1
|
Monck C, Elani Y, Ceroni F. Genetically programmed synthetic cells for thermo-responsive protein synthesis and cargo release. Nat Chem Biol 2024; 20:1380-1386. [PMID: 38969863 PMCID: PMC11427347 DOI: 10.1038/s41589-024-01673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 06/06/2024] [Indexed: 07/07/2024]
Abstract
Synthetic cells containing genetic programs and protein expression machinery are increasingly recognized as powerful counterparts to engineered living cells in the context of biotechnology, therapeutics and cellular modelling. So far, genetic regulation of synthetic cell activity has been largely confined to chemical stimuli; to unlock their potential in applied settings, engineering stimuli-responsive synthetic cells under genetic regulation is imperative. Here we report the development of temperature-sensitive synthetic cells that control protein production by exploiting heat-responsive mRNA elements. This is achieved by combining RNA thermometer technology, cell-free protein expression and vesicle-based synthetic cell design to create cell-sized capsules able to initiate synthesis of both soluble proteins and membrane proteins at defined temperatures. We show that the latter allows for temperature-controlled cargo release phenomena with potential implications for biomedicine. Platforms like the one presented here can pave the way for customizable, genetically programmed synthetic cells under thermal control to be used in biotechnology.
Collapse
Affiliation(s)
- Carolina Monck
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, London, UK
- fabriCELL, Imperial College London, London, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, London, UK.
- fabriCELL, Imperial College London, London, UK.
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, London, UK.
| |
Collapse
|
2
|
Akter M, Moghimianavval H, Luker GD, Liu AP. Light-triggered protease-mediated release of actin-bound cargo from synthetic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613133. [PMID: 39314483 PMCID: PMC11419145 DOI: 10.1101/2024.09.15.613133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion. Here, we designed and constructed a protein-based platform termed TEV Protease-mediated Releasable Actin-binding protein (TRAP) for selective, rapid, and triggerable secretion in synthetic cells. TRAP is designed to bind tightly to reconstituted actin networks and is proteolytically released from bound actin, followed by secretion via cell-penetrating peptide membrane translocation. We demonstrated TRAP's efficacy in facilitating light-activated secretion of both fluorescent and luminescent proteins. By equipping synthetic cells with a controlled secretion mechanism, TRAP paves the way for the development of stimuli-responsive biomaterials, versatile synthetic cell-based biosensing systems, and therapeutic applications through the integration of synthetic cells with living cells for targeted delivery of protein therapeutics.
Collapse
Affiliation(s)
- Mousumi Akter
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Gary D. Luker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
3
|
Shin J, Saha B, Chung H, Jang Y. Architecting Multicompartmentalized, Giant Vesicles with Recombinant Fusion Proteins. Biomacromolecules 2024; 25:6127-6134. [PMID: 39105695 DOI: 10.1021/acs.biomac.4c00807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
We present a straightforward strategy for constructing giant, multicompartmentalized vesicles using recombinant fusion proteins. Our method leverages the self-assembly of globule-zipper-elastin-like polypeptide fusion protein complexes in aqueous conditions, eliminating the need for organic solvents and chemical conjugation. By employing the thin-film rehydration method, we have successfully encapsulated a diverse range of bioactive macromolecules and engineered organelle-like compartments─ranging from soluble proteins and coacervate droplets to vesicles─within these protein-assembled giant vesicles. This approach also facilitates the integration of water-soluble block copolymers, enhancing the structural stability and functional versatility of the vesicles. Our results suggest that these multicompartment giant protein vesicles not only mimic the complex architecture of living cells but also support biochemically distinct reactions regulated by functionally folded proteins, providing a robust model for studying cellular processes and designing microreactor systems. This work highlights the transformative potential of self-assembling recombinant fusion proteins in artificial cell design.
Collapse
Affiliation(s)
- Jooyong Shin
- Department of Chemical Engineering, University of Florida, 1006 Center Drive, Gainesville, Florida 32611, United States
| | - Biswajit Saha
- Department of Chemical and Biomedical Engineering, FAMU-FSU, Tallahassee, Florida 32310, United States
| | - Hoyong Chung
- Department of Chemical and Biomedical Engineering, FAMU-FSU, Tallahassee, Florida 32310, United States
| | - Yeongseon Jang
- Department of Chemical Engineering, University of Florida, 1006 Center Drive, Gainesville, Florida 32611, United States
| |
Collapse
|
4
|
Siquenique S, Ackerman S, Schroeder A, Sarmento B. Bioengineering lipid-based synthetic cells for therapeutic protein delivery. Trends Biotechnol 2024:S0167-7799(24)00216-6. [PMID: 39209601 DOI: 10.1016/j.tibtech.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/27/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Synthetic cells (SCs) offer a promising approach for therapeutic protein delivery, combining principles from synthetic biology and drug delivery. Engineered to mimic natural cells, SCs provide biocompatibility and versatility, with precise control over their architecture and composition. Protein production is essential in living cells, and SCs aim to replicate this process using compartmentalized cell-free protein synthesis systems within lipid bilayers. Lipid bilayers serve as favored membranes in SC design due to their similarity to the biological cell membrane. Moreover, engineering lipidic membranes enable tissue-specific targeting and immune evasion, while stimulus-responsive SCs allow for triggered protein production and release. This Review explores lipid-based SCs as platforms for therapeutic protein delivery, discussing their design principles, functional attributes, and translational challenges and potential.
