1
|
Pal P, Pramanik K, Ghosh SK, Mondal S, Mondal T, Soren T, Maiti TK. Molecular and eco-physiological responses of soil-borne lead (Pb 2+)-resistant bacteria for bioremediation and plant growth promotion under lead stress. Microbiol Res 2024; 287:127831. [PMID: 39079267 DOI: 10.1016/j.micres.2024.127831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024]
Abstract
Lead (Pb) is the 2nd known portentous hazardous substance after arsenic (As). Being highly noxious, widespread, non-biodegradable, prolonged environmental presence, and increasing accumulation, particularly in arable land, Pb pollution has become a serious global health concern requiring urgent remediation. Soil-borne, indigenous microbes from Pb-polluted sites have evolved diverse resistance strategies, involving biosorption, bioprecipitation, biomineralization, biotransformation, and efflux mechanisms, under continuous exposure to Pb in human-impacted surroundings. These strategies employ a wide range of functional bioligands to capture Pb and render it inaccessible for leaching. Recent breakthroughs in molecular technology and understanding of lead resistance mechanisms offer the potential for utilizing microbes as biological tools in environmental risk assessment. Leveraging the specific affinity and sensitivity of bacterial regulators to Pb2+ ions, numerous lead biosensors have been designed and deployed worldwide to monitor Pb bioavailability in contaminated sites, even at trace levels. Besides, the ongoing degradation of croplands due to Pb pollution poses a significant challenge to meet the escalating global food demands. The accumulation of Pb in plant tissues jeopardizes both food safety and security while severely impacting plant growth. Exploring Pb-resistant plant growth-promoting rhizobacteria (PGPR) presents a promising sustainable approach to agricultural practices. The active associations of PGPR with host plants have shown enhancements in plant biomass and stress alleviation under Pb influence. They thus serve a dual purpose for plants grown in Pb-contaminated areas. This review aims to offer a comprehensive understanding of the role played by Pb-resistant soil-borne indigenous bacteria in expediting bioremediation and improving the growth of Pb-challenged plants essential for potential field application, thus broadening prospects for future research and development.
Collapse
Affiliation(s)
- Priyanka Pal
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Krishnendu Pramanik
- Department of Botany, Cooch Behar Panchanan Barma University, Panchanan Nagar, Vivekananda Street, Cooch Behar, West Bengal 736101, India
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Sayanta Mondal
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Tanushree Mondal
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Tithi Soren
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Tushar Kanti Maiti
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India.
| |
Collapse
|
2
|
Acharya K, Shaw S, Bhattacharya SP, Biswas S, Bhandary S, Bhattacharya A. Pigments from pathogenic bacteria: a comprehensive update on recent advances. World J Microbiol Biotechnol 2024; 40:270. [PMID: 39030429 DOI: 10.1007/s11274-024-04076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Bacterial pigments stand out as exceptional natural bioactive compounds with versatile functionalities. The pigments represent molecules from distinct chemical categories including terpenes, terpenoids, carotenoids, pyridine, pyrrole, indole, and phenazines, which are synthesized by diverse groups of bacteria. Their spectrum of physiological activities encompasses bioactive potentials that often confer fitness advantages to facilitate the survival of bacteria amid challenging environmental conditions. A large proportion of such pigments are produced by bacterial pathogens mostly as secondary metabolites. Their multifaceted properties augment potential applications in biomedical, food, pharmaceutical, textile, paint industries, bioremediation, and in biosensor development. Apart from possessing a less detrimental impact on health with environmentally beneficial attributes, tractable and scalable production strategies render bacterial pigments a sustainable option for novel biotechnological exploration for untapped discoveries. The review offers a comprehensive account of physiological role of pigments from bacterial pathogens, production strategies, and potential applications in various biomedical and biotechnological fields. Alongside, the prospect of combining bacterial pigment research with cutting-edge approaches like nanotechnology has been discussed to highlight future endeavours.
Collapse
Affiliation(s)
- Kusumita Acharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Swarna Shaw
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | | | - Shatarupa Biswas
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Suman Bhandary
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| | - Arijit Bhattacharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| |
Collapse
|
3
|
Guo M, Chen S, Su H, Chen X, Liu H, Sun B. High-throughput visualization mutation screening technology to enhance the specificity of CadR based whole-cell cadmium biosensor. Biosens Bioelectron 2024; 256:116266. [PMID: 38636122 DOI: 10.1016/j.bios.2024.116266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024]
Abstract
As a heavy metal pollutant, Cd2+ often enters the human body through the food chain causing great harm to human health. Whole-cell biosensor is an emerging technology for rapid on-site detection of heavy metals with the advantages of inexpensive, fast to mass-produce, and strong in anti-interference resistance, but suffering from insatisfactory specificity. In this study, a strategy of Adjacent Site Saturation Mutation (ASSM) was designed to improve the specificity of transcription factor CadR, which acted as the recognition element and determined the specificity of whole cell Cd2+ biosensors. A specific saturated library was constructed using the strategy of adjacent mutation. After two rounds of high-throughput visual screening, a whole-cell biosensor with good response to Cd2+, and with significant weakened Hg2+ interference was obtained. The optimized whole-cell biosensor showed a linear dynamic concentration range from 500 nM to 100 μM, a detection limit of 0.079 μM, and has satisfactory specificity and anti-interference. The ASSM strategy proposed in this study can provide a new method for the application of synthetic biology in food safety detection, indicating the importance of whole-cell biosensors for the detection of heavy metals.
Collapse
Affiliation(s)
- Mingzhang Guo
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China.
| | - Shijing Chen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Hongfei Su
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Xiaolin Chen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| |
Collapse
|
4
|
Li M, Lv S, Yang R, Chu X, Wang X, Wang Z, Peng L, Yang J. Development of lycopene-based whole-cell biosensors for the visual detection of trace explosives and heavy metals. Anal Chim Acta 2023; 1283:341934. [PMID: 37977799 DOI: 10.1016/j.aca.2023.341934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/28/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Residual explosives in conflicting zones have caused irreversible damage to human safety and the environment. Whole-cell biosensors can to detect remnants of buried explosives, such as 2,4-dinitrotoluene (DNT), a stable and highly volatile compound in explosives. However, all the reported whole-cell biosensors utilize fluorescence or luminescence as the biological markers, making their detection difficult in real minefields. Here, we presented a lycopene-based whole-cell biosensor in Escherichia coli to output visible signals in response to DNT, which can help in the visual detection of buried explosives. To construct the whole-cell biosensor, the DNT-responsive promoter yqjF was used as the sensing element, and the lycopene synthetic gene cassette crtEBI was served as the reporting element. Then, the metabolic flux for lycopene production was enhanced to improve the output signal of the whole-cell biosensor, and a terminator was utilized to reduce the background interference. The optimized biosensor LSZ05 could perceive at least 1 mg/L DNT. The DNT-specificity and robust performance of the biosensor under different environmental factors were confirmed. Our results showed that converting the biosensor into a lyophilized powder was an effective storage method. The biosensor LSZ05 could effectively detect DNT in two kinds of soil samples. The lycopene-based whole-cell biosensor could also be used to visually detect heavy metals. Our findings laid the foundation for visually detecting buried explosives in minefields, which was a valuable supplement to the reported biosensors. The methods used for optimizing the lycopene-based whole-cell biosensor, including the improvement of the output signal and reduction of background interference, were quite effective.
Collapse
Affiliation(s)
- Meijie Li
- Energy-rich Compound Production By Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, PR China.
| | - Shuzhe Lv
- Energy-rich Compound Production By Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, PR China.
| | - Rumeng Yang
- Energy-rich Compound Production By Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, PR China.
| | - Xiaohan Chu
- Energy-rich Compound Production By Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, PR China.
| | - Xu Wang
- Energy-rich Compound Production By Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, PR China.
| | - Ziyu Wang
- Energy-rich Compound Production By Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, PR China.
| | - Limin Peng
- Shandong TV University, Jinan, 250014, PR China.
| | - Jianming Yang
- Energy-rich Compound Production By Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, PR China.
| |
Collapse
|
5
|
Mir TUG, Wani AK, Akhtar N, Katoch V, Shukla S, Kadam US, Hong JC. Advancing biological investigations using portable sensors for detection of sensitive samples. Heliyon 2023; 9:e22679. [PMID: 38089995 PMCID: PMC10711145 DOI: 10.1016/j.heliyon.2023.e22679] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/29/2023] [Accepted: 11/16/2023] [Indexed: 01/14/2024] Open
Abstract
Portable biosensors are emerged as powerful diagnostic tools for analyzing intricately complex biological samples. These biosensors offer sensitive detection capabilities by utilizing biomolecules such as proteins, nucleic acids, microbes or microbial products, antibodies, and enzymes. Their speed, accuracy, stability, specificity, and low cost make them indispensable in forensic investigations and criminal cases. Notably, portable biosensors have been developed to rapidly detect toxins, poisons, body fluids, and explosives; they have proven invaluable in forensic examinations of suspected samples, generating efficient results that enable effective and fair trials. One of the key advantages of portable biosensors is their ability to provide sensitive and non-destructive detection of forensic samples without requiring extensive sample preparation, thereby reducing the possibility of false results. This comprehensive review provides an overview of the current advancements in portable biosensors for the detection of sensitive materials, highlighting their significance in advancing investigations and enhancing sensitive sample detection capabilities.
