1
|
Lin J, Wang P, Bin J, Wang L. Achieving 1060 mW cm -2 with 0.6 mg cm -2 Pt Loading Based on Imidazole-Riched Semi-Interpenetrating Proton Exchange Membrane at High-Temperature Fuel Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311767. [PMID: 38369969 DOI: 10.1002/smll.202311767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/24/2024] [Indexed: 02/20/2024]
Abstract
Enhancing phosphoric acid (PA) doping in polybenzimidazole (PBI) membranes is crucial for improving the performance of high-temperature proton exchange membrane fuel cells (HT-PEMFCs). However, excessive PA uptake often leads to drawbacks such as PA loss and compromised mechanical properties when surpassing PA capacity of PBI basic functionality. Herein, a new strategy that integrates high PA uptake, mechanical strength, and acid retention is proposed by embedding linear PBI chains into a crosslinked poly(N-vinylimidazole) (PVIm) backbone via in-situ polymerization. The imidazole (Im)-riched semi-interpenetrating polymer network (sIPN) membrane with high-density nitrogen moieties, significantly enhancing the PA doping degree to 380% shows an excellent conductivity (0.108 S cm-1). Meanwhile, the crosslinking structure in the sIPN membrane ensures adequate mechanical properties, low hydrogen permeability, and a relatively low swelling ratio. As a result, the single cell based on the membrane achieves the highest power density of 1060 mW cm-2 with a low Pt loading (0.6 mg cm-2) up to now and exhibits excellent fuel cell stability.
Collapse
Affiliation(s)
- Jingjing Lin
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Peng Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jinsheng Bin
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou, Guangdong, 521041, China
| |
Collapse
|
2
|
Zheng L, Wang M, Li Y, Xiong Y, Wu C. Recycling and Degradation of Polyamides. Molecules 2024; 29:1742. [PMID: 38675560 PMCID: PMC11052090 DOI: 10.3390/molecules29081742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
As one of the five major engineering plastics, polyamide brings many benefits to humans in the fields of transportation, clothing, entertainment, health, and more. However, as the production of polyamide increases year by year, the pollution problems it causes are becoming increasingly severe. This article reviews the current recycling and treatment processes of polyamide, such as chemical, mechanical, and energy recovery, and degradation methods such as thermal oxidation, photooxidation, enzyme degradation, etc. Starting from the synthesis mechanism of polyamide, it discusses the advantages and disadvantages of different treatment methods of polyamide to obtain more environmentally friendly and economical treatment schemes. Finding enzymes that can degrade high-molecular-weight polyamides, exploring the recovery of polyamides under mild conditions, synthesizing environmentally degradable polyamides through copolymerization or molecular design, and finally preparing degradable bio-based polyamides may be the destination of polyamide.
Collapse
Affiliation(s)
- Lin Zheng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (L.Z.); (M.W.); (Y.L.); (Y.X.)
| | - Mengjin Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (L.Z.); (M.W.); (Y.L.); (Y.X.)
| | - Yaoqin Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (L.Z.); (M.W.); (Y.L.); (Y.X.)
| | - Yan Xiong
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (L.Z.); (M.W.); (Y.L.); (Y.X.)
- Hubei Longzhong Laboratory, Xiangyang 441000, China
| | - Chonggang Wu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (L.Z.); (M.W.); (Y.L.); (Y.X.)
