1
|
Bandbe CD, Patil KS, Pathan EK. Tuning fungal promoters for the expression of eukaryotic proteins. World J Microbiol Biotechnol 2024; 40:400. [PMID: 39617818 DOI: 10.1007/s11274-024-04198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024]
Abstract
Fungal systems, yeast as well as filamentous fungi, are effective platforms for producing recombinant eukaryotic proteins because of their efficient secretion, robust development features, and capacity for post-translational modification. However, to achieve optimum protein expression in fungal hosts, a precise regulation of gene expression levels is necessary. Promoters are critical cis-regulatory regions that drive gene expression. Therefore, understanding the structure and function of fungal promoters and the factors that influence their performance is an essential step in developing yeast and filamentous fungal platforms as hosts for the expression and secretion of eukaryotic proteins. However, literature on the characterization of filamentous fungal promoters is non-exhaustive. The present review attempts to provide a comprehensive account of available information and future applications of fungal promoters. The properties of promoters from different classes of fungi are discussed with respect to their general structure, the core and proximal components that constitute the fungal promoters, types of fungal promoters based on their functions etc. Furthermore, the utility of fungal promoters for applications in healthcare, biofuels, agriculture and biotechnology are also discussed. The comprehensive understanding of fungal promoters will help in developing tailored promoters, paving the way for the optimum production of economically important eukaryotic proteins in different host organisms.
Collapse
Affiliation(s)
- Charvi D Bandbe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, Maharashtra, India
| | - Karan S Patil
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, Maharashtra, India
| | - Ejaj K Pathan
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, Maharashtra, India.
| |
Collapse
|
2
|
Roehner N, Roberts J, Lapets A, Gould D, Akavoor V, Qin L, Gordon DB, Voigt C, Densmore D. GOLDBAR: A Framework for Combinatorial Biological Design. ACS Synth Biol 2024; 13:2899-2911. [PMID: 39162314 DOI: 10.1021/acssynbio.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
With the rise of new DNA part libraries and technologies for assembling DNA, synthetic biologists are increasingly constructing and screening combinatorial libraries to optimize their biological designs. As combinatorial libraries are used to generate data on design performance, new rules for composing biological designs will emerge. Most formal frameworks for combinatorial design, however, do not yet support formal comparison of design composition, which is needed to facilitate automated analysis and machine learning in massive biological design spaces. To address this need, we introduce a combinatorial design framework called GOLDBAR. Compared with existing frameworks, GOLDBAR enables synthetic biologists to intersect and merge the rules for entire classes of biological designs to extract common design motifs and infer new ones. Here, we demonstrate the application of GOLDBAR to refine/validate design spaces for TetR-homologue transcriptional logic circuits, verify the assembly of a partial nif gene cluster, and infer novel gene clusters for the biosynthesis of rebeccamycin. We also discuss how GOLDBAR could be used to facilitate grammar-based machine learning in synthetic biology.
Collapse
Affiliation(s)
- Nicholas Roehner
- RTX BBN Technologies, Cambridge, Massachusetts 02138, United States
| | - James Roberts
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | | | - Dany Gould
- Hariri Institute for Computing, Boston University, Boston, Massachusetts 02215, United States
| | - Vidya Akavoor
- Hariri Institute for Computing, Boston University, Boston, Massachusetts 02215, United States
| | - Lucy Qin
- Hariri Institute for Computing, Boston University, Boston, Massachusetts 02215, United States
| | - D Benjamin Gordon
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher Voigt
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Douglas Densmore
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
3
|
Khalifeh Soltani M, Arjmand S, Ranaei Siadat SO, Bagheri A, Marashi SH. Hansenula polymorpha methanol metabolism genes enhance recombinant protein production in Komagataella phaffi. AMB Express 2024; 14:88. [PMID: 39095661 PMCID: PMC11296995 DOI: 10.1186/s13568-024-01743-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Recombinant protein production in Komagataella phaffi (K. phaffi), a widely utilized host organism, can be optimized by enhancing the metabolic flux in the central carbon metabolism pathways. The methanol utilization pathway (MUT) during methanol-based growth plays a crucial role in providing precursors and energy for cell growth and development. This study investigated the impact of boosting the methanol dissimilation pathway, a branch of MUT that plays a vital role in detoxifying formaldehyde and providing energy in the form of NADH, in K. phaffi. This was achieved by integrating two orthologous genes from Hansenula polymorpha into the K. phaffi genome: formaldehyde dehydrogenase (HpFLD) and formate dehydrogenase (HpFMDH). The HpFLD and HpFMDH genes were isolated from the Hansenula polymorpha genome and inserted under the regulation of the pAOX1 promoter in the genome of recombinant K. phaffi that already contained a single copy of model protein genes (eGFP or EGII). The expression levels of these model proteins were assessed through protein activity assays and gene expression analysis. The findings revealed that while both orthologous genes positively influenced model protein production, HpFMDH exhibited a more pronounced upregulation in expression compared to HpFLD. Co-expression of both orthologous genes demonstrated synergistic effects, resulting in approximately a twofold increase in the levels of the model proteins detected. This study provides valuable insights into enhancing the production capacity of recombinant proteins in K. phaffi.