Collapse
Affiliation(s)
- Sónia Siquenique
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Shanny Ackerman
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| |
Collapse
|
5
|
Dimitriou P, Li J, Jamieson WD, Schneider JJ, Castell OK, Barrow DA. Manipulation of encapsulated artificial phospholipid membranes using sub-micellar lysolipid concentrations. Commun Chem 2024; 7:120. [PMID: 38824266 PMCID: PMC11144220 DOI: 10.1038/s42004-024-01209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
Droplet Interface Bilayers (DIBs) constitute a commonly used model of artificial membranes for synthetic biology research applications. However, their practical use is often limited by their requirement to be surrounded by oil. Here we demonstrate in-situ bilayer manipulation of submillimeter, hydrogel-encapsulated droplet interface bilayers (eDIBs). Monolithic, Cyclic Olefin Copolymer/Nylon 3D-printed microfluidic devices facilitated the eDIB formation through high-order emulsification. By exposing the eDIB capsules to varying lysophosphatidylcholine (LPC) concentrations, we investigated the interaction of lysolipids with three-dimensional DIB networks. Micellar LPC concentrations triggered the bursting of encapsulated droplet networks, while at lower concentrations the droplet network endured structural changes, precisely affecting the membrane dimensions. This chemically-mediated manipulation of enclosed, 3D-orchestrated membrane mimics, facilitates the exploration of readily accessible compartmentalized artificial cellular machinery. Collectively, the droplet-based construct can pose as a chemically responsive soft material for studying membrane mechanics, and drug delivery, by controlling the cargo release from artificial cell chassis.
Collapse
Affiliation(s)
- Pantelitsa Dimitriou
- School of Engineering, Cardiff University, Queen's Buildings, Cardiff, CF24 3AA, UK.
| | - Jin Li
- School of Engineering, Cardiff University, Queen's Buildings, Cardiff, CF24 3AA, UK.
| | - William David Jamieson
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Redwood Building, Kind Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Johannes Josef Schneider
- Institute of Applied Mathematics and Physics, School of Engineering, Zurich University of Applied Sciences, Technikumstr. 9, 8401, Winterthur, Switzerland
| | - Oliver Kieran Castell
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Redwood Building, Kind Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - David Anthony Barrow
- School of Engineering, Cardiff University, Queen's Buildings, Cardiff, CF24 3AA, UK
| |
Collapse
|
6
|
Peruzzi JA, Steinkühler J, Vu TQ, Gunnels TF, Hu VT, Lu P, Baker D, Kamat NP. Hydrophobic mismatch drives self-organization of designer proteins into synthetic membranes. Nat Commun 2024; 15:3162. [PMID: 38605024 PMCID: PMC11009411 DOI: 10.1038/s41467-024-47163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
The organization of membrane proteins between and within membrane-bound compartments is critical to cellular function. Yet we lack approaches to regulate this organization in a range of membrane-based materials, such as engineered cells, exosomes, and liposomes. Uncovering and leveraging biophysical drivers of membrane protein organization to design membrane systems could greatly enhance the functionality of these materials. Towards this goal, we use de novo protein design, molecular dynamic simulations, and cell-free systems to explore how membrane-protein hydrophobic mismatch could be used to tune protein cotranslational integration and organization in synthetic lipid membranes. We find that membranes must deform to accommodate membrane-protein hydrophobic mismatch, which reduces the expression and co-translational insertion of membrane proteins into synthetic membranes. We use this principle to sort proteins both between and within membranes, thereby achieving one-pot assembly of vesicles with distinct functions and controlled split-protein assembly, respectively. Our results shed light on protein organization in biological membranes and provide a framework to design self-organizing membrane-based materials with applications such as artificial cells, biosensors, and therapeutic nanoparticles.