- Hubei Longzhong Laboratory, Xiangyang 441000, China
| |
Collapse
|
3
|
Clark R, Shaver MP. Depolymerization within a Circular Plastics System. Chem Rev 2024; 124:2617-2650. [PMID: 38386877 PMCID: PMC10941197 DOI: 10.1021/acs.chemrev.3c00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/18/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
The societal importance of plastics contrasts with the carelessness with which they are disposed. Their superlative properties lead to economic and environmental efficiency, but the linearity of plastics puts the climate, human health, and global ecosystems at risk. Recycling is fundamental to transitioning this linear model into a more sustainable, circular economy. Among recycling technologies, chemical depolymerization offers a route to virgin quality recycled plastics, especially when valorizing complex waste streams poorly served by mechanical methods. However, chemical depolymerization exists in a complex and interlinked system of end-of-life fates, with the complementarity of each approach key to environmental, economic, and societal sustainability. This review explores the recent progress made into the depolymerization of five commercial polymers: poly(ethylene terephthalate), polycarbonates, polyamides, aliphatic polyesters, and polyurethanes. Attention is paid not only to the catalytic technologies used to enhance depolymerization efficiencies but also to the interrelationship with other recycling technologies and to the systemic constraints imposed by a global economy. Novel polymers, designed for chemical depolymerization, are also concisely reviewed in terms of their underlying chemistry and potential for integration with current plastic systems.
Collapse
Affiliation(s)
- Robbie
A. Clark
- Department
of Materials, School of Natural Sciences, University of Manchester, Manchester M13 9PL, United
Kingdom
- Sustainable
Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester M13 9PL, United
Kingdom
| | - Michael P. Shaver
- Department
of Materials, School of Natural Sciences, University of Manchester, Manchester M13 9PL, United
Kingdom
- Sustainable
Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester M13 9PL, United
Kingdom
| |
Collapse
|
4
|
De Franceschi I, Badi N, Du Prez FE. Telechelic sequence-defined oligoamides: their step-economical synthesis, depolymerization and use in polymer networks. Chem Sci 2024; 15:2805-2816. [PMID: 38404375 PMCID: PMC10882489 DOI: 10.1039/d3sc04820a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/13/2024] [Indexed: 02/27/2024] Open
Abstract
The application of sequence-defined macromolecules in material science remains largely unexplored due to their challenging, low yielding and time-consuming synthesis. This work first describes a step-economical method for synthesizing unnatural sequence-defined oligoamides through fluorenylmethyloxycarbonyl chemistry. The use of a monodisperse soluble support enables homogeneous reactions at elevated temperature (up to 65 °C), leading to rapid coupling times (<10 min) and improved synthesis protocols. Moreover, a one-pot procedure for the two involved iterative steps is demonstrated via an intermediate quenching step, eliminating the need for in-between purification. The protocol is optimized using γ-aminobutyric acid (GABA) as initial amino acid, and the unique ability of the resulting oligomers to depolymerize, with the formation of cyclic γ-butyrolactame, is evidenced. Furthermore, in order to demonstrate the versatility of the present protocol, a library of 17 unnatural amino acid monomers is synthesized, starting from the readily available GABA-derivative 4-amino-2-hydroxybutanoic acid, and then used to create multifunctional tetramers. Notably, the obtained tetramers show higher thermal stability than a similar thiolactone-based sequence-defined macromolecule, which enables its exploration within a material context. To that end, a bidirectional growth approach is proposed as a greener alternative that reduces the number of synthetic steps to obtain telechelic sequence-defined oligoamides. The latter are finally used as macromers for the preparation of polymer networks. We expect this strategy to pave the way for the further exploration of sequence-defined macromolecules in material science.
Collapse
Affiliation(s)
- Irene De Franceschi
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University 9000 Ghent Belgium
| | - Nezha Badi
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University 9000 Ghent Belgium
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University 9000 Ghent Belgium
| |
Collapse
|
5
|
Bhattacharjee S, Linley S, Reisner E. Solar reforming as an emerging technology for circular chemical industries. Nat Rev Chem 2024:10.1038/s41570-023-00567-x. [PMID: 38291132 DOI: 10.1038/s41570-023-00567-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2023] [Indexed: 02/01/2024]
Abstract
The adverse environmental impacts of greenhouse gas emissions and persistent waste accumulation are driving the demand for sustainable approaches to clean-energy production and waste recycling. By coupling the thermodynamically favourable oxidation of waste-derived organic carbon streams with fuel-forming reduction reactions suitable for producing clean hydrogen or converting CO2 to fuels, solar reforming simultaneously valorizes waste and generates useful chemical products. With appropriate light harvesting, catalyst design, device configurations and waste pre-treatment strategies, a range of sustainable fuels and value-added chemicals can already be selectively produced from diverse waste feedstocks, including biomass and plastics, demonstrating the potential of solar-powered upcycling plants. This Review highlights solar reforming as an emerging technology that is currently transitioning from fundamental research towards practical application. We investigate the chemistry and compatibility of waste pre-treatment, introduce process classifications, explore the mechanisms of different solar reforming technologies, and suggest appropriate concepts, metrics and pathways for various deployment scenarios in a net-zero-carbon future.