Collapse
Affiliation(s)
- Maryam Khalifeh Soltani
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | | | - Abdolreza Bagheri
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Seyed Hassan Marashi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
4
|
Wei S, Li M, Lang X, Robertson NR, Park SY, Cutler SR, Wheeldon I. Repurposing plant hormone receptors as chemically-inducible genetic switches for dynamic regulation in yeast. Metab Eng 2024; 83:102-109. [PMID: 38554744 DOI: 10.1016/j.ymben.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Precise control of gene expression is critical for optimizing cellular metabolism and improving the production of valuable biochemicals. However, hard-wired approaches to pathway engineering, such as optimizing promoters, can take time and effort. Moreover, limited tools exist for controlling gene regulation in non-conventional hosts. Here, we develop a two-channel chemically-regulated gene expression system for the multi-stress tolerant yeast Kluyveromyces marxianus and use it to tune ethyl acetate production, a native metabolite produced at high titers in this yeast. To achieve this, we repurposed the plant hormone sensing modules (PYR1ABA/HAB1 and PYR1*MANDI/HAB1*) for high dynamic-range gene activation and repression controlled by either abscisic acid (ABA) or mandipropamid (mandi). To redirect metabolic flux towards ethyl acetate biosynthesis, we simultaneously repress pyruvate dehydrogenase (PDA1) and activate pyruvate decarboxylase (PDC1) to enhance ethyl acetate titers. Thus, we have developed new tools for chemically tuning gene expression in K. marxianus and S. cerevisiae that should be deployable across many non-conventional eukaryotic hosts.
Collapse
Affiliation(s)
- Shuang Wei
- Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, USA
| | - Mengwan Li
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA
| | - Xuye Lang
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA
| | - Nicholas R Robertson
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA
| | - Sang-Youl Park
- Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Sean R Cutler
- Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA; Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Ian Wheeldon
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA; Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA; Center for Industrial Biotechnology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
5
|
Yaschenko AE, Alonso JM, Stepanova AN. Arabidopsis as a model for translational research. THE PLANT CELL 2024:koae065. [PMID: 38411602 DOI: 10.1093/plcell/koae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Arabidopsis thaliana is currently the most-studied plant species on earth, with an unprecedented number of genetic, genomic, and molecular resources having been generated in this plant model. In the era of translating foundational discoveries to crops and beyond, we aimed to highlight the utility and challenges of using Arabidopsis as a reference for applied plant biology research, agricultural innovation, biotechnology, and medicine. We hope that this review will inspire the next generation of plant biologists to continue leveraging Arabidopsis as a robust and convenient experimental system to address fundamental and applied questions in biology. We aim to encourage lab and field scientists alike to take advantage of the vast Arabidopsis datasets, annotations, germplasm, constructs, methods, molecular and computational tools in our pursuit to advance understanding of plant biology and help feed the world's growing population. We envision that the power of Arabidopsis-inspired biotechnologies and foundational discoveries will continue to fuel the development of resilient, high-yielding, nutritious plants for the betterment of plant and animal health and greater environmental sustainability.
Collapse
Affiliation(s)
- Anna E Yaschenko
- Department of Plant and Microbial Biology, Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
6
|
Naseri G, Raasch H, Charpentier E, Erhardt M. A versatile regulatory toolkit of arabinose-inducible artificial transcription factors for Enterobacteriaceae. Commun Biol 2023; 6:1005. [PMID: 37789111 PMCID: PMC10547716 DOI: 10.1038/s42003-023-05363-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023] Open
Abstract
The Gram-negative bacteria Salmonella enterica and Escherichia coli are important model organisms, powerful prokaryotic expression platforms for biotechnological applications, and pathogenic strains constitute major public health threats. To facilitate new approaches for research and biotechnological applications, we here develop a set of arabinose-inducible artificial transcription factors (ATFs) using CRISPR/dCas9 and Arabidopsis-derived DNA-binding proteins to control gene expression in E. coli and Salmonella over a wide inducer concentration range. The transcriptional output of the different ATFs, in particular when expressed in Salmonella rewired for arabinose catabolism, varies over a wide spectrum (up to 35-fold gene activation). As a proof-of-concept, we use the developed ATFs to engineer a Salmonella two-input biosensor strain, SALSOR 0.2 (SALmonella biosenSOR 0.2), which detects and quantifies alkaloid drugs through a measurable fluorescent output. Moreover, we use plant-derived ATFs to regulate β-carotene biosynthesis in E. coli, resulting in ~2.1-fold higher β-carotene production compared to expression of the biosynthesis pathway using a strong constitutive promoter.
Collapse
Affiliation(s)
- Gita Naseri
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117, Berlin, Germany.
- Institut für Biologie, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115, Berlin, Germany.
| | - Hannah Raasch
- Institut für Biologie, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115, Berlin, Germany
| | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117, Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115, Berlin, Germany
| | - Marc Erhardt
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117, Berlin, Germany.