Collapse
Affiliation(s)
- Tahir ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- State Forensic Science Laboratory, Srinagar, Jammu and Kashmir, 190001, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vaidehi Katoch
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Saurabh Shukla
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ulhas Sopanrao Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
6
|
Chen Z, Jin W, Hoover A, Chao Y, Ma Y. Decoding the microbiome: advances in genetic manipulation for gut bacteria. Trends Microbiol 2023; 31:1143-1161. [PMID: 37394299 DOI: 10.1016/j.tim.2023.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023]
Abstract
Studies of the gut microbiota have revealed associations between specific bacterial species or community compositions with health and disease, yet the causal mechanisms underlying microbiota gene-host interactions remain poorly understood. This is partly due to limited genetic manipulation (GM) tools for gut bacteria. Here, we review current advances and challenges in the development of GM approaches, including clustered regularly interspaced short palindromic repeats (CRISPR)-Cas and transposase-based systems in either model or non-model gut bacteria. By overcoming barriers to 'taming' the gut microbiome, GM tools allow molecular understanding of host-microbiome associations and accelerate microbiome engineering for clinical treatment of cancer and metabolic disorders. Finally, we provide perspectives on the future development of GM for gut microbiome species, where more effort should be placed on assembling a generalized GM pipeline to accelerate the application of groundbreaking GM tools in non-model gut bacteria towards both basic understanding and clinical translation.
Collapse
Affiliation(s)
- Ziying Chen
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China; The Center for Microbes, Development and Health (CMDH), CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenbing Jin
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Alex Hoover
- Ben May Department for Cancer Research, the University of Chicago, Chicago, IL, USA
| | - Yanjie Chao
- The Center for Microbes, Development and Health (CMDH), CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| |
Collapse
|
7
|
Zhu DL, Guo Y, Ma BC, Lin YQ, Wang HJ, Gao CX, Liu MQ, Zhang NX, Luo H, Hui CY. Pb(II)-inducible proviolacein biosynthesis enables a dual-color biosensor toward environmental lead. Front Microbiol 2023; 14:1218933. [PMID: 37577420 PMCID: PMC10413148 DOI: 10.3389/fmicb.2023.1218933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
With the rapid development of synthetic biology, various whole-cell biosensors have been designed as valuable biological devices for the selective and sensitive detection of toxic heavy metals in environmental water. However, most proposed biosensors are based on fluorescent and bioluminescent signals invisible to the naked eye. The development of visible pigment-based biosensors can address this issue. The pbr operon from Klebsiella pneumoniae is selectively induced by bioavailable Pb(II). In the present study, the proviolacein biosynthetic gene cluster was transcriptionally fused to the pbr Pb(II) responsive element and introduced into Escherichia coli. The resultant biosensor responded to Pb(II) in a time- and dose-dependent manner. After a 5-h incubation with Pb(II), the brown pigment was produced, which could be extracted into n-butanol. Extra hydrogen peroxide treatment during n-butanol extract resulted in the generation of a stable green pigment. An increased brown signal was observed upon exposure to lead concentrations above 2.93 nM, and a linear regression was fitted from 2.93 to 3,000 nM. Extra oxidation significantly decreased the difference between parallel groups. The green signal responded to as low as 0.183 nM Pb(II), and a non-linear regression was fitted in a wide concentration range from 0.183 to 3,000 nM. The specific response toward Pb(II) was not interfered with by various metals except for Cd(II) and Hg(II). The PV-based biosensor was validated in monitoring bioaccessible Pb(II) spiked into environmental water. The complex matrices did not influence the regression relationship between spiked Pb(II) and the dual-color signals. Direct reading with the naked eye and colorimetric quantification enable the PV-based biosensor to be a dual-color and low-cost bioindicator for pollutant heavy metal.
Collapse
Affiliation(s)
- De-long Zhu
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yan Guo
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Bing-chan Ma
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong-qin Lin
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Hai-jun Wang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Chao-xian Gao
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Ming-qi Liu
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Nai-xing Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Hao Luo
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Chang-ye Hui
- School of Public Health, Guangdong Medical University, Dongguan, China
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| |
Collapse
|
8
|
Köse S, Ahan RE, Köksaldı İÇ, Olgaç A, Kasapkara ÇS, Şeker UÖŞ. Multiplexed cell-based diagnostic devices for detection of renal biomarkers. Biosens Bioelectron 2023; 223:115035. [PMID: 36571991 DOI: 10.1016/j.bios.2022.115035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
The number of synthetic biology-based solutions employed in the medical industry is growing every year. The whole cell biosensors being one of them, have been proven valuable tools for developing low-cost, portable, personalized medicine alternatives to conventional techniques. Based on this concept, we targeted one of the major health problems in the world, Chronic Kidney Disease (CKD). To do so, we developed two novel biosensors for the detection of two important renal biomarkers: urea and uric acid. Using advanced gene expression control strategies, we improved the operational range and the response profiles of each biosensor to meet clinical specifications. We further engineered these systems to enable multiplexed detection as well as an AND-logic gate operating system. Finally, we tested the applicability of these systems and optimized their working dynamics inside complex medium human blood serum. This study could help the efforts to transition from labor-intensive and expensive laboratory techniques to widely available, portable, low-cost diagnostic options.
Collapse
Affiliation(s)
- Sıla Köse
- UNAM-Institute of Materias Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Recep Erdem Ahan
- UNAM-Institute of Materias Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - İlkay Çisil Köksaldı
- UNAM-Institute of Materias Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Asburçe Olgaç
- Dr Sami Ulus Children's Training and Research Hospital, Ankara, Turkey
| | - Çiğdem Seher Kasapkara
- Ankara Yildirim Beyazit University, Department of Internal Medicine, Children's Health and Disease Section, Ankara, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM-Institute of Materias Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
9
|
Hui CY, Hu SY, Li LM, Yun JP, Zhang YF, Yi J, Zhang NX, Guo Y. Metabolic engineering of the carotenoid biosynthetic pathway toward a specific and sensitive inorganic mercury biosensor. RSC Adv 2022; 12:36142-36148. [PMID: 36545109 PMCID: PMC9756418 DOI: 10.1039/d2ra06764a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The toxicity of mercury (Hg) mainly depends on its form. Whole-cell biosensors respond selectively to toxic Hg(ii), efficiently transformed by environmental microbes into methylmercury, a highly toxic form that builds up in aquatic animals. Metabolically engineered Escherichia coli (E. coli) have successfully produced rainbow colorants. By de novo reconstruction of the carotenoid synthetic pathway, the Hg(ii)-responsive production of lycopene and β-carotene enabled programmed E. coli to potentially become an optical biosensor for the qualitative and quantitative detection of ecotoxic Hg(ii). The red color of the lycopene-based biosensor cell pellet was visible upon exposure to 49 nM Hg(ii) and above. The orange β-carotene-based biosensor responded to a simple colorimetric assay as low as 12 nM Hg(ii). A linear response was observed at Hg(ii) concentrations ranging from 12 to 195 nM. Importantly, high specificity and good anti-interference capability suggested that metabolic engineering of the carotenoid biosynthesis was an alternative to developing a visual platform for the rapid analysis of the concentration and toxicity of Hg(ii) in environmentally polluted water.
Collapse
Affiliation(s)
- Chang-ye Hui
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational DiseasesShenzhen 518020China
| | - Shun-yu Hu
- Department of Toxicology, School of Public Health, Southern Medical UniversityGuangzhou 510515China
| | - Li-mei Li
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational DiseasesShenzhen 518020China
| | - Jian-pei Yun
- Physical & Chemical Testing Laboratory, Shenzhen Prevention and Treatment Center for Occupational DiseasesShenzhen 518020China
| | - Yan-fang Zhang
- Physical & Chemical Testing Laboratory, Shenzhen Prevention and Treatment Center for Occupational DiseasesShenzhen 518020China
| | - Juan Yi
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational DiseasesShenzhen 518020China
| | - Nai-xing Zhang
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational DiseasesShenzhen 518020China
| | - Yan Guo
- Department of Toxicology, School of Public Health, Southern Medical UniversityGuangzhou 510515China,National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational DiseasesShenzhen 518020China
| |
Collapse
|
10
|
Piorino F, Styczynski MP. Harnessing Escherichia coli's Native Machinery for Detection of Vitamin C (Ascorbate) Deficiency. ACS Synth Biol 2022; 11:3592-3600. [PMID: 36300901 PMCID: PMC9807260 DOI: 10.1021/acssynbio.2c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vitamin C (l-ascorbate) deficiency is a global public health issue most prevalent in resource-limited regions, creating a need for an inexpensive detection platform. Here, we describe efforts to engineer whole-cell and cell-free ascorbate biosensors. Both sensors used the protein UlaR, which binds to a metabolite of ascorbate and regulates transcription. The whole-cell sensor could detect lower, physiologically relevant concentrations of ascorbate, which we attributed to intact functionality of a phosphotransferase system (PTS) that transports ascorbate across the cell membrane and phosphorylates it to form UlaR's ligand. We used multiple strategies to enhance cell-free PTS functionality (which has received little previous attention), improving the cell-free sensor's performance, but the whole-cell sensor remained more sensitive. These efforts demonstrated an advantage of whole-cell sensors for detection of molecules─like ascorbate─transformed by a PTS, but also proof of principle for cell-free sensors requiring membrane-bound components like the PTS. In addition, the cell-free sensor was functional in plasma, setting the stage for future implementation of ascorbate sensors for clinically relevant biofluids in field-deployable formats.