Collapse
Affiliation(s)
| | - Stuart Linley
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Grdadolnik M, Zdovc B, Drinčić A, Onder OC, Utroša P, Ramos SG, Ramos ED, Pahovnik D, Žagar E. Chemical Recycling of Flexible Polyurethane Foams by Aminolysis to Recover High-Quality Polyols. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:10864-10873. [PMID: 37502771 PMCID: PMC10369675 DOI: 10.1021/acssuschemeng.3c02311] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/16/2023] [Indexed: 07/29/2023]
Abstract
Polyurethane foams (PUFs) are widely used commodity materials, but most of them end up in landfills at the end of their life, which is not in line with the circular economy approach. Here, we introduce microwave-assisted aminolysis with amine reagents that contain primary and tertiary amino groups in the structure. These reagents enable complete degradation of the urethane groups in the structure of the flexible PUFs with a much lower amount of degradation reagent than is typically required for solvolysis reactions. The purified, recovered polyols are close equivalents to the corresponding virgin polyols in terms of their structural and molar mass characteristics. Therefore, they can be used for the production of high-quality PUFs without having to adapt the synthesis process. The flexible PUFs made from recovered polyols have comparable mechanical properties to those made from virgin polyols.
Collapse
Affiliation(s)
- Maja Grdadolnik
- Department
of Polymer Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia
| | - Blaž Zdovc
- Department
of Polymer Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia
| | - Ana Drinčić
- Department
of Polymer Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia
| | - Ozgun Can Onder
- Department
of Polymer Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia
| | - Petra Utroša
- Department
of Polymer Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia
| | - Susana Garcia Ramos
- Intermediates
Technical Service & Development department, Repsol Quimica S.A., Mendez Álvaro 44, CP28045 Madrid, Spain
| | - Enrique Dominguez Ramos
- Intermediates
Technical Service & Development department, Repsol Quimica S.A., Mendez Álvaro 44, CP28045 Madrid, Spain
| | - David Pahovnik
- Department
of Polymer Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia
| | - Ema Žagar
- Department
of Polymer Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia
| |
Collapse
|
7
|
Synthesis and characterization of polyamide 1010 and evaluation of its cast-extruded films for meat preservation. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
8
|
Manian AP, Kraegeloh FE, Braun DE, Mahmud‐Ali A, Bechtold T, Pham T. Separation of polyamide 66 from mixtures with cellulose fibers by selective dissolution in calcium chloride‐ethanol‐water solvent. J Appl Polym Sci 2023. [DOI: 10.1002/app.53813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Avinash P. Manian
- Research Institute of Textile Chemistry and Textile Physics University of Innsbruck Dornbirn Austria
| | - Felix E. Kraegeloh
- Research Institute of Textile Chemistry and Textile Physics University of Innsbruck Dornbirn Austria
| | - Doris E. Braun
- Department of Pharmacy, Pharmaceutical Technology Section University of Innsbruck Innsbruck Austria
| | - Amalid Mahmud‐Ali
- Research Institute of Textile Chemistry and Textile Physics University of Innsbruck Dornbirn Austria
| | - Thomas Bechtold
- Research Institute of Textile Chemistry and Textile Physics University of Innsbruck Dornbirn Austria
| | - Tung Pham
- Research Institute of Textile Chemistry and Textile Physics University of Innsbruck Dornbirn Austria
| |
Collapse
|
9
|
Woroch CP, Cox IW, Kanan MW. A Semicrystalline Furanic Polyamide Made from Renewable Feedstocks. J Am Chem Soc 2023; 145:697-705. [PMID: 36573894 DOI: 10.1021/jacs.2c11806] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Semi-aromatic polyamides (SAPs) synthesized from petrochemical diacids and diamines are high-performance polymers that often derive their desirable properties from a high degree of crystallinity. Attempts to develop partially renewable SAPs by replacing petrochemical diacids with biobased furan-2,5-dicarboxylic acid (FDCA) have resulted in amorphous materials or polymers with low melting temperatures. Herein, we report the development of poly(5-aminomethyl-2-furoic acid) (PAMF), a semicrystalline SAP synthesized by the polycondensation of CO2 and lignocellulose-derived monomer 5-aminomethyl-2-furoic acid (AMF). PAMF has glass-transition and melting temperatures comparable to that of commercial materials and higher than that of any previous furanic SAP. Additionally, PAMF can be copolymerized with conventional nylon 6 and is chemically recyclable. Molecular dynamics (MD) simulations suggest that differences in intramolecular hydrogen bonding explain why PAMF is semicrystalline but many FDCA-based SAPs are not.
