1
|
Hu RE, Yu CH, Ng IS. GRACE: Generative Redesign in Artificial Computational Enzymology. ACS Synth Biol 2024; 13:4154-4164. [PMID: 39513550 DOI: 10.1021/acssynbio.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Designing de novo enzymes is complex and challenging, especially to maintain the activity. This research focused on motif design to identify the crucial domain in the enzyme and uncovered the protein structure by molecular docking. Therefore, we developed a Generative Redesign in Artificial Computational Enzymology (GRACE), which is an automated workflow for reformation and creation of the de novo enzymes for the first time. GRACE integrated RFdiffusion for structure generation, ProteinMPNN for sequence interpretation, CLEAN for enzyme classification, and followed by solubility analysis and molecular dynamic simulation. As a result, we selected two gene sequences associated with carbonic anhydrase from among 10,000 protein candidates. Experimental validation confirmed that these two novel enzymes, i.e., dCA12_2 and dCA23_1, exhibited favorable solubility, promising substrate-active site interactions, and achieved activity of 400 WAU/mL. This workflow has the potential to greatly streamline experimental efforts in enzyme engineering and unlock new avenues for rational protein design.
Collapse
Affiliation(s)
- Ruei-En Hu
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 701, Taiwan
| | - Chi-Hua Yu
- Department of Engineering Science, National Cheng Kung University, Tainan City 701, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 701, Taiwan
| |
Collapse
|
2
|
Cheung-Lee WL, Kolev JN, McIntosh JA, Gil AA, Pan W, Xiao L, Velásquez JE, Gangam R, Winston MS, Li S, Abe K, Alwedi E, Dance ZEX, Fan H, Hiraga K, Kim J, Kosjek B, Le DN, Marzijarani NS, Mattern K, McMullen JP, Narsimhan K, Vikram A, Wang W, Yan JX, Yang RS, Zhang V, Zhong W, DiRocco DA, Morris WJ, Murphy GS, Maloney KM. Engineering Hydroxylase Activity, Selectivity, and Stability for a Scalable Concise Synthesis of a Key Intermediate to Belzutifan. Angew Chem Int Ed Engl 2024; 63:e202316133. [PMID: 38279624 DOI: 10.1002/anie.202316133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Biocatalytic oxidations are an emerging technology for selective C-H bond activation. While promising for a range of selective oxidations, practical use of enzymes catalyzing aerobic hydroxylation is presently limited by their substrate scope and stability under industrially relevant conditions. Here, we report the engineering and practical application of a non-heme iron and α-ketoglutarate-dependent dioxygenase for the direct stereo- and regio-selective hydroxylation of a non-native fluoroindanone en route to the oncology treatment belzutifan, replacing a five-step chemical synthesis with a direct enantioselective hydroxylation. Mechanistic studies indicated that formation of the desired product was limited by enzyme stability and product overoxidation, with these properties subsequently improved by directed evolution, yielding a biocatalyst capable of >15,000 total turnovers. Highlighting the industrial utility of this biocatalyst, the high-yielding, green, and efficient oxidation was demonstrated at kilogram scale for the synthesis of belzutifan.
Collapse
Affiliation(s)
| | - Joshua N Kolev
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - John A McIntosh
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Agnieszka A Gil
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Weilan Pan
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Li Xiao
- Modeling & Informatics, Discovery Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Juan E Velásquez
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Rekha Gangam
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Matthew S Winston
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Shasha Li
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Kotoe Abe
- Chemical Commercialization Technologies, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Embarek Alwedi
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Zachary E X Dance
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Haiyang Fan
- API Process Research & Development (Biocatalysis), Shanghai STA Pharmaceutical Co., Ltd., Shanghai, 201507, China
| | - Kaori Hiraga
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Jungchul Kim
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Birgit Kosjek
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Diane N Le
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | | | - Keith Mattern
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | | | - Karthik Narsimhan
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Ajit Vikram
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Wei Wang
- API Process Research & Development (Biocatalysis), Shanghai STA Pharmaceutical Co., Ltd., Shanghai, 201507, China
| | - Jia-Xuan Yan
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Rong-Sheng Yang
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Victoria Zhang
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Wendy Zhong
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Daniel A DiRocco
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - William J Morris
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Grant S Murphy
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Kevin M Maloney
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| |
Collapse
|
4
|
Sánchez-Aparicio JE, Sciortino G, Mates-Torres E, Lledós A, Maréchal JD. Successes and challenges in multiscale modelling of artificial metalloenzymes: the case study of POP-Rh 2 cyclopropanase. Faraday Discuss 2022; 234:349-366. [PMID: 35147145 DOI: 10.1039/d1fd00069a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular modelling applications in metalloenzyme design are still scarce due to a series of challenges. On top of that, the simulations of metal-mediated binding and the identification of catalytic competent geometries require both large conformational exploration and simulation of fine electronic properties. Here, we demonstrate how the incorporation of new tools in multiscale strategies, namely substrate diffusion exploration, allows taking a step further. As a showcase, the enantioselective profiles of the most outstanding variants of an artificial Rh2-based cyclopropanase (GSH, HFF and RFY) developed by Lewis and co-workers (Nat. Commun., 2015, 6, 7789 and Nat. Chem., 2018, 10, 318-324) have been rationalized. DFT calculations on the free-cofactor-mediated process identify the carbene insertion and the cyclopropanoid formation as crucial events, the latter being the enantiodetermining step, which displays up to 8 competitive orientations easily altered by the protein environment. The key intermediates of the reaction were docked into the protein scaffold showing that some mutated residues have direct interaction with the cofactor and/or the co-substrate. These interactions take the form of a direct coordination of Rh in GSH and HFF and a strong hydrophobic patch with the carbene moiety in RFY. Posterior molecular dynamics sustain that the cofactor induces global re-arrangements of the protein. Finally, massive exploration of substrate diffusion, based on the GPathFinder approach, defines this event as the origin of the enantioselectivity in GSH and RFY. For HFF, fine molecular dockings suggest that it is likely related to local interactions upon diffusion. This work shows how modelling of long-range mutations on the catalytic profiles of metalloenzymes may be unavoidable and software simulating substrate diffusion should be applied.
Collapse
Affiliation(s)
| | - Giuseppe Sciortino
- InSiliChem, Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Eric Mates-Torres
- InSiliChem, Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Agustí Lledós
- InSiliChem, Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Jean-Didier Maréchal
- InSiliChem, Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|