1
|
Zavaleta V, Pérez-Través L, Saona LA, Villarroel CA, Querol A, Cubillos FA. Understanding brewing trait inheritance in de novo Lager yeast hybrids. mSystems 2024; 9:e0076224. [PMID: 39530669 DOI: 10.1128/msystems.00762-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Hybridization between Saccharomyces cerevisiae and Saccharomyces eubayanus resulted in the emergence of S. pastorianus, a crucial yeast for lager fermentation. However, our understanding of hybridization success and hybrid vigor between these two species remains limited due to the scarcity of S. eubayanus parental strains. Here, we explore hybridization success and the impact of hybridization on fermentation performance and volatile compound profiles in newly formed lager hybrids. By selecting parental candidates spanning a diverse array of lineages from both species, we reveal that the Beer and PB-2 lineages exhibit high rates of hybridization success in S. cerevisiae and S. eubayanus, respectively. Polyploid hybrids were generated through a spontaneous diploid hybridization technique (rare-mating), revealing a prevalence of triploids and diploids over tetraploids. Despite the absence of heterosis in fermentative capacity, hybrids displayed phenotypic variability, notably influenced by maltotriose consumption. Interestingly, ploidy levels did not significantly correlate with fermentative capacity, although triploids exhibited greater phenotypic variability. The S. cerevisiae parental lineages primarily influenced volatile compound profiles, with significant differences in aroma production. Interestingly, hybrids emerging from the Beer S. cerevisiae parental lineages exhibited a volatile compound profile resembling the corresponding S. eubayanus parent. This pattern may result from the dominant inheritance of the S. eubayanus aroma profile, as suggested by the over-expression of genes related to alcohol metabolism and acetate synthesis in hybrids including the Beer S. cerevisiae lineage. Our findings suggest complex interactions between parental lineages and hybridization outcomes, highlighting the potential for creating yeasts with distinct brewing traits through hybridization strategies. IMPORTANCE Our study investigates the principles of lager yeast hybridization between Saccharomyces cerevisiae and Saccharomyces eubayanus. This process gave rise to the lager yeast Saccharomyces pastorianus. By examining how these novel hybrids perform during fermentation and the aromas they produce, we uncover the genetic bases of brewing trait inheritance. We successfully generated polyploid hybrids using diverse strains and lineages from both parent species, predominantly triploids and diploids. Although these hybrids did not show improved fermentation capacity, they exhibited varied traits, especially in utilizing maltotriose, a key sugar in brewing. Remarkably, the aroma profiles of these hybrids were primarily influenced by the S. cerevisiae parent, with Beer lineage hybrids adopting aroma characteristics from their S. eubayanus parent. These insights reveal the complex genetic interactions in hybrid yeasts, opening new possibilities for crafting unique brewing yeasts with desirable traits.
Collapse
Affiliation(s)
- Vasni Zavaleta
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Laura Pérez-Través
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Luis A Saona
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| | - Carlos A Villarroel
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Centro de Biotecnología de los Recursos Naturales (CENBio), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Francisco A Cubillos
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| |
Collapse
|
2
|
Sun W, Chen X, Feng S, Bi P, Han J, Li S, Liu X, Zhang Z, Long F, Guo J. Effect of sequential fermentation with indigenous non-Saccharomyces cerevisiae combinations and Saccharomyces cerevisiae on the chemical composition and aroma compounds evolution of kiwifruit wine. Food Chem 2024; 460:140758. [PMID: 39121775 DOI: 10.1016/j.foodchem.2024.140758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/20/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
To unlock the potential of indigenous non-Saccharomyces cerevisiae and develop novel starters to enhance the aromatic complexity of kiwifruit wine, Zygosaccharomyces rouxii, Pichia kudriavzevii and Meyerozyma guilliermondii were pairwise combined and then used in sequential fermentation with Saccharomyces cerevisiae. The impact of different starter cultures on the chemical composition and flavor profile of the kiwifruit wines was comprehensively analyzed, and the aroma evolution during alcoholic fermentation was investigated by examining the changes in key volatiles and their loss rates. Compared with Saccharomyces cerevisiae, mixed starter cultures not only improve antioxidant capacity but also increase esters and alcohols yields, presenting intense floral and fruity aromas with high sensory acceptability. The results indicated that sequential inoculation of non-Saccharomyces cerevisiae combination and Saccharomyces cerevisiae promoted the development of volatiles while maintaining the stability of key aroma compounds in the winemaking environment and reducing the aroma loss rates during alcoholic fermentation.
