1
|
Wang G, Liang X, Wu Z, Fan B, Wang J, Zheng Q, Li D, An T. Improved biosynthesis of tyrosol by epigenetic modification-based regulation and metabolic engineering in Saccharomyces cerevisiae. J Biotechnol 2024; 398:S0168-1656(24)00333-X. [PMID: 39746378 DOI: 10.1016/j.jbiotec.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/06/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Aromatic amino acids and their derivatives are high value chemicals widely used in food, pharmaceutical and feed industries. Current preparation methods for aromatic amino acid products are fraught with limitations. In this study, the efficient biosynthesis of aromatic amino acid compound tyrosol was investigated by epigenetic modification-based regulation and optimization of the biosynthetic pathway of aromatic amino acids. The production of tyrosol was significantly improved by the overexpression of m6A modification writer Ime4 and reader Pho92, and the positive regulator Gcr2. Introduction of Bbxfpk and deletion of Gpp1 further improved tyrosol production. Then the feedback inhibition of the shikimate pathway was relieved by the mutants Aro4K229L and Aro7G141S. The final tyrosol producing engineered strain was constructed by the deletion of PHA2, replacement of the native promoter of ARO10 with the strong promoter PGK1p, and introduction of tyrosine decarboxylase PcAAS. In the background of m6A modification regulation, this strain ultimately produced 954.69 ± 43.72mg/L of tyrosol, promoted by 61.7-fold in shake-flask fermentation.
Collapse
Affiliation(s)
- Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Zhenke Wu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Bengui Fan
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Jun Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, PR China.
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, PR China.
| |
Collapse
|
2
|
Ge J, Lu X, Liu C, Liu W, Wu N, Feng B, Sun X, Gu Y. Multimodule Synthetic Redesign of Intracellular Metabolisms for the High-Titer de Novo Production of Sakuranetin in Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28349-28359. [PMID: 39661494 DOI: 10.1021/acs.jafc.4c09625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Sakuranetin, a flavonoid phytoalexin, has demonstrated neuroprotective properties and exhibits tyrosinase inhibitory activities, making it highly valuable in the cosmetics and pharmaceutical industries. In this study, we engineered a Yarrowia lipolytica strain for the high-titer de novo production of sakuranetin using glucose as a substrate. To effectively enhance sakuranetin production, we implemented a multimodule engineering strategy that included optimizing the sakuranetin synthesis pathway, designing a regeneration system for the methyl donor S-adenosyl methionine, increasing the malonyl-CoA precursor supplement, and constructing the feedback inhibition-relieved shikimate pathway. Moreover, a transcriptomic analysis was conducted to identify potential targets for further improving sakuranetin synthesis. As a result, the titer of de novo synthesized sakuranetin reached 344.0 mg/L from glucose in a 5 L bioreactor. These achievements hold significant promise for the sustainable and large-scale production of sakuranetin through industrial biomanufacturing.
Collapse
Affiliation(s)
- Jianyue Ge
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xueyao Lu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
- Jinan Fruit Research Institute, China Federation of Supply and Marketing Co-operatives, Jinan, Shandong 250200, China
| | - Cancan Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Wei Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Na Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
- College of Marine and Bioengineering, Yangcheng Institute of Technology, Yancheng 224007, China
| | - Bingxuan Feng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
3
|
Rafieenia R, Klemm C, Hapeta P, Fu J, García MG, Ledesma-Amaro R. Designing synthetic microbial communities with the capacity to upcycle fermentation byproducts to increase production yields. Trends Biotechnol 2024:S0167-7799(24)00305-6. [PMID: 39603879 DOI: 10.1016/j.tibtech.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Microbial cell factories, which convert feedstocks into a product of value, have the potential to help transition toward a bio-based economy with more sustainable ways to produce food, fuels, chemicals, and materials. One common challenge found in most bioconversions is the co-production, together with the product of interest, of undesirable byproducts or overflow metabolites. Here, we designed a strategy based on synthetic microbial communities to address this issue and increase overall production yields. To achieve our goal, we created a Yarrowia lipolytica co-culture comprising a wild-type (WT) strain that consumes glucose to make biomass and citric acid (CA), and an 'upcycler' strain, which consumes the CA produced by the WT strain. The co-culture produced up to two times more β-carotene compared with the WT monoculture using either minimal medium or hydrolysate. The proposed strategy has the potential to be applied to other bioprocesses and organisms.