Collapse
Affiliation(s)
- Cristian P Woroch
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - India W Cox
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - Matthew W Kanan
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| |
Collapse
|
10
|
Wang N, Yang D, Zhang W, Feng M, Li Z, Ye E, Loh XJ, Wang D. Deep Trap Boosted Ultrahigh Triboelectric Charge Density in Nanofibrous Cellulose-Based Triboelectric Nanogenerators. ACS APPLIED MATERIALS & INTERFACES 2023; 15:997-1009. [PMID: 36542844 DOI: 10.1021/acsami.2c16925] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
For their use in self-powered implantable or wearable electronics, cellulose nanofiber (CNF)-based triboelectric nanogenerators (TENGs) have drawn a lot of attention. However, the low triboelectric charge density (TECD) hinders its further application as a tribolayer for TENGs. In this work, a sulfonated cellulose nanofiber was prepared as an electropositive tribolayer for TENGs to obtain ultrahigh electrical output performance. Since the introduction of sulfonic acid effectively increased the dielectric properties and hole deep trap density of the CNF film, the triboelectric charge storage capacity of the CNF-SO3Na film was improved. The results showed that the TECD of the CNF-SO3Na film increased by 460% compared with the pristine CNF film. Furthermore, the dielectric constant and deep trap density of the CNF-SO3Na film increased by 2.4 times and 8.1 times. This work encourages the use of TENGs in real-world wireless transmission applications by outlining an easy and effective method for building high-performance TENGs.
Collapse
Affiliation(s)
- Nannan Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu730000, China
- A*STAR, Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), 2 Fusionopolis Way, Innovis, #08-03, Singapore138634, Singapore
| | - Di Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu730000, China
| | - Weihua Zhang
- Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong266101, China
| | - Min Feng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu730000, China
| | - Zibiao Li
- A*STAR (Agency for Science, Technology and Research), Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore117575, Singapore
- A*STAR, Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), 2 Fusionopolis Way, Innovis, #08-03, Singapore138634, Singapore
| | - Enyi Ye
- A*STAR (Agency for Science, Technology and Research), Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore138634, Singapore
| | - Xian Jun Loh
- A*STAR (Agency for Science, Technology and Research), Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore138634, Singapore
| | - Daoai Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao, Shandong266100, China
| |
Collapse
|
11
|
Leicht A, Gatz-Schrupp J, Masuda H. Discovery of Nylon 11 ingestion by mealworm ( Tenebrio molitor) larvae and detection of monomer-degrading bacteria in gut microbiota. AIMS Microbiol 2022; 8:612-623. [PMID: 36694582 PMCID: PMC9834084 DOI: 10.3934/microbiol.2022039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
Nylon 11, which can be found in many commercial products, is a synthetic plastic that has previously been considered non-biodegradable. Increasing nylon 11 and other plastics in landfills and in the environment pose an environmental concern. Recent studies on plastic biodegradation revealed that initial mechanical fragmentations increase the rate of degradation. In this study, we discovered that the larvae of mealworm (Tenebrio molitor) can masticate nylon 11 film at the rate of 0.25 ± 0.07 mg per fifty larvae per day. The body mass of larvae did not differ from that of starvation control while feeding on nylon 11. Comparison of gut microbiota in nylon-fed and starving larvae showed a shift in composition. There was a significant variation in community composition among the nylon 11-fed experimental groups, suggesting that many organisms are capable of metabolizing nylon 11 fragments and/or possess a growth advantage in a nylon-fed gut environment. We also discovered that a significant fraction of gut microbiome of control larvae is capable of metabolizing nylon 11 monomer (11-aminoundecanoic acid) even in the absence of prior exposure to nylon 11. This is the first study demonstrating ingestion of nylon polymers by invertebrates, and our results suggest the potential of mealworm larvae for nylon 11 biodegradation applications.