- Institut für Biologie, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115, Berlin, Germany.
| |
Collapse
|
7
|
Wang N, Peng H, Yang C, Guo W, Wang M, Li G, Liu D. Metabolic Engineering of Model Microorganisms for the Production of Xanthophyll. Microorganisms 2023; 11:1252. [PMID: 37317226 PMCID: PMC10223009 DOI: 10.3390/microorganisms11051252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 05/06/2023] [Indexed: 06/16/2023] Open
Abstract
Xanthophyll is an oxidated version of carotenoid. It presents significant value to the pharmaceutical, food, and cosmetic industries due to its specific antioxidant activity and variety of colors. Chemical processing and conventional extraction from natural organisms are still the main sources of xanthophyll. However, the current industrial production model can no longer meet the demand for human health care, reducing petrochemical energy consumption and green sustainable development. With the swift development of genetic metabolic engineering, xanthophyll synthesis by the metabolic engineering of model microorganisms shows great application potential. At present, compared to carotenes such as lycopene and β-carotene, xanthophyll has a relatively low production in engineering microorganisms due to its stronger inherent antioxidation, relatively high polarity, and longer metabolic pathway. This review comprehensively summarized the progress in xanthophyll synthesis by the metabolic engineering of model microorganisms, described strategies to improve xanthophyll production in detail, and proposed the current challenges and future efforts needed to build commercialized xanthophyll-producing microorganisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dehu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
8
|
Naseri G. A roadmap to establish a comprehensive platform for sustainable manufacturing of natural products in yeast. Nat Commun 2023; 14:1916. [PMID: 37024483 PMCID: PMC10079933 DOI: 10.1038/s41467-023-37627-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Secondary natural products (NPs) are a rich source for drug discovery. However, the low abundance of NPs makes their extraction from nature inefficient, while chemical synthesis is challenging and unsustainable. Saccharomyces cerevisiae and Pichia pastoris are excellent manufacturing systems for the production of NPs. This Perspective discusses a comprehensive platform for sustainable production of NPs in the two yeasts through system-associated optimization at four levels: genetics, temporal controllers, productivity screening, and scalability. Additionally, it is pointed out critical metabolic building blocks in NP bioengineering can be identified through connecting multilevel data of the optimized system using deep learning.
Collapse
Affiliation(s)
- Gita Naseri
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117, Berlin, Germany.
- Institut für Biologie, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115, Berlin, Germany.
| |
Collapse
|
9
|
Re-engineering of CUP1 promoter and Cup2/Ace1 transactivator to convert Saccharomyces cerevisiae into a whole-cell eukaryotic biosensor capable of detecting 10 nM of bioavailable copper. Biosens Bioelectron 2022; 214:114502. [DOI: 10.1016/j.bios.2022.114502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
|
10
|
Engineering of Synthetic Transcriptional Switches in Yeast. Life (Basel) 2022; 12:life12040557. [PMID: 35455048 PMCID: PMC9030632 DOI: 10.3390/life12040557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 02/04/2023] Open
Abstract
Transcriptional switches can be utilized for many purposes in synthetic biology, including the assembly of complex genetic circuits to achieve sophisticated cellular systems and the construction of biosensors for real-time monitoring of intracellular metabolite concentrations. Although to date such switches have mainly been developed in prokaryotes, those for eukaryotes are increasingly being reported as both rational and random engineering technologies mature. In this review, we describe yeast transcriptional switches with different modes of action and how to alter their properties. We also discuss directed evolution technologies for the rapid and robust construction of yeast transcriptional switches.
Collapse
|
11
|
Sun ML, Shi TQ, Lin L, Ledesma-Amaro R, Ji XJ. Advancing Yarrowia lipolytica as a superior biomanufacturing platform by tuning gene expression using promoter engineering. BIORESOURCE TECHNOLOGY 2022; 347:126717. [PMID: 35031438 DOI: 10.1016/j.biortech.2022.126717] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Yarrowia lipolytica is recognized as an excellent non-conventional yeast in the field of biomanufacturing, where it is used as a host to produce oleochemicals, terpenes, organic acids, polyols and recombinant proteins. Consequently, metabolic engineering of this yeast is becoming increasingly popular to advance it as a superior biomanufacturing platform, of which promoters are the most basic elements for tuning gene expression. Endogenous promoters of Yarrowia lipolytica were reviewed, which are the basis for promoter engineering. The engineering strategies, such as hybrid promoter engineering, intron enhancement promoter engineering, and transcription factor-based inducible promoter engineering are described. Additionally, the applications of Yarrowia lipolytica promoter engineering to rationally reconstruct biosynthetic gene clusters and improve the genome-editing efficiency of the CRISPR-Cas systems were reviewed. Finally, research needs and future directions for promoter engineering are also discussed in this review.