Collapse
Affiliation(s)
- Fernanda Piorino
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Mark P. Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
11
|
Hui CY, Guo Y, Zhu DL, Li LM, Yi J, Zhang NX. Metabolic engineering of the violacein biosynthetic pathway toward a low-cost, minimal-equipment lead biosensor. Biosens Bioelectron 2022; 214:114531. [PMID: 35810697 DOI: 10.1016/j.bios.2022.114531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023]
Abstract
Metabolic engineered bacteria have been successfully employed to produce various natural colorants, which are expected to be used as the visually recognizable signals to develop mini-equipment biological devices for monitoring toxic heavy metals. The violacein biosynthetic pathway has been reconstructed in Escherichia coli (E. coli). Here the successful production of four violacein derivatives was achieved by integrating metabolic engineering and synthetic biology. Lead binding to the metalloregulator enables whole-cell colorimetric biosensors capable of assessing bioavailable lead. Deoxyviolacein-derived signal showed the most satisfied biosensing properties among prodeoxyviolacein (green), proviolacein (blue), deoxyviolacein (purple), and violacein (navy). The limit of detection (LOD) of pigment-based biosensors was 2.93 nM Pb(II), which is lower than that of graphite furnace atomic absorption spectrometry. Importantly, a good linear dose-response model in a wide dose range (2.93-6000 nM) was obtained in a non-cytotoxic deoxyviolacein-based biosensor, which was significantly better than cytotoxic violacein-based biosensor (2.93-750 nM). Among ten metal ions, only Cd(II) and Hg(II) exerted a slight influence on the response of the deoxyviolacein-based biosensor toward Pb(II). The deoxyviolacein-based biosensor was validated in detecting bioaccessible Pb(II) in environmental samples. Factors such as low cost and minimal-equipment requirement make this biosensor a suitable biological device for monitoring toxic lead in the environment.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China.
| | - Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - De-Long Zhu
- School of Public Health , Guangdong Medical University, Dongguan, 523808, China
| | - Li-Mei Li
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - Juan Yi
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - Nai-Xing Zhang
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China.
| |
Collapse
|
12
|
Fang TT, Zou ZP, Zhou Y, Ye BC. Prebiotics-Controlled Disposable Engineered Bacteria for Intestinal Diseases. ACS Synth Biol 2022; 11:3004-3014. [PMID: 36037444 DOI: 10.1021/acssynbio.2c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
As a new method of diagnosis and treatment for intestinal diseases, intelligent engineered bacteria based on synthetic biology have been developed vigorously in recent years. However, how to deal with the engineered bacteria in vivo after completing the tasks is an urgent problem to be resolved. In this study, we constructed a thiosulfate (a biomarker of inflammatory bowel disease)-responsive engineered bacteria to generate two signals, sfGFP (monitoring) and gain-of-function (translation activation) mutation (ACG to ATG), in the initiation codon of lysisE (recording) via the CRISPR/Cas9-mediated base editing system. Once these two signals were detected, xylose could be added to induce lysis E expression, resulting in the destruction of the edited bacteria and the release of AvCystain simultaneously. Overall, our innovative engineered bacteria can record instant and historical information of the disease, and especially, the edited bacteria can be artificially attenuated and release drug in situ when needed, ultimately serving as a disposable and recyclable candidate for more types of diseases.
Collapse
Affiliation(s)
- Ting-Ting Fang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen-Ping Zou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ying Zhou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| |
Collapse
|
13
|
Zúñiga A, Muñoz-Guamuro G, Boivineau L, Mayonove P, Conejero I, Pageaux GP, Altwegg R, Bonnet J. A rapid and standardized workflow for functional assessment of bacterial biosensors in fecal samples. Front Bioeng Biotechnol 2022; 10:859600. [PMID: 36072290 PMCID: PMC9444133 DOI: 10.3389/fbioe.2022.859600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Gut metabolites are pivotal mediators of host-microbiome interactions and provide an important window on human physiology and disease. However, current methods to monitor gut metabolites rely on heavy and expensive technologies such as liquid chromatography-mass spectrometry (LC-MS). In that context, robust, fast, field-deployable, and cost-effective strategies for monitoring fecal metabolites would support large-scale functional studies and routine monitoring of metabolites biomarkers associated with pathological conditions. Living cells are an attractive option to engineer biosensors due to their ability to detect and process many environmental signals and their self-replicating nature. Here we optimized a workflow for feces processing that supports metabolite detection using bacterial biosensors. We show that simple centrifugation and filtration steps remove host microbes and support reproducible preparation of a physiological-derived media retaining important characteristics of human feces, such as matrix effects and endogenous metabolites. We measure the performance of bacterial biosensors for benzoate, lactate, anhydrotetracycline, and bile acids, and find that they are highly sensitive to fecal matrices. However, encapsulating the bacteria in hydrogel helps reduce this inhibitory effect. Sensitivity to matrix effects is biosensor-dependent but also varies between individuals, highlighting the need for case-by-case optimization for biosensors’ operation in feces. Finally, by detecting endogenous bile acids, we demonstrate that bacterial biosensors could be used for future metabolite monitoring in feces. This work lays the foundation for the optimization and use of bacterial biosensors for fecal metabolites monitoring. In the future, our method could also allow rapid pre-prototyping of engineered bacteria designed to operate in the gut, with applications to in situ diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ana Zúñiga
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
- *Correspondence: Ana Zúñiga, ; Jerome Bonnet,
| | - Geisler Muñoz-Guamuro
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Lucile Boivineau
- Hepatogastroenterology and Bacteriology Service at CHU Montpellier, University of Montpellier, Montpellier, France
| | - Pauline Mayonove
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Ismael Conejero
- Department of Psychiatry, CHU Nimes, University of Montpellier, Montpellier, France
| | - Georges-Philippe Pageaux
- Hepatogastroenterology and Bacteriology Service at CHU Montpellier, University of Montpellier, Montpellier, France
| | - Romain Altwegg
- Hepatogastroenterology and Bacteriology Service at CHU Montpellier, University of Montpellier, Montpellier, France
| | - Jerome Bonnet
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
- *Correspondence: Ana Zúñiga, ; Jerome Bonnet,
| |
Collapse
|
14
|
Liu C, Yu H, Zhang B, Liu S, Liu CG, Li F, Song H. Engineering whole-cell microbial biosensors: Design principles and applications in monitoring and treatment of heavy metals and organic pollutants. Biotechnol Adv 2022; 60:108019. [PMID: 35853551 DOI: 10.1016/j.biotechadv.2022.108019] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 01/18/2023]
Abstract
Biosensors have been widely used as cost-effective, rapid, in situ, and real-time analytical tools for monitoring environments. The development of synthetic biology has enabled emergence of genetically engineered whole-cell microbial biosensors. This review updates the design and optimization principles for a diverse array of whole-cell biosensors based on transcription factors (TF) including activators or repressors derived from heavy metal resistance systems, alkanes, and aromatics metabolic pathways of bacteria. By designing genetic circuits, the whole-cell biosensors could be engineered to intelligently sense heavy metals (Hg2+, Zn2+, Pb2+, Au3+, Cd2+, As3+, Ni2+, Cu2+, and UO22+) or organic compounds (alcohols, alkanes, phenols, and benzenes) through one-component or two-component system-based TFs, transduce signals through genetic amplifiers, and response as various outputs such as cell fluorescence and bioelectricity for monitoring heavy metals and organic pollutants in real conditions, synthetic curli and surface metal-binding peptides for in situ bio-sorption of heavy metals. We further review strategies that have been implemented to optimize the selectivity and correlation between ligand concentration and output signal of the TF-based biosensors, so as to meet requirements of practical applications. The optimization strategies include protein engineering to change specificities, promoter engineering to improve sensitivities, and genetic circuit-based amplification to enhance dynamic ranges via designing transcriptional amplifiers, logic gates, and feedback loops. At last, we outlook future trends in developing novel forms of biosensors.
Collapse
Affiliation(s)
- Changjiang Liu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Huan Yu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Baocai Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shilin Liu
- Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences of Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Li
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hao Song
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
15
|
Bernauw AJ, De Kock V, Bervoets I. In Vivo Screening Method for the Identification and Characterization of Prokaryotic, Metabolite-Responsive Transcription Factors. Methods Mol Biol 2022; 2516:113-141. [PMID: 35922625 DOI: 10.1007/978-1-0716-2413-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In prokaryotes, transcription factors (TFs) are of uttermost importance for the regulation of gene expression. However, the majority of TFs are not characterized today, which hampers both the understanding of fundamental processes and the development of TF-based applications, such as biosensors, used in metabolic engineering, synthetic biology, diagnostics, etc. One way of analyzing TFs is through in vivo screening, enabling the study of TF-promoter interactions, ligand inducibility, and ligand specificity in a high-throughput fashion. Here, an approach is described for the selection and cloning of TF-promoter pairs, the development of a reporter system, and the measurement and analysis of fluorescent reporter assays. Furthermore, the importance of a suitable inducible plasmid system is illustrated together with prospective adaptations to modify a reporter system's output signal. The given approach can be used for the investigation of native, heterologous, or even artificially created TFs in Escherichia coli, and can be extended toward use in other microorganisms.