Collapse
Affiliation(s)
- Wangsheng Sun
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Xiaowen Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Sinuo Feng
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Pengfei Bi
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Jia Han
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Shiqi Li
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xu Liu
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Zhe Zhang
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Jing Guo
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Sha Y, Ge M, Lu M, Xu Z, Zhai R, Jin M. Advances in metabolic engineering for enhanced acetyl-CoA availability in yeast. Crit Rev Biotechnol 2024:1-19. [PMID: 39266266 DOI: 10.1080/07388551.2024.2399542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/21/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024]
Abstract
Acetyl-CoA is an intermediate metabolite in cellular central metabolism. It's a precursor for various valuable commercial products, including: terpenoids, fatty acids, and polyketides. With the advancement of metabolic and synthetic biology tools, microbial cell factories have been constructed for the efficient synthesis of acetyl-CoA and derivatives, with the Saccharomyces cerevisiae and Yarrowia lipolytica as two prominent chassis. This review summarized the recent developments in the biosynthetic pathways and metabolic engineering approaches for acetyl-CoA and its derivatives synthesis in these two yeasts. First, the metabolic routes involved in the biosynthesis of acetyl-CoA and derived products were outlined. Then, the advancements in metabolic engineering strategies for channeling acetyl-CoA toward the desired products were summarized, with particular emphasis on: enhancing metabolic flux in different organelles, refining precursor CoA synthesis, optimizing substrate utilization, and modifying protein acetylation level. Finally, future developments in advancing the metabolic engineering strategies for acetyl-CoA and related derivatives synthesis, including: reducing CO2 emissions, dynamically regulating metabolic pathways, and exploring the regulatory functions between acetyl-CoA levels and protein acetylation, are highlighted. This review provided new insights into regulating acetyl-CoA synthesis to create more effective microbial cell factories for bio-manufacturing.
Collapse
Affiliation(s)
- Yuanyuan Sha
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing, China
| | - Mianshen Ge
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing, China
| | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing, China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing, China
| | - Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
4
|
Xie D, Zheng J, Sun Y, Li X, Ren S. Effects of Ca 2+ signal on the activities of key enzymes and expression of related genes in yeast ethanol metabolism and mitochondrial function during high sugar fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5077-5088. [PMID: 38284794 DOI: 10.1002/jsfa.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND During high sugar fermentation, yeast is mainly affected by high sugar stress in the early stage. It becomes jointly affected by high sugar and ethanol stress as ethanol accumulates during fermentation. Ca2+, as the second messenger of the cell, mediates various metabolic processes. In this study, the effects of the Ca2+ signal on the activities of key enzymes, expression of related genes of ethanol metabolism, and mitochondrial function were investigated. RESULTS The results showed a significant increase in the activities of enzymes related to ethanol metabolism in yeast cells under a high sugar environment. Ca2+ significantly promoted the activities of enzymes related to mitochondrial respiratory metabolism and regulated the carbon flow between ethanol metabolism and the tricarboxylic acid cycle. The high sugar environment affected the expression of genes related to carbon metabolism, while the addition of Ca2+ stabilized the expression of related genes. CONCLUSION Ca2+ signal participated in ethanol and mitochondrial metabolism and regulated the key enzymes and related gene expression to enhance the resistance of yeast to stress during high sugar fermentation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongdong Xie
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Jiaxin Zheng
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yingqi Sun
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Xing Li
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Shuncheng Ren
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
5
|
Zhou Z, Wang Y, Zhang Z, Ren Q, Ji Z, Xu X, Xu Y, Mao J. Case study on the influence of serving temperature on the aroma release and perception of Huangjiu, a fermented alcoholic beverage. Food Res Int 2024; 178:113948. [PMID: 38309909 DOI: 10.1016/j.foodres.2024.113948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Serving temperature plays a crucial role in influencing the sensory experience of consumers. In this context, this study investigated the influence of serving temperature on the aroma release and perception of a typical fermented alcoholic beverage named Huangjiu. A quantitative sensory description analysis was conducted, determining serving temperature significantly influenced the 17 sensory attributes in both semi-dry and semi-sweet Huangjiu. The variation in the contents of 41 volatiles in the Huangjiu with temperature was investigated using gas chromatography-ion mobility spectrometry, resulting in volatile content significantly increasing above 30 ℃. The partial least squares discriminant analysis was conducted to predict the variable importance for the projection (VIP) of volatiles, and 22 volatiles (VIP > 1) were screened. These 22 volatiles were confirmed as key odorants influenced by serving temperature though aroma addition experiments. The findings would provide a reference for the effects of serving temperature on the flavor perception of fermented alcoholic beverages.