Collapse
Affiliation(s)
- Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210046, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
12
|
Otto M, Liu D, Siewers V. Saccharomyces cerevisiae as a Heterologous Host for Natural Products. Methods Mol Biol 2022; 2489:333-367. [PMID: 35524059 DOI: 10.1007/978-1-0716-2273-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell factories can provide a sustainable supply of natural products with applications as pharmaceuticals, food-additives or biofuels. Besides being an important model organism for eukaryotic systems, Saccharomyces cerevisiae is used as a chassis for the heterologous production of natural products. Its success as a cell factory can be attributed to the vast knowledge accumulated over decades of research, its overall ease of engineering and its robustness. Many methods and toolkits have been developed by the yeast metabolic engineering community with the aim of simplifying and accelerating the engineering process.In this chapter, a range of methodologies are highlighted, which can be used to develop novel natural product cell factories or to improve titer, rate and yields of an existing cell factory with the goal of developing an industrially relevant strain. The addressed topics are applicable for different stages of a cell factory engineering project and include the choice of a natural product platform strain, expression cassette design for heterologous or native genes, basic and advanced genetic engineering strategies, and library screening methods using biosensors. The many engineering methods available and the examples of yeast cell factories underline the importance and future potential of this host for industrial production of natural products.
Collapse
Affiliation(s)
- Maximilian Otto
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Dany Liu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
13
|
A light tunable differentiation system for the creation and control of consortia in yeast. Nat Commun 2021; 12:5829. [PMID: 34611168 PMCID: PMC8492667 DOI: 10.1038/s41467-021-26129-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023] Open
Abstract
Artificial microbial consortia seek to leverage division-of-labour to optimize function and possess immense potential for bioproduction. Co-culturing approaches, the preferred mode of generating a consortium, remain limited in their ability to give rise to stable consortia having finely tuned compositions. Here, we present an artificial differentiation system in budding yeast capable of generating stable microbial consortia with custom functionalities from a single strain at user-defined composition in space and in time based on optogenetically-driven genetic rewiring. Owing to fast, reproducible, and light-tunable dynamics, our system enables dynamic control of consortia composition in continuous cultures for extended periods. We further demonstrate that our system can be extended in a straightforward manner to give rise to consortia with multiple subpopulations. Our artificial differentiation strategy establishes a novel paradigm for the creation of complex microbial consortia that are simple to implement, precisely controllable, and versatile to use.
Collapse
|
14
|
Srivastava R, Sahoo L. Cowpea NAC Transcription Factors Positively Regulate Cellular Stress Response and Balance Energy Metabolism in Yeast via Reprogramming of Biosynthetic Pathways. ACS Synth Biol 2021; 10:2286-2307. [PMID: 34470212 DOI: 10.1021/acssynbio.1c00208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Yeast is a dominant host for recombinant production of heterologous proteins, high-value biochemical compounds, and microbial fermentation. During bioprocess operations, pH fluctuations, organic solvents, drying, starvation, osmotic pressure, and often a combination of these stresses cause growth inhibition or death, markedly limiting its industrial use. Thus, stress-tolerant yeast strains with balanced energy-bioenergetics are highly desirous for sustainable improvement of quality biotechnological production. We isolated two NAC transcription factors (TFs), VuNAC1 and VuNAC2, from a wild cowpea genotype, improving both stress tolerance and growth when expressed in yeast. The GFP-fused proteins were localized to the nucleus. Y2H and reporter assay demonstrated the dimerization and transactivation abilities of the VuNAC proteins having structural folds similar to rice SNAC1. The gel-shift assay indicated that the TFs recognize an "ATGCGTG" motif for DNA-binding shared by several native TFs in yeast. The heterologous expression of VuNAC1/2 in yeast improved growth, biomass, lifespan, fermentation efficiency, and altered cellular composition of biomolecules. The transgenic strains conferred tolerance to multiple stresses such as high salinity, osmotic stress, freezing, and aluminum toxicity. Analysis of the metabolome revealed reprogramming of major pathways synthesizing nucleotides, vitamin B complex, amino acids, antioxidants, flavonoids, and other energy currencies and cofactors. Consequently, the transcriptional tuning of stress signaling and biomolecule metabolism improved the survival of the transgenic strains during starvation and stress recovery. VuNAC1/2-based synthetic gene expression control may contribute to designing robust industrial yeast strains with value-added productivity.
Collapse
Affiliation(s)
- Richa Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Lingaraj Sahoo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
15
|
Naseri G, Prause K, Hamdo HH, Arenz C. Artificial Transcription Factors for Tuneable Gene Expression in Pichia pastoris. Front Bioeng Biotechnol 2021; 9:676900. [PMID: 34434924 PMCID: PMC8381338 DOI: 10.3389/fbioe.2021.676900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
The non-conventional yeast Pichia pastoris (syn. Komagataella phaffii) has become a powerful eukaryotic expression platform for biopharmaceutical and biotechnological applications on both laboratory and industrial scales. Despite the fundamental role that artificial transcription factors (ATFs) play in the orthogonal control of gene expression in synthetic biology, a limited number of ATFs are available for P. pastoris. To establish orthogonal regulators for use in P. pastoris, we characterized ATFs derived from Arabidopsis TFs. The plant-derived ATFs contain the binding domain of TFs from the plant Arabidopsis thaliana, in combination with the activation domains of yeast GAL4 and plant EDLL and a synthetic promoter harboring the cognate cis-regulatory motifs. Chromosomally integrated ATFs and their binding sites (ATF/BSs) resulted in a wide spectrum of inducible transcriptional outputs in P. pastoris, ranging from as low as 1- to as high as ∼63-fold induction with only small growth defects. We demonstrated the application of ATF/BSs by generating P. pastoris cells that produce β-carotene. Notably, the productivity of β-carotene in P. pastoris was ∼4.8-fold higher than that in S. cerevisiae, reaching ∼59% of the β-carotene productivity obtained in a S. cerevisiae strain optimized for the production of the β-carotene precursor, farnesyl diphosphate, by rewiring the endogenous metabolic pathways using plant-derived ATF/BSs. Our data suggest that plant-derived regulators have a high degree of transferability from S. cerevisiae to P. pastoris. The plant-derived ATFs, together with their cognate binding sites, powerfully increase the repertoire of transcriptional regulatory modules for the tuning of protein expression levels required in metabolic engineering or synthetic biology in P. pastoris.