Collapse
|
12
|
Lee K, Jing Y, Wang Y, Yan N. A unified view on catalytic conversion of biomass and waste plastics. Nat Rev Chem 2022; 6:635-652. [PMID: 37117711 PMCID: PMC9366821 DOI: 10.1038/s41570-022-00411-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 11/08/2022]
Abstract
Originating from the desire to improve sustainability, producing fuels and chemicals from the conversion of biomass and waste plastic has become an important research topic in the twenty-first century. Although biomass is natural and plastic synthetic, the chemical nature of the two are not as distinct as they first appear. They share substantial structural similarities in terms of their polymeric nature and the types of bonds linking their monomeric units, resulting in close relationships between the two materials and their conversions. Previously, their transformations were mostly studied and reviewed separately in the literature. Here, we summarize the catalytic conversion of biomass and waste plastics, with a focus on bond activation chemistry and catalyst design. By tracking the historical and more recent developments, it becomes clear that biomass and plastic have not only evolved their unique conversion pathways but have also started to cross paths with each other, with each influencing the landscape of the other. As a result, this Review on the catalytic conversion of biomass and waste plastic in a unified angle offers improved insights into existing technologies, and more importantly, may enable new opportunities for future advances.
Collapse
Affiliation(s)
- Kyungho Lee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Yaxuan Jing
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yanqin Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
13
|
Yang RX, Jan K, Chen CT, Chen WT, Wu KCW. Thermochemical Conversion of Plastic Waste into Fuels, Chemicals, and Value-Added Materials: A Critical Review and Outlooks. CHEMSUSCHEM 2022; 15:e202200171. [PMID: 35349769 DOI: 10.1002/cssc.202200171] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Plastic waste is an emerging environmental issue for our society. Critical action to tackle this problem is to upcycle plastic waste as valuable feedstock. Thermochemical conversion of plastic waste has received growing attention. Although thermochemical conversion is promising for handling mixed plastic waste, it typically occurs at high temperatures (300-800 °C). Catalysts can play a critical role in improving the energy efficiency of thermochemical conversion, promoting targeted reactions, and improving product selectivity. This Review aims to summarize the state-of-the-art of catalytic thermochemical conversions of various types of plastic waste. First, general trends and recent development of catalytic thermochemical conversions including pyrolysis, gasification, hydrothermal processes, and chemolysis of plastic waste into fuels, chemicals, and value-added materials were reviewed. Second, the status quo for the commercial implementation of thermochemical conversion of plastic waste was summarized. Finally, the current challenges and future perspectives of catalytic thermochemical conversion of plastic waste including the design of sustainable and robust catalysts were discussed.