Collapse
Affiliation(s)
- Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, Jiangsu, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, Zhejiang, China
| | - Yan Wang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhimin Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Qingxi Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhongwei Ji
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, Jiangsu, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, Zhejiang, China
| | - Xibiao Xu
- Shaoxing Nverhong Winery Co., Ltd, Shaoxing 312000, Zhejiang, China
| | - Yuezheng Xu
- Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 312000, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, Jiangsu, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, Zhejiang, China; National Engineering Research Center for Huangjiu, Shaoxing 312000, Zhejiang, China.
| |
Collapse
|
6
|
van Wyk N, Badura J, von Wallbrunn C, Pretorius IS. Exploring future applications of the apiculate yeast Hanseniaspora. Crit Rev Biotechnol 2024; 44:100-119. [PMID: 36823717 DOI: 10.1080/07388551.2022.2136565] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 02/25/2023]
Abstract
As a metaphor, lemons get a bad rap; however the proverb 'if life gives you lemons, make lemonade' is often used in a motivational context. The same could be said of Hanseniaspora in winemaking. Despite its predominance in vineyards and grape must, this lemon-shaped yeast is underappreciated in terms of its contribution to the overall sensory profile of fine wine. Species belonging to this apiculate yeast are known for being common isolates not just on grape berries, but on many other fruits. They play a critical role in the early stages of a fermentation and can influence the quality of the final product. Their deliberate addition within mixed-culture fermentations shows promise in adding to the complexity of a wine and thus provide sensorial benefits. Hanseniaspora species are also key participants in the fermentations of a variety of other foodstuffs ranging from chocolate to apple cider. Outside of their role in fermentation, Hanseniaspora species have attractive biotechnological possibilities as revealed through studies on biocontrol potential, use as a whole-cell biocatalyst and important interactions with Drosophila flies. The growing amount of 'omics data on Hanseniaspora is revealing interesting features of the genus that sets it apart from the other Ascomycetes. This review collates the fields of research conducted on this apiculate yeast genus.
Collapse
Affiliation(s)
- Niël van Wyk
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Jennifer Badura
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
| | - Christian von Wallbrunn
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
| | - Isak S Pretorius
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
7
|
Liu G, Huang L, Lian J. Alcohol acyltransferases for the biosynthesis of esters. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:93. [PMID: 37264424 DOI: 10.1186/s13068-023-02343-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023]
Abstract
Esters are widely used in food, energy, spices, chemical industry, etc., becoming an indispensable part of life. However, their production heavily relies on the fossil energy industry, which presents significant challenges associated with energy shortages and environmental pollution. Consequently, there is an urgent need to identify alternative green methods for ester production. One promising solution is biosynthesis, which offers sustainable and environmentally friendly processes. In ester biosynthesis, alcohol acyltransferases (AATs) catalyze the condensation of acyl-CoAs and alcohols to form esters, enabling the biosynthesis of nearly 100 different kinds of esters, such as ethyl acetate, hexyl acetate, ethyl crotonate, isoamyl acetate, and butyl butyrate. However, low catalytic efficiency and low selectivity of AATs represent the major bottlenecks for the biosynthesis of certain specific esters, which should be addressed with protein molecular engineering approaches before practical biotechnological applications. This review provides an overview of AAT enzymes, including their sequences, structures, active sites, catalytic mechanisms, and metabolic engineering applications. Furthermore, considering the critical role of AATs in determining the final ester products, the current research progresses of AAT modification using protein molecular engineering are also discussed. This review summarized the major challenges and prospects of AAT enzymes in ester biosynthesis.