Collapse
Affiliation(s)
- Gita Naseri
- Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Kevin Prause
- Institute of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Housam Haj Hamdo
- Institute of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Christoph Arenz
- Institute of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
16
|
Zhang Y, Ding W, Wang Z, Zhao H, Shi S. Development of Host-Orthogonal Genetic Systems for Synthetic Biology. Adv Biol (Weinh) 2021; 5:e2000252. [PMID: 33729696 DOI: 10.1002/adbi.202000252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/18/2020] [Indexed: 12/17/2022]
Abstract
The construction of a host-orthogonal genetic system can not only minimize the impact of host-specific nuances on fine-tuning of gene expression, but also expand cellular functions such as in vivo continuous evolution of genes based on an error-prone DNA polymerase. It represents an emerging powerful approach for making biology easier to engineer. In this review, the recent advances are described on the design of genetic systems that can be stably inherited in the host cells and are responsible for important biological processes including DNA replication, RNA transcription, protein translation, and gene regulation. Their applications in synthetic biology are summarized and the future challenges and opportunities are discussed in developing such systems.
Collapse
Affiliation(s)
- Yang Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wentao Ding
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology) Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, P. R. China
| | - Zhihui Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
17
|
Naseri G, Mueller-Roeber B. A Step-by-Step Protocol for COMPASS, a Synthetic Biology Tool for Combinatorial Gene Assembly. Methods Mol Biol 2020; 2205:277-303. [PMID: 32809205 DOI: 10.1007/978-1-0716-0908-8_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
For industry-scale production of high-value chemicals in microbial cell factories, the elimination of metabolic flux imbalances is a critical aspect. However, a priori knowledge about the genetic design of optimal production pathways is typically not available. COMPASS, COMbinatorial Pathway ASSembly, is a rapid cloning method for the balanced expression of multiple genes in biochemical pathways. The method generates thousands of individual DNA constructs in modular, parallel, and high-throughput manner. COMPASS employs inducible artificial transcription factors derived from plant (Arabidopsis thaliana) regulators to control the expression of pathway genes in yeast (Saccharomyces cerevisiae). It utilizes homologous recombination for parts assembly and employs a positive selection scheme to identify correctly assembled pathway variants after both in vivo and in vitro recombination. Finally, COMPASS is equipped with a CRISPR/Cas9 genome modification system allowing for the one-step multilocus integration of genes. Although COMPASS was initially developed for pathway engineering, it can equally be employed for balancing gene expression in other synthetic biology projects.
Collapse
Affiliation(s)
- Gita Naseri
- Department of Molecular Biology, University of Potsdam, Potsdam, Germany
| | - Bernd Mueller-Roeber
- Department of Molecular Biology, University of Potsdam, Potsdam, Germany. .,Plant Signalling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany. .,Department of Plant Development, Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria.
| |
Collapse
|
18
|
Naseri G, Koffas MAG. Application of combinatorial optimization strategies in synthetic biology. Nat Commun 2020; 11:2446. [PMID: 32415065 PMCID: PMC7229011 DOI: 10.1038/s41467-020-16175-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
In the first wave of synthetic biology, genetic elements, combined into simple circuits, are used to control individual cellular functions. In the second wave of synthetic biology, the simple circuits, combined into complex circuits, form systems-level functions. However, efforts to construct complex circuits are often impeded by our limited knowledge of the optimal combination of individual circuits. For example, a fundamental question in most metabolic engineering projects is the optimal level of enzymes for maximizing the output. To address this point, combinatorial optimization approaches have been established, allowing automatic optimization without prior knowledge of the best combination of expression levels of individual genes. This review focuses on current combinatorial optimization methods and emerging technologies facilitating their applications.
Collapse
Affiliation(s)
- Gita Naseri
- Institut für Chemie, Humboldt Universität zu Berlin, 12489, Berlin, Germany.
| | - Mattheos A G Koffas
- Center for Biotechnology, Rensselaer Polytechnic Institute, Troy, NY, USA.