Collapse
Affiliation(s)
- Razieh Rafieenia
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK; The Microbial Food Hub, Imperial College London, London, SW7 2AZ, UK; Bezos Centre for Sustainable Protein, Imperial College, London, SW7 2AZ, UK
| | - Cinzia Klemm
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK; The Microbial Food Hub, Imperial College London, London, SW7 2AZ, UK; Bezos Centre for Sustainable Protein, Imperial College, London, SW7 2AZ, UK
| | - Piotr Hapeta
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK; London Biofoundry, Translation and Innovation Hub, Imperial College White City Campus, London, UK
| | - Jing Fu
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK; The Microbial Food Hub, Imperial College London, London, SW7 2AZ, UK; Bezos Centre for Sustainable Protein, Imperial College, London, SW7 2AZ, UK
| | - María Gallego García
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK; Advanced Biofuels and Bioproducts Unit, Department of Energy, CIEMAT, Avenue Complutense 40, 28040 Madrid, Spain; Alcalá de Henares University, Alcalá de Henares, Spain
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK; The Microbial Food Hub, Imperial College London, London, SW7 2AZ, UK; Bezos Centre for Sustainable Protein, Imperial College, London, SW7 2AZ, UK.
| |
Collapse
|
4
|
Liu Q, Chen X, Hu G, Chu R, Liu J, Li X, Gao C, Liu L, Wei W, Song W, Wu J. Systems metabolic engineering of Escherichia coli for high-yield production of Para-hydroxybenzoic acid. Food Chem 2024; 457:140165. [PMID: 38936118 DOI: 10.1016/j.foodchem.2024.140165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Para-hydroxybenzoic acid (PHBA) is extensively used as an additive in the food and cosmetics industries, significantly enhancing product shelf life and stability. While microbial fermentation offers an environment-friendly and sustainable method for producing PHBA, the titer and productivity are limited due to product toxicity and complex metabolic flux distributions. Here, we initially redesigned a L-phenylalanine-producing Escherichia coli by employing rational metabolic engineering strategies, resulting in the production of PHBA reached the highest reported level of 14.17 g/L. Subsequently, a novel accelerated evolution system was devised comprising deaminase, the alpha subunit of RNA polymerase, an uracil-DNA glycosylase inhibitor, and the PHBA-responsive promoter PyhcN. This system enabled us to obtain a mutant strain exhibiting a 47% increase in the half-inhibitory concentration (IC50) for PHBA within 15 days. Finally, the evolved strain achieved a production of 21.35 g/L PHBA in a 5-L fermenter, with a yield of 0.19 g/g glucose and a productivity rate of 0.44 g/L/h. This engineered strain emerges as a promising candidate for industrial production of PHBA through an eco-friendly approach.
Collapse
Affiliation(s)
- Quan Liu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Ruyin Chu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Zhou S, Zhang Q, Yuan M, Yang H, Deng Y. Static and Dynamic Regulation of Precursor Supply Pathways to Enhance Raspberry Ketone Synthesis from Glucose in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23411-23421. [PMID: 39378372 DOI: 10.1021/acs.jafc.4c07423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Raspberry ketone (RK), a natural product derived from raspberry fruit, is commonly utilized as a flavoring agent in foods and as an active component for weight loss. Metabolic engineering has enabled microorganisms to produce RK more efficiently and cost-effectively. However, the biosynthesis of RK is hindered by an unbalanced synthetic pathway and a deficiency of precursors, including tyrosine and malonyl-CoA. In this study, we constructed and optimized the RK synthetic pathway in Escherichia coli using a static metabolic engineering strategy to enhance the biosynthesis of tyrosine from glucose, thereby achieving the de novo production of RK. Additionally, the synthetic and consumption pathways of malonyl-CoA were dynamically regulated by p-coumaric acid-responsive biosensor to balance the metabolic flux distribution between cell growth and RK biosynthesis. Following pathway optimization, the medium components and fermentation conditions were further refined, resulting in a significant increase in the RK titer to 415.56 mg/L. The optimized strain demonstrated a 32.4-fold increase in the RK titer while maintaining a comparable final OD600 to the initial strain. Overall, the implemented static and dynamic regulatory strategies provide a novel approach for the efficient production of RK, taking into account cell viability and growth.
Collapse
Affiliation(s)
- Shenghu Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qiyue Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Manwen Yuan
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Haining Yang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yu Deng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Masuo S. Microbial production of aromatic compounds and synthesis of high-performance bioplastics. Biosci Biotechnol Biochem 2024; 88:1247-1253. [PMID: 39113285 DOI: 10.1093/bbb/zbae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/04/2024] [Indexed: 10/23/2024]
Abstract
Microbial fermentation has provided fermented foods and important chemicals such as antibiotics, amino acids, and vitamins. Metabolic engineering of synthetic microbes has expanded the range of compounds produced by fermentation. Petroleum-derived aromatic compounds are widely used in industry as raw materials for pharmaceuticals, dyes, and polymers and are in great demand. This review highlights the current efforts in the microbial production of various aromatic chemicals such as aromatic amines, cinnamic acid derivatives, and flavoring aromatics, including their biosynthesis pathways. In addition, the unique biosynthetic mechanism of pyrazine, a heterocyclic compound, from amino acids is described to expand the use of biomass-derived aromatic compounds. I also discuss our efforts to develop high-performance bioplastics superior to petroleum plastics from the aromatic compounds produced by microbial fermentation.