Collapse
Affiliation(s)
- Amber Joka Bernauw
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Veerke De Kock
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
16
|
Kannappan S, Ramisetty BCM. Engineered Whole-Cell-Based Biosensors: Sensing Environmental Heavy Metal Pollutants in Water-a Review. Appl Biochem Biotechnol 2021; 194:1814-1840. [PMID: 34783990 DOI: 10.1007/s12010-021-03734-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/21/2021] [Indexed: 11/27/2022]
Abstract
The frequent exposure and accumulation of heavy metals in organisms cause serious health issues affecting a range of organs such as the brain, liver, and reproductive organs in adults, infants, and children. Several parts of the world have high levels of heavy metals affecting millions of people, costing millions of dollars for improving the potability of water and medical treatment of the affected. Hence, water quality assessment is required to monitor the degree of heavy metal contamination in potable water. In nature, organisms respond to various environmental pollutants such as heavy metals, allowing their survival in a diverse environmental niche. With the advent of recombinant DNA technology, it is now possible to manipulate these natural bioreporters into controlled systems which either turn on or off gene expression or activity of enzymes in the presence of specific heavy metals (compound-specific biosensors) otherwise termed as whole-cell biosensors (WCBs). WCBs provide an upper hand compared to other immunosensors, enzyme-based sensors, and DNA-based sensors since microbes can be relatively easily manipulated, scaled up with relative ease, and can detect only the bioavailable heavy metals. In this review, we summarize the current knowledge of the various mechanisms of toxicity elicited by various heavy metals, thence emphasizing the need to develop heavy metal sensing platforms. Following this, the biosensor-based platforms including WCBs for detecting heavy metals developed thus far have been briefly elaborated upon, emphasizing the challenges and solutions associated with WCBs.
Collapse
Affiliation(s)
- Shrute Kannappan
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
- Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | | |
Collapse
|
17
|
McNerney MP, Doiron KE, Ng TL, Chang TZ, Silver PA. Theranostic cells: emerging clinical applications of synthetic biology. Nat Rev Genet 2021; 22:730-746. [PMID: 34234299 PMCID: PMC8261392 DOI: 10.1038/s41576-021-00383-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Synthetic biology seeks to redesign biological systems to perform novel functions in a predictable manner. Recent advances in bacterial and mammalian cell engineering include the development of cells that function in biological samples or within the body as minimally invasive diagnostics or theranostics for the real-time regulation of complex diseased states. Ex vivo and in vivo cell-based biosensors and therapeutics have been developed to target a wide range of diseases including cancer, microbiome dysbiosis and autoimmune and metabolic diseases. While probiotic therapies have advanced to clinical trials, chimeric antigen receptor (CAR) T cell therapies have received regulatory approval, exemplifying the clinical potential of cellular therapies. This Review discusses preclinical and clinical applications of bacterial and mammalian sensing and drug delivery platforms as well as the underlying biological designs that could enable new classes of cell diagnostics and therapeutics. Additionally, we describe challenges that must be overcome for more rapid and safer clinical use of engineered systems.
Collapse
Affiliation(s)
- Monica P McNerney
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Kailyn E Doiron
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Tai L Ng
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Timothy Z Chang
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
18
|
Wan X, Saltepe B, Yu L, Wang B. Programming living sensors for environment, health and biomanufacturing. Microb Biotechnol 2021; 14:2334-2342. [PMID: 33960658 PMCID: PMC8601174 DOI: 10.1111/1751-7915.13820] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 01/10/2023] Open
Abstract
Synthetic biology offers new tools and capabilities of engineering cells with desired functions for example as new biosensing platforms leveraging engineered microbes. In the last two decades, bacterial cells have been programmed to sense and respond to various input cues for versatile purposes including environmental monitoring, disease diagnosis and adaptive biomanufacturing. Despite demonstrated proof-of-concept success in the laboratory, the real-world applications of microbial sensors have been restricted due to certain technical and societal limitations. Yet, most limitations can be addressed by new technological developments in synthetic biology such as circuit design, biocontainment and machine learning. Here, we summarize the latest advances in synthetic biology and discuss how they could accelerate the development, enhance the performance and address the present limitations of microbial sensors to facilitate their use in the field. We view that programmable living sensors are promising sensing platforms to achieve sustainable, affordable and easy-to-use on-site detection in diverse settings.
Collapse
Affiliation(s)
- Xinyi Wan
- Centre for Synthetic and Systems BiologySchool of Biological SciencesUniversity of EdinburghEdinburghEH9 3FFUK
- Hangzhou Innovation CenterZhejiang UniversityHangzhou311200China
| | - Behide Saltepe
- Centre for Synthetic and Systems BiologySchool of Biological SciencesUniversity of EdinburghEdinburghEH9 3FFUK
| | - Luyang Yu
- The Provincial International Science and Technology Cooperation Base for Engineering BiologyInternational CampusZhejiang UniversityHaining314400China
- College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Baojun Wang
- Centre for Synthetic and Systems BiologySchool of Biological SciencesUniversity of EdinburghEdinburghEH9 3FFUK
- Hangzhou Innovation CenterZhejiang UniversityHangzhou311200China
- The Provincial International Science and Technology Cooperation Base for Engineering BiologyInternational CampusZhejiang UniversityHaining314400China
- College of Life SciencesZhejiang UniversityHangzhou310058China
| |
Collapse
|
19
|
Zhang J, Pang Q, Wang Q, Qi Q, Wang Q. Modular tuning engineering and versatile applications of genetically encoded biosensors. Crit Rev Biotechnol 2021; 42:1010-1027. [PMID: 34615431 DOI: 10.1080/07388551.2021.1982858] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Genetically encoded biosensors have a diverse range of detectable signals and potential applications in many fields, including metabolism control and high-throughput screening. Their ability to be used in situ with minimal interference to the bioprocess of interest could revolutionize synthetic biology and microbial cell factories. The performance and functions of these biosensors have been extensively studied and have been rapidly improved. We review here current biosensor tuning strategies and attempt to unravel how to obtain ideal biosensor functions through experimental adjustments. Strategies for expanding the biosensor input signals that increases the number of detectable compounds have also been summarized. Finally, different output signals and their practical requirements for biotechnology and biomedical applications and environmental safety concerns have been analyzed. This in-depth review of the responses and regulation mechanisms of genetically encoded biosensors will assist to improve their design and optimization in various application scenarios.
Collapse
Affiliation(s)
- Jian Zhang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Qingxiao Pang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Qi Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Qingsheng Qi
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China.,CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Qian Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China.,CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| |
Collapse
|
20
|
Hui CY, Guo Y, Li LM, Liu L, Chen YT, Yi J, Zhang NX. Indigoidine biosynthesis triggered by the heavy metal-responsive transcription regulator: a visual whole-cell biosensor. Appl Microbiol Biotechnol 2021; 105:6087-6102. [PMID: 34291315 DOI: 10.1007/s00253-021-11441-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/22/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
During the last few decades, whole-cell biosensors have attracted increasing attention for their enormous potential in monitoring bioavailable heavy metal contaminations in the ecosystem. Visual and measurable output signals by employing natural pigments have been demonstrated to offer another potential choice to indicate the existence of bioavailable heavy metals in recent years. The biosynthesis of the blue pigment indigoidine has been achieved in E. coli following heterologous expression of both BpsA (a single-module non-ribosomal peptide synthetase) and PcpS (a PPTase to activate apo-BpsA). Moreover, we demonstrated herein the development of the indigoidine-based whole-cell biosensors to detect bioavailable Hg(II) and Pb(II) in water samples by employing metal-responsive transcriptional regulator MerR and PbrR as the sensory elements, and the indigoidine biosynthesis gene cluster as a reporter element. The resulting indigoidine-based biosensors presented a good selectivity and high sensitivity to target metal ions. High concentration of target metal exposure could be clearly recognized by the naked eye due to the color change by the secretion of indigoidine, and quantified by measuring the absorbance of the culture supernatants at 600 nm. Dose-response relationships existed between the exposure concentrations of target heavy metals and the production of indigoidine. Although fairly good linear relationships were obtained in a relatively limited concentration range of the concentrations of heavy metal ions, these findings suggest that genetically controlled indigoidine biosynthesis triggered by the MerR family transcriptional regulator can enable a sensitive, visual, and qualitative whole-cell biosensor for bioindicating the presence of bioaccessible heavy metal in environmental water samples. KEY POINTS: • Biosynthesis pathway of indigoidine reconstructed in a high copy number plasmid in E. coli. • Visual and colorimetric detection of Hg(II) and Pb(II) by manipulation of indigoidine biosynthesis through MerR family metalloregulator. •Enhanced detection sensitivity toward Hg(II) and Pb(II) achieved using novel pigment-based whole-cell biosensors.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| | - Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Li-Mei Li
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Lisa Liu
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Yu-Ting Chen
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Juan Yi
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Nai-Xing Zhang
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| |
Collapse
|
21
|
|
22
|
Guo Y, Hui CY, Liu L, Chen MP, Huang HY. Development of a bioavailable Hg(II) sensing system based on MerR-regulated visual pigment biosynthesis. Sci Rep 2021; 11:13516. [PMID: 34188121 PMCID: PMC8242042 DOI: 10.1038/s41598-021-92878-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/14/2021] [Indexed: 12/02/2022] Open
Abstract
Engineered microorganisms have proven to be a highly effective and robust tool to specifically detect heavy metals in the environment. In this study, a highly specific pigment-based whole-cell biosensor has been investigated for the detection of bioavailable Hg(II) based on an artificial heavy metal resistance operon. The basic working principle of biosensors is based on the violacein biosynthesis under the control of mercury resistance (mer) promoter and mercury resistance regulator (MerR). Engineered biosensor cells have been demonstrated to selectively respond to Hg(II), and the specific response was not influenced by interfering metal ions. The response of violacein could be recognized by the naked eye, and the time required for the maximum response of violacein (5 h) was less than that of enhanced green fluorescence protein (eGFP) (8 h) in the single-signal output constructs. The response of violacein was almost unaffected by the eGFP in a double-promoter controlled dual-signals output construct. However, the response strength of eGFP was significantly decreased in this genetic construct. Exponentially growing violacein-based biosensor detected concentrations as low as 0.39 μM Hg(II) in a colorimetric method, and the linear relationship was observed in the concentration range of 0.78-12.5 μM. Non-growing biosensor cells responded to concentrations as low as 0.006 μM Hg(II) in a colorimetric method and in a Hg(II) containing plate sensitive assay, and the linear relationship was demonstrated in a very narrow concentration range. The developed biosensor was finally validated for the detection of spiked bioavailable Hg(II) in environmental water samples.