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
19
|
|
20
|
Wang F, Zhang R, Han L, Guo W, Du Z, Niu K, Liu Y, Jia C, Fang X. Use of fusion transcription factors to reprogram cellulase transcription and enable efficient cellulase production in Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:244. [PMID: 31636703 PMCID: PMC6792246 DOI: 10.1186/s13068-019-1589-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/09/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Trichoderma reesei is widely used for cellulase production and accepted as an example for cellulase research. Cre1-mediated carbon catabolite repression (CCR) can significantly inhibit the transcription of cellulase genes during cellulase fermentation in T. reesei. Early efforts have been undertaken to modify Cre1 for the release of CCR; however, this approach leads to arrested hyphal growth and decreased biomass accumulation, which negatively affects cellulase production. RESULTS In this study, novel fusion transcription factors (fTFs) were designed to release or attenuate CCR inhibition in cellulase transcription, while Cre1 was left intact to maintain normal hyphal growth. Four designed fTFs were introduced into the T. reesei genome, which generated several transformants, named Kuace3, Kuclr2, Kuace2, and Kuxyr1. No obvious differences in growth were observed between the parent and transformant strains. However, the transcription levels of cel7a, a major cellulase gene, were significantly elevated in all the transformants, particularly in Kuace2 and Kuxyr1, when grown on lactose as a carbon source. This suggested that CCR inhibition was released or attenuated in the transformant strains. The growth of Kuace2 and Kuxyr1 was approximately equivalent to that of the parent strain in fed-batch fermentation process. However, we observed a 3.2- and 2.1-fold increase in the pNPCase titers of the Kuace2 and Kuxyr1 strains, respectively, compared with that of the parent strain. Moreover, we observed a 6.1- and 3.9-fold increase in the pNPCase titers of the Kuace2 and Kuxyr1 strains, respectively, compared with that of Δcre1 strain. CONCLUSIONS A new strategy based on fTFs was successfully established in T. reesei to improve cellulase titers without impairing fungal growth. This study will be valuable for lignocellulosic biorefining and for guiding the development of engineering strategies for producing other important biochemical compounds in fungal species.
Collapse
Affiliation(s)
- Fangzhong Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong China
| | - Ruiqin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Lijuan Han
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Wei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Zhiqiang Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Kangle Niu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Yucui Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Chunjiang Jia
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| |
Collapse
|
21
|
Naseri G, Behrend J, Rieper L, Mueller-Roeber B. COMPASS for rapid combinatorial optimization of biochemical pathways based on artificial transcription factors. Nat Commun 2019; 10:2615. [PMID: 31197154 PMCID: PMC6565718 DOI: 10.1038/s41467-019-10224-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/26/2019] [Indexed: 02/08/2023] Open
Abstract
Balanced expression of multiple genes is central for establishing new biosynthetic pathways or multiprotein cellular complexes. Methods for efficient combinatorial assembly of regulatory sequences (promoters) and protein coding sequences are therefore highly wanted. Here, we report a high-throughput cloning method, called COMPASS for COMbinatorial Pathway ASSembly, for the balanced expression of multiple genes in Saccharomyces cerevisiae. COMPASS employs orthogonal, plant-derived artificial transcription factors (ATFs) and homologous recombination-based cloning for the generation of thousands of individual DNA constructs in parallel. The method relies on a positive selection of correctly assembled pathway variants from both, in vivo and in vitro cloning procedures. To decrease the turnaround time in genomic engineering, COMPASS is equipped with multi-locus CRISPR/Cas9-mediated modification capacity. We demonstrate the application of COMPASS by generating cell libraries producing β-carotene and co-producing β-ionone and biosensor-responsive naringenin. COMPASS will have many applications in synthetic biology projects that require gene expression balancing. Metabolic engineering requires the balancing of gene expression to obtain optimal output. Here the authors present COMPASS – COMbinatorial Pathway ASSembly – which uses plant-derived artificial transcription factors and cloning of thousands of DNA constructs in parallel to rapidly optimise pathways.
Collapse
Affiliation(s)
- Gita Naseri
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.,University of Potsdam, Department Molecular Biology, Karl-Liebknecht-Str. 24-25, House 20, 14476, Potsdam, Germany
| | - Jessica Behrend
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Lisa Rieper
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Bernd Mueller-Roeber
- University of Potsdam, Department Molecular Biology, Karl-Liebknecht-Str. 24-25, House 20, 14476, Potsdam, Germany. .,Max-Planck Institute of Molecular Plant Physiology, Plant Signalling Group, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany. .,Center of Plant Systems Biology and Biotechnology (CPSBB), Department Plant Development, Ruski Blvd. 139, 4000, Plovdiv, Bulgaria.
| |
Collapse
|
22
|
Gene expression engineering in fungi. Curr Opin Biotechnol 2019; 59:141-149. [PMID: 31154079 DOI: 10.1016/j.copbio.2019.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/27/2019] [Accepted: 04/24/2019] [Indexed: 02/03/2023]
Abstract
Fungi are a highly diverse group of microbial species that possess a plethora of biotechnologically useful metabolic and physiological properties. Important enablers for fungal biology studies and their biotechnological use are well-performing gene expression tools. Different types of gene expression tools exist; however, typically they are at best only functional in one or a few closely related species. This has hampered research and development of industrially relevant production systems. Here, we review operational principles and concepts of fungal gene expression tools. We present an overview on tools that utilize endogenous fungal promoters and modified hybrid expression systems composed of engineered promoters and transcription factors. Finally, we review synthetic expression tools that are functional across a broad range of fungal species.