Collapse
Affiliation(s)
- Shunsuke Masuo
- Faculty of Life and Environmental Sciences, Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Saleski TE, Peng H, Lengger B, Wang J, Jensen MK, Jensen ED. High-throughput G protein-coupled receptor-based autocrine screening for secondary metabolite production in yeast. Biotechnol Bioeng 2024; 121:3283-3296. [PMID: 38973176 DOI: 10.1002/bit.28797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Biosensors are valuable tools in accelerating the test phase of the design-build-test-learn cycle of cell factory development, as well as in bioprocess monitoring and control. G protein-coupled receptor (GPCR)-based biosensors enable cells to sense a wide array of molecules and environmental conditions in a specific manner. Due to the extracellular nature of their sensing, GPCR-based biosensors require compartmentalization of distinct genotypes when screening production levels of a strain library to ensure that detected levels originate exclusively from the strain under assessment. Here, we explore the integration of production and sensing modalities into a single Saccharomyces cerevisiae strain and compartmentalization using three different methods: (1) cultivation in microtiter plates, (2) spatial separation on agar plates, and (3) encapsulation in water-in-oil-in-water double emulsion droplets, combined with analysis and sorting via a fluorescence-activated cell sorting machine. Employing tryptamine and serotonin as proof-of-concept target molecules, we optimize biosensing conditions and demonstrate the ability of the autocrine screening method to enrich for high producers, showing the enrichment of a serotonin-producing strain over a nonproducing strain. These findings illustrate a workflow that can be adapted to screening for a wide range of complex chemistry at high throughput using commercially available microfluidic systems.
Collapse
Affiliation(s)
- Tatyana E Saleski
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Huadong Peng
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Bettina Lengger
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Jinglin Wang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Michael Krogh Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Emil D Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
8
|
Nonaka D, Hirata Y, Kishida M, Mori A, Fujiwara R, Kondo A, Mori Y, Noda S, Tanaka T. Parallel metabolic pathway engineering for aerobic 1,2-propanediol production in Escherichia coli. Biotechnol J 2024; 19:e2400210. [PMID: 39167552 DOI: 10.1002/biot.202400210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
The demand for the essential commodity chemical 1,2-propanediol (1,2-PDO) is on the rise, as its microbial production has emerged as a promising method for a sustainable chemical supply. However, the reliance of 1,2-PDO production in Escherichia coli on anaerobic conditions, as enhancing cell growth to augment precursor availability remains a substantial challenge. This study presents glucose-based aerobic production of 1,2-PDO, with xylose utilization facilitating cell growth. An engineered strain was constructed capable of exclusively producing 1,2-PDO from glucose while utilizing xylose to support cell growth. This was accomplished by deleting the gloA, eno, eda, sdaA, sdaB, and tdcG genes for 1,2-PDO production from glucose and introducing the Weimberg pathway for cell growth using xylose. Enhanced 1,2-PDO production was achieved via yagF overexpression and disruption of the ghrA gene involved in the 1,2-PDO-competing pathway. The resultant strain, PD72, produced 2.48 ± 0.15 g L-1 1,2-PDO with a 0.27 ± 0.02 g g-1-glucose yield after 72 h cultivation. Overall, this study demonstrates aerobic 1,2-PDO synthesis through the isolation of the 1,2-PDO synthetic pathway from the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Daisuke Nonaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Yuuki Hirata
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Mayumi Kishida
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Ayana Mori
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Ryosuke Fujiwara
- Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan
| | - Akihiko Kondo
- Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Yutaro Mori
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Shuhei Noda
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| |
Collapse
|
9
|
Wang X, Zhao C, Lu X, Zong H, Zhuge B. Development of a co-culture system for green production of caffeic acid from sugarcane bagasse hydrolysate. Front Microbiol 2024; 15:1379688. [PMID: 38567071 PMCID: PMC10985150 DOI: 10.3389/fmicb.2024.1379688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Caffeic acid (CA) is a phenolic acid compound widely used in pharmaceutical and food applications. However, the efficient synthesis of CA is usually limited by the resources of individual microbial platforms. Here, a cross-kingdom microbial consortium was developed to synthesize CA from sugarcane bagasse hydrolysate using Escherichia coli and Candida glycerinogenes as chassis. In the upstream E. coli module, shikimate accumulation was improved by intensifying the shikimate synthesis pathway and blocking shikimate metabolism to provide precursors for the downstream CA synthesis module. In the downstream C. glycerinogenes module, conversion of p-coumaric acid to CA was improved by increasing the supply of the cytoplasmic cofactor FAD(H2). Further, overexpression of ABC transporter-related genes promoted efflux of CA and enhanced strain resistance to CA, significantly increasing CA titer from 103.8 mg/L to 346.5 mg/L. Subsequently, optimization of the inoculation ratio of strains SA-Ec4 and CA-Cg27 in this cross-kingdom microbial consortium resulted in an increase in CA titer to 871.9 mg/L, which was 151.6% higher compared to the monoculture strain CA-Cg27. Ultimately, 2311.6 and 1943.2 mg/L of CA were obtained by optimization of the co-culture system in a 5 L bioreactor using mixed sugar and sugarcane bagasse hydrolysate, respectively, with 17.2-fold and 14.6-fold enhancement compared to the starting strain. The cross-kingdom microbial consortium developed in this study provides a reference for the production of other aromatic compounds from inexpensive raw materials.
