tamil Nadu, India
| | - Johan Johansen
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Torggården, Bodø, Norway
| | - Brijesh K Tiwari
- Food Chemistry & Technology, Teagasc Food Research Centre, Dublin, Ireland
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|