Collapse
|
23
|
Zhang Y, Ji A, Xu Z, Luo H, Song J. The AP2/ERF transcription factor SmERF128 positively regulates diterpenoid biosynthesis in Salvia miltiorrhiza. PLANT MOLECULAR BIOLOGY 2019; 100:83-93. [PMID: 30847712 DOI: 10.1007/s11103-019-00845-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 02/18/2019] [Indexed: 05/02/2023]
Abstract
The novel AP2/ERF transcription factor SmERF128 positively regulates diterpenoid tanshinone biosynthesis by activating the expression of SmCPS1, SmKSL1, and SmCYP76AH1 in Salvia miltiorrhiza. Certain members of the APETALA2/ethylene-responsive factor (AP2/ERF) family regulate plant secondary metabolism. Although it is clearly documented that AP2/ERF transcription factors (TFs) are involved in sesquiterpenoid biosynthesis, the regulation of diterpenoid biosynthesis by AP2/ERF TFs remains elusive. Here, we report that the novel AP2/ERF TF SmERF128 positively regulates diterpenoid tanshinone biosynthesis in Salvia miltiorrhiza. Overexpression of SmERF128 increased the expression levels of copalyl diphosphate synthase 1 (SmCPS1), kaurene synthase-like 1 (SmKSL1) and cytochrome P450 monooxygenase 76AH1 (SmCYP76AH1), whereas their expression levels were decreased when SmERF128 was silenced. Accordingly, the content of tanshinone was reduced in SmERF128 RNA interference (RNAi) hairy roots and dramatically increased in SmERF128 overexpression hairy roots, as demonstrated through Ultra Performance Liquid Chromatography (UPLC) and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) analysis. Furthermore, SmERF128 activated the expression of SmCPS1, SmKSL1, and SmCYP76AH1 by binding to the GCC box, and to the CRTDREHVCBF2 (CBF2) and RAV1AAT (RAA) motifs within their promoters during in vivo and in vitro assays. Our findings not only reveal the molecular basis of how the AP2/ERF transcription factor SmERF128 regulates diterpenoid biosynthesis, but also provide useful information for improving tanshinone production through genetic engineering.
Collapse
Affiliation(s)
- Yu Zhang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- College of Chinese Materia Medica, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Aijia Ji
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhichao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Hongmei Luo
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, 666100, China.
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China.
| |
Collapse
|
24
|
Boonekamp FJ, Dashko S, van den Broek M, Gehrmann T, Daran JM, Daran-Lapujade P. The Genetic Makeup and Expression of the Glycolytic and Fermentative Pathways Are Highly Conserved Within the Saccharomyces Genus. Front Genet 2018; 9:504. [PMID: 30505317 PMCID: PMC6250768 DOI: 10.3389/fgene.2018.00504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/08/2018] [Indexed: 12/05/2022] Open
Abstract
The ability of the yeast Saccharomyces cerevisiae to convert glucose, even in the presence of oxygen, via glycolysis and the fermentative pathway to ethanol has played an important role in its domestication. Despite the extensive knowledge on these pathways in S. cerevisiae, relatively little is known about their genetic makeup in other industrially relevant Saccharomyces yeast species. In this study we explore the diversity of the glycolytic and fermentative pathways within the Saccharomyces genus using S. cerevisiae, Saccharomyces kudriavzevii, and Saccharomyces eubayanus as paradigms. Sequencing data revealed a highly conserved genetic makeup of the glycolytic and fermentative pathways in the three species in terms of number of paralogous genes. Although promoter regions were less conserved between the three species as compared to coding sequences, binding sites for Rap1, Gcr1 and Abf1, main transcriptional regulators of glycolytic and fermentative genes, were highly conserved. Transcriptome profiling of these three strains grown in aerobic batch cultivation in chemically defined medium with glucose as carbon source, revealed a remarkably similar expression of the glycolytic and fermentative genes across species, and the conserved classification of genes into major and minor paralogs. Furthermore, transplantation of the promoters of major paralogs of S. kudriavzevii and S. eubayanus into S. cerevisiae demonstrated not only the transferability of these promoters, but also the similarity of their strength and response to various environmental stimuli. The relatively low homology of S. kudriavzevii and S. eubayanus promoters to their S. cerevisiae relatives makes them very attractive alternatives for strain construction in S. cerevisiae, thereby expanding the S. cerevisiae molecular toolbox.
Collapse
Affiliation(s)
| | - Sofia Dashko
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | | | | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | |
Collapse
|
25
|
Lian J, Mishra S, Zhao H. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications. Metab Eng 2018; 50:85-108. [DOI: 10.1016/j.ymben.2018.04.011] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
|
26
|
Martins-Santana L, Nora LC, Sanches-Medeiros A, Lovate GL, Cassiano MHA, Silva-Rocha R. Systems and Synthetic Biology Approaches to Engineer Fungi for Fine Chemical Production. Front Bioeng Biotechnol 2018; 6:117. [PMID: 30338257 PMCID: PMC6178918 DOI: 10.3389/fbioe.2018.00117] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/02/2018] [Indexed: 01/16/2023] Open
Abstract
Since the advent of systems and synthetic biology, many studies have sought to harness microbes as cell factories through genetic and metabolic engineering approaches. Yeast and filamentous fungi have been successfully harnessed to produce fine and high value-added chemical products. In this review, we present some of the most promising advances from recent years in the use of fungi for this purpose, focusing on the manipulation of fungal strains using systems and synthetic biology tools to improve metabolic flow and the flow of secondary metabolites by pathway redesign. We also review the roles of bioinformatics analysis and predictions in synthetic circuits, highlighting in silico systemic approaches to improve the efficiency of synthetic modules.