Collapse
Affiliation(s)
- Xihui Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Cui Zhao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xinyao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Peng H, Darlington APS, South EJ, Chen HH, Jiang W, Ledesma-Amaro R. A molecular toolkit of cross-feeding strains for engineering synthetic yeast communities. Nat Microbiol 2024; 9:848-863. [PMID: 38326570 PMCID: PMC10914607 DOI: 10.1038/s41564-023-01596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/18/2023] [Indexed: 02/09/2024]
Abstract
Engineered microbial consortia often have enhanced system performance and robustness compared with single-strain biomanufacturing production platforms. However, few tools are available for generating co-cultures of the model and key industrial host Saccharomyces cerevisiae. Here we engineer auxotrophic and overexpression yeast strains that can be used to create co-cultures through exchange of essential metabolites. Using these strains as modules, we engineered two- and three-member consortia using different cross-feeding architectures. Through a combination of ensemble modelling and experimentation, we explored how cellular (for example, metabolite production strength) and environmental (for example, initial population ratio, population density and extracellular supplementation) factors govern population dynamics in these systems. We tested the use of the toolkit in a division of labour biomanufacturing case study and show that it enables enhanced and tuneable antioxidant resveratrol production. We expect this toolkit to become a useful resource for a variety of applications in synthetic ecology and biomanufacturing.
Collapse
Affiliation(s)
- Huadong Peng
- Department of Bioengineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Alexander P S Darlington
- Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry, UK
| | - Eric J South
- Molecular Biology, Cell Biology and Biochemistry Program, Boston University, Boston, MA, USA
| | - Hao-Hong Chen
- Department of Bioengineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Wei Jiang
- Department of Bioengineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
| |
Collapse
|
11
|
Jiang W, Peng H, He L, Lesma‐Amaro R, Haritos VS. Exploring engineering strategies that enhance de novo production of exotic cyclopropane fatty acids in Saccharomyces cerevisiae. Biotechnol J 2024; 19:e2300694. [PMID: 38403410 PMCID: PMC11475713 DOI: 10.1002/biot.202300694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/27/2024]
Abstract
Cycloalkanes have broad applications as specialty fuels, lubricants, and pharmaceuticals but are not currently available from renewable sources, whereas, production of microbial cycloalkanes such as cyclopropane fatty acids (CFA) has bottlenecks. Here, a systematic investigation was undertaken into the biosynthesis of CFA in Saccharomyces cerevisiae heterologously expressing bacterial CFA synthase. The enzyme catalyzes formation of a 3-membered ring in unsaturated fatty acids. Monounsaturated fatty acids in phospholipids (PL) are the site of CFA synthesis; precursor cis-Δ9 C16 and C18 fatty acids were enhanced through OLE1 and SAM2 overexpression which enhanced CFA in PL. CFA turnover from PL to storage in triacylglycerols (TAG) was achieved by phospholipase PBL2 overexpression and acyl-CoA synthase to increase flux to TAG. Consequently, CFA storage as TAG reached 12 mg g-1 DCW, improved 3-fold over the base strain and >22% of TAG was CFA. Our research improves understanding of cycloalkane biosynthesis in yeast and offers insights into processing of other exotic fatty acids.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Chemical and Biological EngineeringMonash UniversityClaytonVictoriaAustralia
- Imperial College Centre for Synthetic BiologyImperial College LondonLondonUK
- Department of BioengineeringImperial College LondonLondonUK
| | - Huadong Peng
- Imperial College Centre for Synthetic BiologyImperial College LondonLondonUK
- Department of BioengineeringImperial College LondonLondonUK
| | - Lizhong He
- Department of Chemical and Biological EngineeringMonash UniversityClaytonVictoriaAustralia
| | - Rodrigo Lesma‐Amaro
- Imperial College Centre for Synthetic BiologyImperial College LondonLondonUK
- Department of BioengineeringImperial College LondonLondonUK
| | - Victoria S. Haritos
- Department of Chemical and Biological EngineeringMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|