Collapse
Affiliation(s)
- Gaofei Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
- Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
8
|
Sun J, Zhu Z, Lin Q, Qi S, Li Q, Zhou Y, Li R. Metabolic Engineering of Escherichia coli for the Biosynthesis of 3-Phenylpropionic Acid and 3-Phenylpropyl Acetate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7451-7458. [PMID: 37146254 DOI: 10.1021/acs.jafc.3c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
3-Phenylpropionic acid (3PPA) and its derivative 3-phenylpropyl acetate (3PPAAc) are important aromatic compounds with broad applications in the cosmetics and food industries. In this study, we constructed a plasmid-free 3PPA-producing Escherichia coli strain and designed a novel 3PPAAc biosynthetic pathway. A module containing tyrosine ammonia lyase and enoate reductase, evaluated under the control of different promoters, was combined with phenylalanine-overproducing strain E. coli ATCC31884, enabling the plasmid-free de novo production of 218.16 ± 43.62 mg L-1 3PPA. The feasibility of the pathway was proved by screening four heterologous alcohol acetyltransferases, which catalyzed the transformation of 3-phenylpropyl alcohol into 3PPAAc. Afterward, 94.59 ± 16.25 mg L-1 3PPAAc was achieved in the engineered E. coli strain. Overall, we have not only demonstrated the potential of de novo synthesis of 3PPAAc in microbes for the first time but also provided a platform for the future of biosynthesis of other aromatic compounds.
Collapse
Affiliation(s)
- Jing Sun
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhi Zhu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Qingfang Lin
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Shilian Qi
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Qianqian Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Yang Zhou
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Rongpeng Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
9
|
Cui D, Liu L, Sun L, Lin X, Lin L, Zhang C. Genome-wide analysis reveals Hsf1 maintains high transcript abundance of target genes controlled by strong constitutive promoter in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:72. [PMID: 37118827 PMCID: PMC10141939 DOI: 10.1186/s13068-023-02322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/16/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND In synthetic biology, the strength of promoter elements is the basis for precise regulation of target gene transcription levels, which in turn increases the yield of the target product. However, the results of many researches proved that excessive transcription levels of target genes actually reduced the yield of the target product. This phenomenon has been found in studies using different microorganisms as chassis cells, thus, it becomes a bottleneck problem to improve the yield of the target product. RESULTS In this study, promoters PGK1p and TDH3p with different strengths were used to regulate the transcription level of alcohol acetyl transferase encoding gene ATF1. The results demonstrated that the strong promoter TDH3p decreased the production of ethyl acetate. The results of Real-time PCR proved that the transcription level of ATF1 decreased rapidly under the control of TDH3p, and the unfolded protein reaction was activated, which may be the reason for the abnormal production caused by the strong promoter. RNA-sequencing analysis showed that the overexpression of differential gene HSP30 increased the transcriptional abundance of ATF1 gene and production of ethyl acetate. Interestingly, deletion of the heat shock protein family (e.g., Hsp26, Hsp78, Hsp82) decreased the production of ethyl acetate, suggesting that the Hsp family was also involved in the regulation of ATF1 gene transcription. Furthermore, the results proved that the Hsf1, an upstream transcription factor of Hsps, had a positive effect on alleviating the unfolded protein response and that overexpression of Hsf1 reprogramed the pattern of ATF1 gene transcript levels. The combined overexpression of Hsf1 and Hsps further increased the production of ethyl acetate. In addition, kinase Rim15 may be involved in this regulatory pathway. Finally, the regulation effect of Hsf1 on recombinant strains constructed by other promoters was verified, which confirmed the universality of the strategy. CONCLUSIONS Our results elucidated the mechanism by which Rim15-Hsf1-Hsps pathway reconstructed the repression of high transcription level stress and increased the production of target products, thereby providing new insights and application strategies for the construction of recombinant strains in synthetic biology.