Collapse
Affiliation(s)
- Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Chang-Ye Hui
- Department of Pathology and Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| | - Lisa Liu
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Min-Peng Chen
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Hong-Ying Huang
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| |
Collapse
|
23
|
Shi K, Cao L, Liu F, Xie S, Wang S, Huang Y, Lei C, Nie Z. Amplified and label-free electrochemical detection of a protease biomarker by integrating proteolysis-triggered transcription. Biosens Bioelectron 2021; 190:113372. [PMID: 34116447 DOI: 10.1016/j.bios.2021.113372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 10/25/2022]
Abstract
Cell-free synthetic biology provides a promising strategy for developing high-performance biosensors by integrating with advanced testing technologies. However, the combination of synthetic biology with electrochemical testing techniques is still underdeveloped. Here, we proposed an electrochemical biosensor for the label-free and ultrasensitive detection of target protease biomarker by coupling a protease-responsive RNA polymerase (PR) for signal amplification. Taking tumor biomarker matrix metalloprotease-2 (MMP-2) as a model protease, we employed PR to transduce each proteolysis reaction mediated by MMP-2 into multiple programmable RNA outputs that can be captured by the DNA probes immobilized on a gold electrode. Moreover, the captured RNAs are designed to contain a guanine-rich sequence that can form G-quadruplex and bind to hemin in the presence of potassium ions. In this scenario, the activity of MMP-2 is converted and amplified into the electrochemical signals of hemin. Under the optimal conditions, this PR-based electrochemical biosensor enabled the sensitive detection of MMP-2 in a wide linear dynamic range from 10 fM to 1.0 nM, with a limit of detection of 7.1 fM. Moreover, the proposed biosensor was further applied in evaluating MMP-2 activities in different cell cultures and human tissue samples, demonstrating its potential in the analysis of protease biomarkers in complex clinical samples.
Collapse
Affiliation(s)
- Kai Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Lei Cao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Fang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Shiyi Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Shuo Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China.
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
24
|
Zhang NX, Guo Y, Li H, Yang XQ, Gao CX, Hui CY. Versatile artificial mer operons in Escherichia coli towards whole cell biosensing and adsorption of mercury. PLoS One 2021; 16:e0252190. [PMID: 34038487 PMCID: PMC8153442 DOI: 10.1371/journal.pone.0252190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/11/2021] [Indexed: 01/17/2023] Open
Abstract
Mercury exists naturally and mainly as a man-made pollutant in the environment, where it exerts adverse effects on local ecosystems and living organisms. It is important to develop an appropriate synthetic biological device that recognizes, detects and removes the bioavailable fraction of environmental mercury. Both single-signal and double-signal output mercury biosensors were assembled using a natural mer operon as a template. Selectivity and sensitivity of whole-cell biosensors based on artificial mer operons were determined. Three whole-cell biosensors were highly stable at very high concentrations of mercuric chloride, and could detect bioavailable Hg(II) in the concentration range of 6.25-200 μM HgCl2. A novel Hg(II) bioadsorption coupled with biosensing artificial mer operon was assembled. This would allow Hg(II)-induced Hg(II) binding protein cell surface display and green fluorescence emission to be achieved simultaneously while retaining the linear relationship between fluorescent signal and Hg(II) exposure concentration. The present study provides an innovative way to simultaneously detect, quantify, and remove bioavailable heavy metal ions using an artificially reconstructed heavy metal resistance operon.
Collapse
Affiliation(s)
- Nai-xing Zhang
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Hui Li
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Xue-Qin Yang
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Chao-xian Gao
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Chang-ye Hui
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| |
Collapse
|
25
|
Barger N, Oren I, Li X, Habib M, Daniel R. A Whole-Cell Bacterial Biosensor for Blood Markers Detection in Urine. ACS Synth Biol 2021; 10:1132-1142. [PMID: 33908255 DOI: 10.1021/acssynbio.0c00640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The early detection of blood in urine (hematuria) can play a crucial role in the treatment of serious diseases (e.g., infections, kidney disease, schistosomiasis, and cancer). Therefore, the development of low-cost portable biosensors for blood detection in urine has become necessary. Here, we designed an ultrasensitive whole-cell bacterial biosensor interfaced with an optoelectronic measurement module for heme detection in urine. Heme is a red blood cells (RBCs) component that is liberated from lysed cells. The bacterial biosensor includes Escherichia coli cells carrying a heme-sensitive synthetic promoter integrated with a luciferase reporter (luxCDABE) from Photorhabdus luminescens. To improve the bacterial biosensor performance, we re-engineered the genetic structure of luxCDABE operon by splitting it into two parts (luxCDE and luxAB). The luxCDE genes were regulated by the heme-sensitive promoter, and the luxAB genes were regulated by either constitutive or inducible promoters. We examined the genetic circuit's performance in synthetic urine diluent supplied with heme and in human urine supplied with lysed blood. Finally, we interfaced the bacterial biosensor with a light detection setup based on a commercial optical measurement single-photon avalanche photodiode (SPAD). The whole-cell biosensor was tested in human urine with lysed blood, demonstrating a low-cost, portable, and easy-to-use hematuria detection with an ON-to-OFF ratio of 6.5-fold for blood levels from 5 × 104 to 5 × 105 RBC per mL of human urine.
Collapse
Affiliation(s)
- Natalia Barger
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Ilan Oren
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Ximing Li
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Mouna Habib
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Ramez Daniel
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
26
|
Genetic circuits combined with machine learning provides fast responding living sensors. Biosens Bioelectron 2021; 178:113028. [DOI: 10.1016/j.bios.2021.113028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 12/24/2022]
|
27
|
Gao R, Li D, Zheng S, Gu H, Deng W. Colorimetric/fluorescent/Raman trimodal sensing of zinc ions with complexation-mediated Au nanorod. Talanta 2021; 225:121975. [PMID: 33592723 DOI: 10.1016/j.talanta.2020.121975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 11/30/2022]
Abstract
Accurate and selective in-field detection of metal ions in complex media has gained wide interests due to the complexed matrices and weak affinity towards sensing surface. Herein, we develop a first trimodal method for sensing of Zn2+ in complex matrices by stimuli-responsive N-[6-piperazinyl-2-pyridinyl]-N-(2-pyridinylmethyl)-2-Pyridinemethanamine dithiocarbamates (DPY) modified gold nanorods (GNRs-DPY). The presence of Zn2+ triggers the aggregation of GNRs-DPY, leading to increment of color and fluorescence intensity of the sensing system, which could be visually discerned with bare eye. Moreover, the intensive electromagnetic enhancement among "hot spots" of GNRs, generated during self-aggregation of the GNRs-DPY caused by Zn2+, lowers the detection limit of SERS assay to 6 × 10-3 pM. It is noteworthy that GNRs-DPY based sensing platform not only enables distinguishing Zn2+ from Cd2+, with simplicity and rapidity, but also demonstrates as trimodal nanoprobe for sensitive and selective quantitative determination of Zn2+ in different matrices. Therefore, the GNRs-DPY provides a new strategy for accurate and credible on-spot determination of Zn2+ in complicated specimens, as well as offering multiple applications in point-of-care monitoring.
Collapse
Affiliation(s)
- Rui Gao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China.
| | - Siqing Zheng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| | - Haixin Gu
- Shanghai Fire Research Institute of MEM, 918 Minjing Road, Shanghai, 200438, PR China
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| |
Collapse
|
28
|
Liu F, Chen R, Song W, Li L, Lei C, Nie Z. Modular Combination of Proteolysis-Responsive Transcription and Spherical Nucleic Acids for Smartphone-Based Colorimetric Detection of Protease Biomarkers. Anal Chem 2021; 93:3517-3525. [DOI: 10.1021/acs.analchem.0c04894] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Ru Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Wenlu Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Liangwen Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
29
|
Boyd MA, Kamat NP. Designing Artificial Cells towards a New Generation of Biosensors. Trends Biotechnol 2020; 39:927-939. [PMID: 33388162 DOI: 10.1016/j.tibtech.2020.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 01/31/2023]
Abstract
The combination of biological and synthetic materials has great potential to generate new types of biosensors. Toward this goal, recent advances in artificial cell development have demonstrated the capacity to detect a variety of analytes and environmental changes by encapsulating genetically encoded sensors within bilayer membranes, expanding the contexts within which biologically based sensing can operate. This chassis not only acts as a container for cell-free sensors, but can also play an active role in artificial cell sensing by serving as an additional gate mediating the transfer of environmental information. Here, we focus on recent progress toward stimuli-responsive artificial cells and discuss strategies for membrane functionalization in order to expand cell-free biosensing capabilities and applications.