Collapse
Affiliation(s)
- Ren-Xuan Yang
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01851, USA
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10607, Taiwan
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1 Sec. 3, Chung-Hsiao E. Rd., Taipei, 106344, Taiwan
| | - Kalsoom Jan
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01851, USA
| | - Ching-Tien Chen
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10607, Taiwan
| | - Wan-Ting Chen
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01851, USA
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10607, Taiwan
| |
Collapse
|
14
|
Kondo MY, Montagna LS, Morgado GFDM, Castilho ALGD, Batista LAPDS, Botelho EC, Costa ML, Passador FR, Rezende MC, Ribeiro MV. Recent advances in the use of Polyamide-based materials for the automotive industry. POLIMEROS 2022. [DOI: 10.1590/0104-1428.20220042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | | | | | - Michelle Leali Costa
- Universidade Estadual Paulista, Brasil; Instituto de Pesquisas Tecnológicas, Brasil
| | | | | | | |
Collapse
|
15
|
Bäckström E, Odelius K, Hakkarainen M. Microwave Assisted Selective Hydrolysis of Polyamides from Multicomponent Carpet Waste. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000119. [PMID: 34267926 PMCID: PMC8272014 DOI: 10.1002/gch2.202000119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/14/2021] [Indexed: 06/13/2023]
Abstract
Selective hydrolysis of polyamide-6 (PA-6) and polyamide-66 (PA-66) from commercial multicomponent PA-6/PA-66/polypropylene (PP) carpet is demonstrated by a microwave-assisted acid catalyzed hydrothermal process, yielding monomeric products and solid polypropylene residue. First, an effective method is established to chemically recycle neat PA-6 and PA-66 granules using microwave irradiation. The optimized, hydrochloric acid (HCl) catalyzed process leads to selective production of monomers, 6-aminocaproic acid or adipic acid and hexamethylenediamine, after only 30 min. A piece of commercial carpet is then recycled using the same reaction conditions, but with the alteration of the reaction time from 1 to 6 h. The produced water-soluble products and the remaining solid residue are carefully characterized, proving that the polyamide-part of the carpet is selectively hydrolyzed into water-soluble monomers and the polypropylene-part remains as an unconverted solid that can be further used to produce recycled filaments containing the carpet residue and virgin polypropylene. The developed process opens the possibility to recycle multicomponent materials, such as carpets, through selective hydrolysis. It can also contribute to a circular economy, producing original monomers and materials ready for a new life-cycle.
Collapse
Affiliation(s)
- Eva Bäckström
- Department of Fibre and Polymer TechnologySchool of Engineering Sciences in ChemistryBiotechnology and HealthKTH Royal Institute of TechnologyTeknikringen 56–58StockholmSE‐100 44Sweden
| | - Karin Odelius
- Department of Fibre and Polymer TechnologySchool of Engineering Sciences in ChemistryBiotechnology and HealthKTH Royal Institute of TechnologyTeknikringen 56–58StockholmSE‐100 44Sweden
| | - Minna Hakkarainen
- Department of Fibre and Polymer TechnologySchool of Engineering Sciences in ChemistryBiotechnology and HealthKTH Royal Institute of TechnologyTeknikringen 56–58StockholmSE‐100 44Sweden
| |
Collapse
|
16
|
Potential Chemicals from Plastic Wastes. Molecules 2021; 26:molecules26113175. [PMID: 34073300 PMCID: PMC8199254 DOI: 10.3390/molecules26113175] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/29/2022] Open
Abstract
Plastic is referred to as a “material of every application”. From the packaging and automotive industries to the medical apparatus and computer electronics sectors, plastic materials are fulfilling demands efficiently. These plastics usually end up in landfills and incinerators, creating plastic waste pollution. According to the Environmental Protection Agency (EPA), in 2015, 9.1% of the plastic materials generated in the U.S. municipal solid waste stream was recycled, 15.5% was combusted for energy, and 75.4% was sent to landfills. If we can produce high-value chemicals from plastic wastes, a range of various product portfolios can be created. This will help to transform chemical industries, especially the petrochemical and plastic sectors. In turn, we can manage plastic waste pollution, reduce the consumption of virgin petroleum, and protect human health and the environment. This review provides a description of chemicals that can be produced from different plastic wastes and the research challenges involved in plastic waste to chemical production. This review also provides a brief overview of the state-of-the-art processes to help future system designers in the plastic waste to chemicals area.
Collapse
|