Collapse
Affiliation(s)
- Danyao Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Ling Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Lijing Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Xue Lin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Liangcai Lin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Cuiying Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
10
|
Zhang G, Xie M, Kang X, Wei M, Zhang Y, Li Q, Wu X, Chen Y. Optimization of ethyl hexanoate production in Saccharomyces cerevisiae by metabolic engineering. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Chen Y, Wan Y, Cai W, Liu N, Zeng J, Liu C, Peng H, Fu G. Effects on Cell Membrane Integrity of Pichia anomala by the Accumulating Excessive Reactive Oxygen Species under Ethanol Stress. Foods 2022; 11:foods11223744. [PMID: 36429336 PMCID: PMC9689904 DOI: 10.3390/foods11223744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Ethanol stress to yeast is well recognized and exists widely during the brewing process of alcohol products. Pichia anomala is an important ester-producing yeast in the brewing process of Chinese Baijiu and other alcohol products. Therefore, it is of great significance for the alcohol products brewing industry to explore the effects of ethanol stress on the growth metabolism of P. anomala. In this study, the effects of ethanol stress on the growth, esters production ability, cell membrane integrity and reactive oxygen species (ROS) metabolism of P. anomala NCU003 were studied. Our results showed that ethanol stress could inhibit the growth, reduce the ability of non-ethyl ester compounds production and destroy the cell morphology of P. anomala NCU003. The results also showed that 9% ethanol stress produced excessive ROS and then increased the activities of antioxidant enzymes (superoxide dismutase, catalase, aseorbateperoxidase and glutathione reductase) compared to the control group. However, these increased antioxidant enzyme activities could not prevent the damage caused by ROS to P. anomala NCU003. Of note, correlation results indicated that high content of ROS could promote the accumulation of malondialdehyde content, resulting in destruction of the integrity of the cell membrane and leading to the leakage of intracellular nutrients (soluble sugar and protein) and electrolytes. These results indicated that the growth and the non-ethyl ester compounds production ability of P. anomala could be inhibited under ethanol stress by accumulating excessive ROS and the destruction of cell membrane integrity in P. anomala.
Collapse
Affiliation(s)
- Yanru Chen
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330299, China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330299, China
| | - Wenqin Cai
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330299, China
| | - Na Liu
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330299, China
| | - Jiali Zeng
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330299, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330299, China
| | - Hong Peng
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330299, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330299, China
- Correspondence:
| |
Collapse
|
12
|
Metabolic engineering of Saccharomyces cerevisiae for the biosynthesis of ethyl crotonate. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Wei W, Gao S, Yi Q, Liu A, Yu S, Zhou J. Reengineering of 7-dehydrocholesterol biosynthesis in Saccharomyces cerevisiae using combined pathway and organelle strategies. Front Microbiol 2022; 13:978074. [PMID: 36016783 PMCID: PMC9398459 DOI: 10.3389/fmicb.2022.978074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
7-Dehydrocholesterol (7-DHC) is a widely used sterol and a precursor of several costly steroidal drugs. In this study, 7-DHC biosynthesis pathway was constructed and modified in Saccharomyces cerevisiae. Firstly, the biosynthesis pathway was constructed by knocking out the competitive pathway genes ERG5 and ERG6 and integrating two DHCR24 copies from Gallus gallus at both sites. Then, 7-DHC titer was improved by knocking out MOT3, which encoded a transcriptional repressor for the 7-DHC biosynthesis pathway. Next, by knocking out NEM1 and PAH1, 7-DHC accumulation was improved, and genes upregulation was verified by quantitative PCR (qPCR). Additionally, tHMG1, IDI1, ERG2, ERG3, DHCR24, POS5, and CTT1 integration into multi-copy sites was used to convert precursors to 7-DHC, and increase metabolic flux. Finally, qPCR confirmed the significant up-regulation of key genes transcriptional levels. In a 96 h shaker flask fermentation, the 7-DHC titer was 649.5 mg/L by de novo synthesis. In a 5 L bioreactor, the 7-DHC titer was 2.0 g/L, which was the highest 7-DHC titer reported to date. Our study is of great significance for the industrial production of 7-DHC and steroid development for medical settings.