Collapse
Affiliation(s)
- Margrethe A Boyd
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Neha P Kamat
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
30
|
Dey S, Baba SA, Bhatt A, Dhyani R, Navani NK. Transcription factor based whole-cell biosensor for specific and sensitive detection of sodium dodecyl sulfate. Biosens Bioelectron 2020; 170:112659. [PMID: 33035895 DOI: 10.1016/j.bios.2020.112659] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 01/06/2023]
Abstract
Extensive use of Sodium Dodecyl Sulfate (SDS) in households, agricultural operations, and industries is leading to its subsequent disposal in waterways. There is an apprehension of the adverse effect of such detergents on various living organisms. Thus, an efficient, specific, and simple detection method to monitor SDS reliably in the environment is needed. We used sdsB1 activator protein and SDS-responsive promoter of sdsA1 gene along with Green Fluorescent Protein (GFP) to construct a novel SDS biosensor in Pseudomonas aeruginosa chassis. The GFP intensity of the biosensor showed a linear relationship (R2 = 0.99) from 0.4 to 62.5 ppm of SDS with a detection limit of 0.1 ppm. This biosensor is highly specific for SDS and has minimal interference from other detergents, metals, and inorganic ions. The biosensor showed a satisfactory and reproducible recovery rate for the detection of SDS in real samples. Overall, this is a low cost, easy-to-use, selective, and reliable biosensor for monitoring SDS in the environment.
Collapse
Affiliation(s)
- Sourik Dey
- Chemical Biology Laboratory, Department of Biotechnology, Indian Institute of Technology, Roorkee, 247667, India
| | - Shahnawaz Ahmad Baba
- Chemical Biology Laboratory, Department of Biotechnology, Indian Institute of Technology, Roorkee, 247667, India
| | - Ankita Bhatt
- Chemical Biology Laboratory, Department of Biotechnology, Indian Institute of Technology, Roorkee, 247667, India
| | - Rajat Dhyani
- Chemical Biology Laboratory, Department of Biotechnology, Indian Institute of Technology, Roorkee, 247667, India
| | - Naveen Kumar Navani
- Chemical Biology Laboratory, Department of Biotechnology, Indian Institute of Technology, Roorkee, 247667, India.
| |
Collapse
|
31
|
McNerney MP, Piorino F, Michel CL, Styczynski MP. Active Analyte Import Improves the Dynamic Range and Sensitivity of a Vitamin B 12 Biosensor. ACS Synth Biol 2020; 9:402-411. [PMID: 31977200 DOI: 10.1021/acssynbio.9b00429] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cell-free systems provide a versatile platform for the development of low-cost, easy-to-use sensors for diverse analytes. However, sensor affinity dictates response sensitivity, and improving binding affinity can be challenging. Here, we describe efforts to address this problem while developing a biosensor for vitamin B12, a critical micronutrient. We first use a B12-responsive transcription factor to enable B12-dependent output in a cell-free reaction, but the resulting sensor responds to B12 far above clinically relevant concentrations. Surprisingly, when expressed in cells, the same sensor mediates a much more sensitive response to B12. The sensitivity difference is partly due to regulated import that accumulates cytoplasmic B12. Overexpression of importers further improves sensitivity, demonstrating an inherent advantage of whole-cell sensors. The resulting cells can respond to B12 in serum, can be lyophilized, and are functional in a minimal-equipment environment, showing the potential utility of whole-cell sensors as sensitive, field-deployable diagnostics.
Collapse
Affiliation(s)
- Monica P. McNerney
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Fernanda Piorino
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Cirstyn L. Michel
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Mark P. Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
32
|
Hicks M, Bachmann TT, Wang B. Synthetic Biology Enables Programmable Cell-Based Biosensors. Chemphyschem 2020; 21:132-144. [PMID: 31585026 PMCID: PMC7004036 DOI: 10.1002/cphc.201900739] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/03/2019] [Indexed: 01/10/2023]
Abstract
Cell-based biosensors offer cheap, portable and simple methods of detecting molecules of interest but have yet to be truly adopted commercially. Issues with their performance and specificity initially slowed the development of cell-based biosensors. With the development of rational approaches to tune response curves, the performance of biosensors has rapidly improved and there are now many biosensors capable of sensing with the required performance. This has stimulated an increased interest in biosensors and their commercial potential. However the reliability, long term stability and biosecurity of these sensors are still barriers to commercial application and public acceptance. Research into overcoming these issues remains active. Here we present the state-of-the-art tools offered by synthetic biology to allow construction of cell-based biosensors with customisable performance to meet the real world requirements in terms of sensitivity and dynamic range and discuss the research progress to overcome the challenges in terms of the sensor stability and biosecurity fears.
Collapse
Affiliation(s)
- Maggie Hicks
- School of Biological SciencesUniversity of EdinburghEdinburghUK
- Centre for Synthetic and Systems BiologyUniversity of EdinburghEdinburghUK
| | - Till T. Bachmann
- Infection MedicineEdinburgh Medical School: Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Baojun Wang
- School of Biological SciencesUniversity of EdinburghEdinburghUK
- Centre for Synthetic and Systems BiologyUniversity of EdinburghEdinburghUK
| |
Collapse
|
33
|
Nuonming P, Khemthong S, Sukchawalit R, Mongkolsuk S. Identification of Zur boxes and determination of their roles in the differential regulation of the Zur regulon in Agrobacterium tumefaciens C58. Appl Microbiol Biotechnol 2020; 104:2109-2123. [PMID: 31927759 DOI: 10.1007/s00253-020-10346-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 11/29/2022]
Abstract
Zinc uptake regulator (Zur) is a transcriptional regulator that represses zinc acquisition genes under high zinc conditions. The aim of this study was to identify and investigate the role of Zur-binding motifs (Zur boxes) in the differential regulation of Zur target genes, including the zinT, znuA, znuCB-zur operon, the troCBA operon, and yciC, in Agrobacterium tumefaciens. DNase I footprinting and gel shift assays were performed, confirming that Zur directly binds to 18-bp inverted repeat motifs found in the promoter of these Zur-regulated genes. Furthermore, promoter-lacZ fusions and mutagenesis of the identified Zur boxes were performed to assess the role of each Zur box. A Zur box found in the zinT promoter was required for zinc-dependent repression by Zur. The intergenic region between the znuA gene and the znuCB-zur operon contains two Zur boxes, named A and C, which immediately precede the genes znuA and znuC, respectively. Zur box A, but not Zur box C, was essential for the repression of the znuA promoter. Both Zur boxes A and C were implicated in the repression of the znuC promoter, in which mutation of either box alone was sufficient for full derepression of the znuC promoter. Three Zur boxes named T, M, and Y were identified in the intergenic region between the troCBA operon and the yciC gene. Zur box Y, which immediately precedes yciC, was shown to be responsible for Zur repression of the yciC promoter. In contrast, two Zur boxes, T and M, were essential for the complete repression of the troCBA operon, and full derepression of the troC promoter was exhibited when both Zur boxes were mutated simultaneously. Sequence analysis of the identified Zur boxes revealed a correlation between deviation from the core recognition sequence of the Zur box and the requirement of two Zur boxes for Zur regulation of distinctive promoters.
Collapse
Affiliation(s)
- Puttamas Nuonming
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand
| | - Sasimaporn Khemthong
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand
| | - Rojana Sukchawalit
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand. .,Applied Biological Sciences, Chulabhorn Graduate Institute, Lak Si, Bangkok, 10210, Thailand. .,Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand.
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand
| |
Collapse
|
34
|
Hui CY, Guo Y, Liu L, Zhang NX, Gao CX, Yang XQ, Yi J. Genetic control of violacein biosynthesis to enable a pigment-based whole-cell lead biosensor. RSC Adv 2020; 10:28106-28113. [PMID: 35519119 PMCID: PMC9055639 DOI: 10.1039/d0ra04815a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Environmental risks continue to grow due to heavy metal contamination caused by anthropogenic activities. Accumulation of harmful quantities of lead poses a threat to aquatic organisms, plants, and human beings. Whole-cell biosensors, which can proliferate independently, can detect the bioavailable fraction to assess the effect of target heavy metal on the environmental ecosystem. In this study, the biosynthesis pathway of violacein was heterogeneously constructed under the control of the T7 lac promoter in E. coli. A dose–response relationship existed between the inducer and the production of violacein. The biosynthesis pathway of violacein was finally engineered under the regulation of Pb(ii)-dependent metalloregulator PbrR to assemble Pb(ii)-inducible whole-cell biosensor. It permitted specific biosensing of Pb(ii) with extraordinary selectivity, and could resist the interferences from various metal ions. Color change by the intracellular accumulation of violacein could be recognized with the naked eye directly with high concentration of lead exposure, and quantified by determining the absorbance at 490 nm after butanol extraction. A good linear range for Pb(ii) concentrations of 0.1875–1.5 μM was obtained. The novel pigment-based whole-cell biosensor could detect concentrations as low as 0.1875 μM Pb(ii) based on in vitro quantification of violacein extracted by butanol, which is significantly lower than reported fluorescent protein-based PbrR-regulated biosensors based on direct measurement of whole cell fluorescence. These results indicate that genetically controlled violacein biosynthesis can enable a sensitive, visual, and qualitative biosensor for monitoring the presence of bioavailable Pb(ii) in lead-contaminated water. Genetically controlled violacein biosynthesis can enable a sensitive, visual, and qualitative biosensor for monitoring the presence of bioavailable lead.![]()
Collapse
Affiliation(s)
- Chang-ye Hui
- Department of Pathology & Toxicology
- Shenzhen Prevention and Treatment Center for Occupational Diseases
- Shenzhen
- China
| | - Yan Guo
- National Key Clinical Specialty of Occupational Diseases
- Shenzhen Prevention and Treatment Center for Occupational Diseases
- Shenzhen
- China
| | - Lisa Liu
- Institute of Translational Medicine
- Shenzhen Second People's Hospital
- Shenzhen
- China
| | - Nai-xing Zhang
- National Key Clinical Specialty of Occupational Diseases
- Shenzhen Prevention and Treatment Center for Occupational Diseases
- Shenzhen
- China
| | - Chao-xian Gao
- Department of Pathology & Toxicology
- Shenzhen Prevention and Treatment Center for Occupational Diseases
- Shenzhen
- China
| | - Xue-qin Yang
- Department of Pathology & Toxicology
- Shenzhen Prevention and Treatment Center for Occupational Diseases
- Shenzhen
- China
| | - Juan Yi
- Department of Pathology & Toxicology
- Shenzhen Prevention and Treatment Center for Occupational Diseases
- Shenzhen
- China
| |
Collapse
|
35
|
McNerney MP, Michel CL, Kishore K, Standeven J, Styczynski MP. Dynamic and tunable metabolite control for robust minimal-equipment assessment of serum zinc. Nat Commun 2019; 10:5514. [PMID: 31797936 PMCID: PMC6892929 DOI: 10.1038/s41467-019-13454-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/08/2019] [Indexed: 01/29/2023] Open
Abstract
Bacterial biosensors can enable programmable, selective chemical production, but difficulties incorporating metabolic pathways into complex sensor circuits have limited their development and applications. Here we overcome these challenges and present the development of fast-responding, tunable sensor cells that produce different pigmented metabolites based on extracellular concentrations of zinc (a critical micronutrient). We create a library of dual-input synthetic promoters that decouple cell growth from zinc-specific metabolite production, enabling visible cell coloration within 4 h. Using additional transcriptional and metabolic control methods, we shift the response thresholds by an order of magnitude to measure clinically relevant zinc concentrations. The resulting sensor cells report zinc concentrations in individual donor serum samples; we demonstrate that they can provide results in a minimal-equipment fashion, serving as the basis for a field-deployable assay for zinc deficiency. The presented advances are likely generalizable to the creation of other types of sensors and diagnostics. Tightly controlling cell output is challenging, which has limited development and applications of bacterial sensors. Here the authors develop tunable, fast-responding sensors to control production of metabolic pigments and use them to assess zinc deficiency in a low-cost, minimal equipment fashion.