Collapse
Affiliation(s)
- Leonardo Martins-Santana
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Luisa C Nora
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Ananda Sanches-Medeiros
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Gabriel L Lovate
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Murilo H A Cassiano
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Rafael Silva-Rocha
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| |
Collapse
|
27
|
Vogl T, Sturmberger L, Fauland PC, Hyden P, Fischer JE, Schmid C, Thallinger GG, Geier M, Glieder A. Methanol independent induction in
Pichia pastoris
by simple derepressed overexpression of single transcription factors. Biotechnol Bioeng 2018; 115:1037-1050. [DOI: 10.1002/bit.26529] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/29/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Thomas Vogl
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| | | | - Pia C. Fauland
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| | - Patrick Hyden
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| | - Jasmin E. Fischer
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| | - Christian Schmid
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| | - Gerhard G. Thallinger
- Institute of Computational BiotechnologyGraz University of TechnologyGrazAustria
- OMICS Center GrazBioTechMed GrazGrazAustria
| | - Martina Geier
- Austrian Centre of Industrial Biotechnology (ACIB GmbH)GrazAustria
| | - Anton Glieder
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| |
Collapse
|
28
|
Kotopka BJ, Li Y, Smolke CD. Synthetic biology strategies toward heterologous phytochemical production. Nat Prod Rep 2018; 35:902-920. [DOI: 10.1039/c8np00028j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This review summarizes the recent progress in heterologous phytochemical biosynthetic pathway reconstitution in plant, bacteria, and yeast, with a focus on the synthetic biology strategies applied in these engineering efforts.
Collapse
Affiliation(s)
| | - Yanran Li
- Department of Chemical and Environmental Engineering
- Riverside
- USA
| | - Christina D. Smolke
- Department of Bioengineering
- Stanford University
- Stanford
- USA
- Chan Zuckerberg Biohub
| |
Collapse
|
29
|
Besada-Lombana PB, McTaggart TL, Da Silva NA. Molecular tools for pathway engineering in Saccharomyces cerevisiae. Curr Opin Biotechnol 2017; 53:39-49. [PMID: 29274630 DOI: 10.1016/j.copbio.2017.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/26/2022]
Abstract
Molecular tools for the regulation of protein expression in Saccharomyces cerevisiae have contributed to rapid advances in pathway engineering for this yeast. This review considers new and enhanced additions to this toolbox, focusing on experimental approaches to modulate enzyme synthesis and enzyme fate. Methods for genome engineering, regulation of transcription, post-translational protein localization, and combinatorial screening and sensing in S. cerevisiae are highlighted, and promising new approaches are introduced.
Collapse
Affiliation(s)
- Pamela B Besada-Lombana
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA
| | - Tami L McTaggart
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA
| | - Nancy A Da Silva
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA.
| |
Collapse
|
30
|
Machens F, Balazadeh S, Mueller-Roeber B, Messerschmidt K. Synthetic Promoters and Transcription Factors for Heterologous Protein Expression in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2017; 5:63. [PMID: 29098147 PMCID: PMC5653697 DOI: 10.3389/fbioe.2017.00063] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/29/2017] [Indexed: 12/19/2022] Open
Abstract
Orthogonal systems for heterologous protein expression as well as for the engineering of synthetic gene regulatory circuits in hosts like Saccharomyces cerevisiae depend on synthetic transcription factors (synTFs) and corresponding cis-regulatory binding sites. We have constructed and characterized a set of synTFs based on either transcription activator-like effectors or CRISPR/Cas9, and corresponding small synthetic promoters (synPs) with minimal sequence identity to the host’s endogenous promoters. The resulting collection of functional synTF/synP pairs confers very low background expression under uninduced conditions, while expression output upon induction of the various synTFs covers a wide range and reaches induction factors of up to 400. The broad spectrum of expression strengths that is achieved will be useful for various experimental setups, e.g., the transcriptional balancing of expression levels within heterologous pathways or the construction of artificial regulatory networks. Furthermore, our analyses reveal simple rules that enable the tuning of synTF expression output, thereby allowing easy modification of a given synTF/synP pair. This will make it easier for researchers to construct tailored transcriptional control systems.
Collapse
Affiliation(s)
- Fabian Machens
- University of Potsdam, Cell2Fab Research Unit, Potsdam, Germany
| | - Salma Balazadeh
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Department Molecular Biology, University of Potsdam, Potsdam, Germany
| | - Bernd Mueller-Roeber
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Department Molecular Biology, University of Potsdam, Potsdam, Germany
| | | |
Collapse
|