Collapse
Affiliation(s)
- Wenqian Wei
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, and School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, and School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qiong Yi
- Changsha Hospital for Maternal & Child Health Care, Changsha, China
| | - Anjian Liu
- Hunan Kerey Pharmaceutical Co., Ltd., Shaoyang, China
| | - Shiqin Yu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, and School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, and School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- *Correspondence: Jingwen Zhou,
| |
Collapse
|
14
|
Zhang M, Wang Z, Chi Z, Liu GL, Chi ZM. Metabolic engineering of Aureobasidium melanogenum 9-1 for overproduction of liamocins by enhancing supply of acetyl-CoA and ATP. Microbiol Res 2022; 265:127172. [DOI: 10.1016/j.micres.2022.127172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/09/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022]
|
15
|
Zhao Y, Liu S, Yang Q, Han X, Zhou Z, Mao J. Saccharomyces cerevisiae strains with low-yield higher alcohols and high-yield acetate esters improve the quality, drinking comfort and safety of huangjiu. Food Res Int 2022; 161:111763. [DOI: 10.1016/j.foodres.2022.111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022]
|
16
|
Li RR, Xu M, Zheng J, Liu YJ, Sun CH, Wang H, Guo XW, Xiao DG, Wu XL, Chen YF. Application Potential of Baijiu Non- Saccharomyces Yeast in Winemaking Through Sequential Fermentation With Saccharomyces cerevisiae. Front Microbiol 2022; 13:902597. [PMID: 35711782 PMCID: PMC9196592 DOI: 10.3389/fmicb.2022.902597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
To explore the potential application of non-Saccharomyces yeasts screened from Baijiu fermentation environment in winemaking, the effect of four Baijiu non-Saccharomyces yeasts (two Zygosaccharomyces bailii and two Pichia kudriavzevii) sequentially fermented with Saccharomyces cerevisiae on the physicochemical parameters and volatile compounds of wine was analyzed. The results indicated that there was no obvious antagonism between S. cerevisiae and Z. bailli or P. kudriavzevii in sequential fermentations, and all strains could be detected at the end of alcoholic fermentation. Compare with S. cerevisiae pure fermentation, Z. bailii/S. cerevisiae sequential fermentations significantly reduced higher alcohols, fatty acids, and ethyl esters and increased acetate esters; P. kudriavzevii/S. cerevisiae sequential fermentations reduced the contents of C6 alcohols, total higher alcohols, fatty acids, and ethyl esters and significantly increased the contents of acetate esters (especially ethyl acetate and 3-methylbutyl acetate). Sequential fermentation of Baijiu non-Saccharomyces yeast and S. cerevisiae improved the flavor and quality of wine due to the higher ester content and lower concentration of higher alcohols and fatty acids, non-Saccharomyces yeasts selected from Baijiu fermentation environment have potential applications in winemaking, which could provide a new strategy to improve wine flavor and quality.
Collapse
Affiliation(s)
- Rui-Rui Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Meng Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jia Zheng
- Key Laboratory of Wuliangye-Flavor Liquor Solid-State Fermentation, China National Light Industry, Yibin, China
| | - Yan-Jun Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Chun-Hong Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Huan Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xue-Wu Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Dong-Guang Xiao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xiao-Le Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ye-Fu Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Wuliangye-Flavor Liquor Solid-State Fermentation, China National Light Industry, Yibin, China
| |
Collapse
|
17
|
Muratovska N, Silva P, Pozdniakova T, Pereira H, Grey C, Johansson B, Carlquist M. Towards engineered yeast as production platform for capsaicinoids. Biotechnol Adv 2022; 59:107989. [PMID: 35623491 DOI: 10.1016/j.biotechadv.2022.107989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/23/2022]
Abstract
Capsaicinoids are bioactive alkaloids produced by the chili pepper fruit and are known to be the most potent agonists of the human pain receptor TRPV1 (Transient Receptor Potential Cation Channel Subfamily V Member 1). They are currently produced by extraction from chili pepper fruit or by chemical synthesis. Transfer of the biosynthetic route to a microbial host could enable more efficient capsaicinoid production by fermentation and may also enable the use of synthetic biology to create a diversity of new compounds with potentially improved properties. This review summarises the current state of the art on the biosynthesis of capsaicinoid precursors in baker's yeast, Saccharomyces cerevisiae, and discusses bioengineering strategies for achieving total synthesis from sugar.
Collapse
Affiliation(s)
- Nina Muratovska
- Division of Applied Microbiology, Lund University, Box 124, 221 00 Lund, Sweden
| | - Paulo Silva
- CBMA - Center of Molecular and Environmental Biology Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Tatiana Pozdniakova
- CBMA - Center of Molecular and Environmental Biology Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Humberto Pereira
- CBMA - Center of Molecular and Environmental Biology Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Carl Grey
- Division of Biotechnology, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Björn Johansson
- CBMA - Center of Molecular and Environmental Biology Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - Magnus Carlquist
- Division of Applied Microbiology, Lund University, Box 124, 221 00 Lund, Sweden.
| |
Collapse
|