Collapse
Affiliation(s)
- Monica P McNerney
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA, 30332, USA
| | - Cirstyn L Michel
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA, 30332, USA
| | - Krishi Kishore
- Lambert High School, 805 Nichols Rd, Suwanee, GA, 30024, USA
| | - Janet Standeven
- Lambert High School, 805 Nichols Rd, Suwanee, GA, 30024, USA
| | - Mark P Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA, 30332, USA.
| |
Collapse
|
36
|
Lopreside A, Wan X, Michelini E, Roda A, Wang B. Comprehensive Profiling of Diverse Genetic Reporters with Application to Whole-Cell and Cell-Free Biosensors. Anal Chem 2019; 91:15284-15292. [PMID: 31690077 PMCID: PMC6899433 DOI: 10.1021/acs.analchem.9b04444] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Whole-cell
and cell-free transcription-translation biosensors have
recently become favorable alternatives to conventional detection methods,
as they are cost-effective, environmental friendly, and easy to use.
Importantly, the biological responses from the biosensors need to
be converted into a physicochemical signal for easy detection, and
a variety of genetic reporters have been employed for this purpose.
Reporter gene selection is vital to a sensor performance and application
success. However, it was largely based on trial and error with very
few systematic side-by-side investigations reported. To address this
bottleneck, here we compared eight reporters from three reporter categories,
i.e., fluorescent (gfpmut3, deGFP, mCherry, mScarlet-I), colorimetric
(lacZ), and bioluminescent (luxCDABE from Aliivibrio fischeri and Photorhabdus
luminescens, NanoLuc) reporters, under the
control of two representative biosensors for mercury- and quorum-sensing
molecules. Both whole-cell and cell-free formats were investigated
to assess key sensing features including limit of detection (LOD),
input and output dynamic ranges, response time, and output visibility.
For both whole-cell biosensors, the lowest detectable concentration
of analytes and the fastest responses were achieved with NanoLuc.
Notably, we developed, to date, the most sensitive whole-cell mercury
biosensor using NanoLuc as reporter, with an LOD ≤ 50.0 fM
HgCl2 30 min postinduction. For cell-free biosensors, overall, NanoLuc and deGFP led to shorter response
time and lower LOD than the others. This comprehensive profile of
diverse reporters in a single setting provides a new important benchmark
for reporter selection, aiding the rapid development of whole-cell
and cell-free biosensors for various applications in the environment
and health.
Collapse
Affiliation(s)
- Antonia Lopreside
- Department of Chemistry "G. Ciamician", Alma Mater Studiorum , University of Bologna , 40126 Bologna , Italy
| | | | - Elisa Michelini
- Department of Chemistry "G. Ciamician", Alma Mater Studiorum , University of Bologna , 40126 Bologna , Italy
| | - Aldo Roda
- Department of Chemistry "G. Ciamician", Alma Mater Studiorum , University of Bologna , 40126 Bologna , Italy
| | | |
Collapse
|
37
|
A review on nanomaterial-based field effect transistor technology for biomarker detection. Mikrochim Acta 2019; 186:739. [DOI: 10.1007/s00604-019-3850-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/17/2019] [Indexed: 12/27/2022]
|
38
|
A novel biosensor for zinc detection based on microbial fuel cell system. Biosens Bioelectron 2019; 147:111763. [PMID: 31654820 DOI: 10.1016/j.bios.2019.111763] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 01/08/2023]
Abstract
Microbial fuel cell (MFC) biosensors are self-sustainable device for monitoring of various substrates; however, for heavy metals detection are still scarce. In this study, E. coli BL21 was engineered to express the zntR, ribB, and oprF genes with PzntA promoter, which could sense zinc (Zn2+) for riboflavin and porin production. The engineered strain produced high levels of riboflavin (2.4-3.6 μM) and improved cell membrane permeability, with a positive correlation of Zn2+ (0-400 μM). The strain was then employed in MFC biosensor under the following operational parameters: external resistance 1000 Ω, pH 9, and temperature 37 °C for Zn2+ sensing. The maximum voltages (160, 183, 260, 292, and 342 mV) of the constructed MFC biosensor have a linear relationship with Zn2+ concentrations (0, 100, 200, 300, and 400 μM, respectively) (R2 = 0.9777). An Android App was developed for the biosensor system that could sense Zn2+ in real-time and in situ. The biosensor was applied to wastewater with different Zn2+ concentrations and the results showed that the detection range for Zn2+ was 20-100 μM, which covers common Zn2+ safety standards. The results obtained with developed MFC biosensor were comparable to conventional methods such as colorimetric, flame atomic absorption spectroscopy (FAAS), and inductively coupled plasma optical emission spectroscopy (ICP-OES). In summary, MFC biosensor with biosynthetic strain is an efficient and affordable system for real-time monitoring and sensing of heavy metals.
Collapse
|
39
|
McNerney MP, Zhang Y, Steppe P, Silverman AD, Jewett MC, Styczynski MP. Point-of-care biomarker quantification enabled by sample-specific calibration. SCIENCE ADVANCES 2019; 5:eaax4473. [PMID: 31579825 PMCID: PMC6760921 DOI: 10.1126/sciadv.aax4473] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/27/2019] [Indexed: 05/22/2023]
Abstract
Easy-to-perform, relatively inexpensive blood diagnostics have transformed at-home healthcare for some patients, but they require analytical equipment and are not easily adapted to measuring other biomarkers. The requirement for reliable quantification in complex sample types (such as blood) has been a critical roadblock in developing and deploying inexpensive, minimal-equipment diagnostics. Here, we developed a platform for inexpensive, easy-to-use diagnostics that uses cell-free expression to generate colored readouts that are visible to the naked eye, yet quantitative and robust to the interference effects seen in complex samples. We achieved this via a parallelized calibration scheme that uses the patient sample to generate custom reference curves. We used this approach to quantify a clinically relevant micronutrient and to quantify nucleic acids, demonstrating a generalizable platform for low-cost quantitative diagnostics.
Collapse
Affiliation(s)
- Monica P. McNerney
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Yan Zhang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Paige Steppe
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Adam D. Silverman
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| | - Mark P. Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA
- Corresponding author.
| |
Collapse
|
40
|
A label-free optical whole-cell Escherichia coli biosensor for the detection of pyrethroid insecticide exposure. Sci Rep 2019; 9:12466. [PMID: 31462650 PMCID: PMC6713742 DOI: 10.1038/s41598-019-48907-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/13/2019] [Indexed: 11/15/2022] Open
Abstract
There is a growing need for low-cost, portable technologies for the detection of threats to the environment and human health. Here we propose a label-free, optical whole-cell Escherichia coli biosensor for the detection of 3-phenoxybenzoic acid (3-PBA), a biomarker for monitoring human exposure to synthetic pyrethroid insecticides. The biosensor functions like a competitive ELISA but uses whole-cells surface displaying an anti-3-PBA VHH as the detection element. When the engineered cells are mixed with 3-PBA-protein conjugate crosslinking that can be visually detected occurs. Free 3-PBA in samples competes with these crosslinks, leading to a detectable change in the output. The assay performance was improved by coloring the cells via expression of the purple-blue amilCP chromoprotein and the VHH expression level was reduced to obtain a limit of detection of 3 ng/mL. The optimized biosensor exhibited robust function in complex sample backgrounds such as synthetic urine and plasma. Furthermore, lyophilization enabled storage of biosensor cells for at least 90 days without loss of functionality. Our whole-cell biosensor is simple and low-cost and therefore has potential to be further developed as a screening tool for monitoring exposure to pyrethroids in low-resource environments.
Collapse
|
41
|
Using the promoters of MerR family proteins as "rheostats" to engineer whole-cell heavy metal biosensors with adjustable sensitivity. J Biol Eng 2019; 13:70. [PMID: 31452678 PMCID: PMC6702742 DOI: 10.1186/s13036-019-0202-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/12/2019] [Indexed: 12/30/2022] Open
Abstract
Background Whole cell biosensors provide a simple method for the detection of heavy metals. However, previous designs of them rely primarily on simulation of heavy metal resistance systems of bacteria. Results This study proposes a strategy for the rational design of metal detection circuits based on sensor proteins of the MerR family. Our results indicate the expression level of sensor protein can be used as a "rheostat" for tuning detection sensitivity with parabola curves to represent the relationships between the detection slopes and the sensor protein levels. This circuits design strategy (named as "Parabola Principle"), is used as a guide for the discovery of optimum metal detection circuits, and the design of biosensors with specific metal detection characteristics. For example, visible qualitative Hg (II) biosensors with a threshold of 0.05 mg/L are successfully constructed. Conclusions These results indicate the feasibility of developing a sensor that is much more tunable than what is presented. Graphical abstract
Collapse
|
42
|
Du R, Guo M, He X, Huang K, Luo Y, Xu W. Feedback regulation mode of gene circuits directly affects the detection range and sensitivity of lead and mercury microbial biosensors. Anal Chim Acta 2019; 1084:85-92. [PMID: 31519238 DOI: 10.1016/j.aca.2019.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/19/2019] [Accepted: 08/04/2019] [Indexed: 02/05/2023]
Abstract
Whole cell biosensors offer high potential for the detection of heavy metals in a manner that is simple, rapid and low-cost. However, previous researchers have paid little attention to the impacts of construction models on the performance of these biosensors, thereby limiting the achievement of rational design and the optimization of detection characteristics. Herein, for the first time, three basic models of lead and mercury detection circuits, namely feedback coupled, uncoupled and semi-coupled models, have been constructed and compared to explore the effects of uncoupling the topology of sensing circuits on the reporter signals. The results demonstrated that the uncoupled model had better sensitivity for both lead (50 nM) and mercury (1 nM), while the feedback coupled circuits had a wider detection range for mercury (10 nM - 7.5 μM). Introducing the semi-coupled model into the comparison revealed that both the type and location of promoters for regulatory protein genes were key factors for sensitivity. Moreover, the detection characteristics of the uncoupled biosensors were robust, as conditions such as induction time, the concentration of microbial cells, and the concentration of antibiotics had little interference on the performance of the microbial biosensors. This study also established a novel and simple pre-treatment method for sample detection by biosensors. When the uncoupled microbial biosensor was put into practice, the concentration levels of mercury in milk and lead in sewage were determined quickly and accurately. Our study, therefore, provides a strategy for the rational design of whole cell heavy metal biosensors and has developed the potential of their application.
Collapse
Affiliation(s)
- Ruoxi Du
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100194, PR China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, PR China
| | - Mingzhang Guo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100194, PR China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, PR China
| | - Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100194, PR China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, PR China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100194, PR China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, PR China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100194, PR China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, PR China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100194, PR China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, PR China.
| |
Collapse
|
43
|
Lobsiger N, Stark WJ. Strategies of Immobilizing Cells in Whole-cell Microbial Biosensor Devices Targeted for Analytical Field Applications. ANAL SCI 2019; 35:839-847. [PMID: 31204371 DOI: 10.2116/analsci.19r004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes the development of whole-cell biosensors with a special focus on device development and cell immobilization. Integration of biosensor functions in a device will pave the way for field applications in remote areas and resource-limited settings. Firstly, an introduction to the field of whole-cell biosensors is provided, followed by examples of genetic engineering of cells in order to fulfill sensor functions. A framework of requirements to enable future field applications of biosensors is elaborated. A special focus is on different cell immobilization techniques ranging from polymers, to microfluidic devices, immobilization on paper and combinations of these methods. Looking at globally successfully implemented point of care devices such as a home pregnancy test or a blood glucose meter, we conclude the review with thoughts on long-term stability, portability, ease of use and user safety design guidelines for whole-cell biosensor devices.
Collapse
Affiliation(s)
- Nadine Lobsiger
- ETH Zürich, Department of Chemical- and Bioengineering, Functional Materials Laboratory
| | - Wendelin J Stark
- ETH Zürich, Department of Chemical- and Bioengineering, Functional Materials Laboratory
| |
Collapse
|
44
|
Wan X, Volpetti F, Petrova E, French C, Maerkl SJ, Wang B. Cascaded amplifying circuits enable ultrasensitive cellular sensors for toxic metals. Nat Chem Biol 2019; 15:540-548. [PMID: 30911179 DOI: 10.1038/s41589-019-0244-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 02/11/2019] [Indexed: 11/09/2022]
Abstract
Cell-based biosensors have great potential to detect various toxic and pathogenic contaminants in aqueous environments. However, frequently they cannot meet practical requirements due to insufficient sensing performance. To address this issue, we investigated a modular, cascaded signal amplifying methodology. We first tuned intracellular sensory receptor densities to increase sensitivity, and then engineered multi-layered transcriptional amplifiers to sequentially boost output expression level. We demonstrated these strategies by engineering ultrasensitive bacterial sensors for arsenic and mercury, and improved detection limit and output up to 5,000-fold and 750-fold, respectively. Coupled by leakage regulation approaches, we developed an encapsulated microbial sensor cell array for low-cost, portable and precise field monitoring, where the analyte can be readily quantified via displaying an easy-to-interpret volume bar-like pattern. The ultrasensitive signal amplifying methodology along with the background regulation and the sensing platform will be widely applicable to many other cell-based sensors, paving the way for their real-world applications.
Collapse
Affiliation(s)
- Xinyi Wan
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK
| | - Francesca Volpetti
- Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Ekaterina Petrova
- Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Chris French
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK
| | - Sebastian J Maerkl
- Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Baojun Wang
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK. .,Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
45
|
Guo KH, Lu KH, Yeh YC. Cell-Based Biosensor with Dual Signal Outputs for Simultaneous Quantification of Phenylacetic Acid and Phenylethylamine. ACS Synth Biol 2018; 7:2790-2795. [PMID: 30418753 DOI: 10.1021/acssynbio.8b00416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Despite the importance of 2-phenylacetic acid, a plant hormone in the endogenous auxin family, its biosynthesis pathway has yet to be elucidated. In this study, we developed a novel whole-cell biosensor for the simultaneous quantification of 2-phenylacetic acid (PA) and 2-phenylethylamine (PEA) through the regulation of bacterial catabolism of aromatic compounds. We used the PA regulon to enable the recognition of PA and PEA. Differentiation of PEA from PA involves the incorporation of the FeaR regulon within the same whole-cell biosensor to report the presence of aromatic amines. The proposed system is highly sensitive to PA as well as PEA.
Collapse
Affiliation(s)
- Kai-Hong Guo
- Department of Chemistry, National Taiwan Normal University, 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Kun-Hua Lu
- Department of Chemistry, National Taiwan Normal University, 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry, National Taiwan Normal University, 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| |
Collapse
|
46
|
Aye SL, Fujiwara K, Doi N. A dual system using compartmentalized partnered replication for selection of arsenic-responsive transcriptional regulator. J Biochem 2018; 164:341-348. [DOI: 10.1093/jb/mvy055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/06/2018] [Indexed: 01/29/2023] Open
Affiliation(s)
- Seaim Lwin Aye
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, Japan
| | - Kei Fujiwara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, Japan
| | - Nobuhide Doi
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, Japan
| |
Collapse
|
47
|
Miguez AM, McNerney MP, Styczynski MP. Metabolomics Analysis of the Toxic Effects of the Production of Lycopene and Its Precursors. Front Microbiol 2018; 9:760. [PMID: 29774011 PMCID: PMC5944366 DOI: 10.3389/fmicb.2018.00760] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/04/2018] [Indexed: 01/01/2023] Open
Abstract
Using cells as microbial factories enables highly specific production of chemicals with many advantages over chemical syntheses. A number of exciting new applications of this approach are in the area of precision metabolic engineering, which focuses on improving the specificity of target production. In recent work, we have used precision metabolic engineering to design lycopene-producing Escherichia coli for use as a low-cost diagnostic biosensor. To increase precursor availability and thus the rate of lycopene production, we heterologously expressed the mevalonate pathway. We found that simultaneous induction of these pathways increases lycopene production, but induction of the mevalonate pathway before induction of the lycopene pathway decreases both lycopene production and growth rate. Here, we aim to characterize the metabolic changes the cells may be undergoing during expression of either or both of these heterologous pathways. After establishing an improved method for quenching E. coli for metabolomics analysis, we used two-dimensional gas chromatography coupled to mass spectrometry (GCxGC-MS) to characterize the metabolomic profile of our lycopene-producing strains in growth conditions characteristic of our biosensor application. We found that the metabolic impacts of producing low, non-toxic levels of lycopene are of much smaller magnitude than the typical metabolic changes inherent to batch growth. We then used metabolomics to study differences in metabolism caused by the time of mevalonate pathway induction and the presence of the lycopene biosynthesis genes. We found that overnight induction of the mevalonate pathway was toxic to cells, but that the cells could recover if the lycopene pathway was not also heterologously expressed. The two pathways appeared to have an antagonistic metabolic effect that was clearly reflected in the cells’ metabolic profiles. The metabolites homocysteine and homoserine exhibited particularly interesting behaviors and may be linked to the growth inhibition seen when the mevalonate pathway is induced overnight, suggesting potential future work that may be useful in engineering increased lycopene biosynthesis.
Collapse
Affiliation(s)
- April M Miguez
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Monica P McNerney
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Mark P Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|