Collapse
Affiliation(s)
- Justin A Peruzzi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Jan Steinkühler
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Timothy Q Vu
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Taylor F Gunnels
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Vivian T Hu
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Peilong Lu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Neha P Kamat
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
7
|
Wang X, Qiao X, Chen H, Wang L, Liu X, Huang X. Synthetic-Cell-Based Multi-Compartmentalized Hierarchical Systems. SMALL METHODS 2023; 7:e2201712. [PMID: 37069779 DOI: 10.1002/smtd.202201712] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In the extant lifeforms, the self-sustaining behaviors refer to various well-organized biochemical reactions in spatial confinement, which rely on compartmentalization to integrate and coordinate the molecularly crowded intracellular environment and complicated reaction networks in living/synthetic cells. Therefore, the biological phenomenon of compartmentalization has become an essential theme in the field of synthetic cell engineering. Recent progress in the state-of-the-art of synthetic cells has indicated that multi-compartmentalized synthetic cells should be developed to obtain more advanced structures and functions. Herein, two ways of developing multi-compartmentalized hierarchical systems, namely interior compartmentalization of synthetic cells (organelles) and integration of synthetic cell communities (synthetic tissues), are summarized. Examples are provided for different construction strategies employed in the above-mentioned engineering ways, including spontaneous compartmentalization in vesicles, host-guest nesting, phase separation mediated multiphase, adhesion-mediated assembly, programmed arrays, and 3D printing. Apart from exhibiting advanced structures and functions, synthetic cells are also applied as biomimetic materials. Finally, key challenges and future directions regarding the development of multi-compartmentalized hierarchical systems are summarized; these are expected to lay the foundation for the creation of a "living" synthetic cell as well as provide a larger platform for developing new biomimetic materials in the future.
Collapse
Affiliation(s)
- Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Qiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
8
|
Peruzzi JA, Vu TQ, Gunnels TF, Kamat NP. Rapid Generation of Therapeutic Nanoparticles Using Cell-Free Expression Systems. SMALL METHODS 2023; 7:e2201718. [PMID: 37116099 PMCID: PMC10611898 DOI: 10.1002/smtd.202201718] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/06/2023] [Indexed: 05/05/2023]
Abstract
The surface modification of membrane-based nanoparticles, such as liposomes, polymersomes, and lipid nanoparticles, with targeting molecules, such as binding proteins, is an important step in the design of therapeutic materials. However, this modification can be costly and time-consuming, requiring cellular hosts for protein expression and lengthy purification and conjugation steps to attach proteins to the surface of nanocarriers, which ultimately limits the development of effective protein-conjugated nanocarriers. Here, the use of cell-free protein synthesis systems to rapidly create protein-conjugated membrane-based nanocarriers is demonstrated. Using this approach, multiple types of functional binding proteins, including affibodies, computationally designed proteins, and scFvs, can be cell-free expressed and conjugated to liposomes in one-pot. The technique can be expanded further to other nanoparticles, including polymersomes and lipid nanoparticles, and is amenable to multiple conjugation strategies, including surface attachment to and integration into nanoparticle membranes. Leveraging these methods, rapid design of bispecific artificial antigen presenting cells and enhanced delivery of lipid nanoparticle cargo in vitro is demonstrated. It is envisioned that this workflow will enable the rapid generation of membrane-based delivery systems and bolster our ability to create cell-mimetic therapeutics.
Collapse
Affiliation(s)
- Justin A. Peruzzi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Timothy Q. Vu
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Taylor F. Gunnels
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Neha P. Kamat
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
9
|
Radhakrishnan S, Nair KS, Nandi S, Bajaj H. Engineering semi-permeable giant liposomes. Chem Commun (Camb) 2023; 59:13863-13866. [PMID: 37930322 DOI: 10.1039/d3cc04039a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Giant unilamellar vesicles (GUVs) with a semi-permeable nature are prerequisites for constructing synthetic cells. Here we engineer semi-permeable GUVs by the inclusion of DOTAP lipid in vesicles. Diffusion of molecules of different charge and size across GUVs are reported. Control over size-selective permeability is demonstrated by modulating the DOTAP lipid composition in different lipid systems without reconstituting membrane proteins. Such semi-permeable GUVs have immense applications for constructing synthetic cells.
Collapse
Affiliation(s)
- Sreelakshmi Radhakrishnan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India.
| | - Karthika S Nair
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Samir Nandi
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India.
| | - Harsha Bajaj
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| |
Collapse
|
10
|
Allen ME, Hindley JW, O’Toole N, Cooke HS, Contini C, Law RV, Ces O, Elani Y. Biomimetic behaviors in hydrogel artificial cells through embedded organelles. Proc Natl Acad Sci U S A 2023; 120:e2307772120. [PMID: 37603747 PMCID: PMC10466294 DOI: 10.1073/pnas.2307772120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/13/2023] [Indexed: 08/23/2023] Open
Abstract
Artificial cells are biomimetic structures formed from molecular building blocks that replicate biological processes, behaviors, and architectures. Of these building blocks, hydrogels have emerged as ideal, yet underutilized candidates to provide a gel-like chassis in which to incorporate both biological and nonbiological componentry which enables the replication of cellular functionality. Here, we demonstrate a microfluidic strategy to assemble biocompatible cell-sized hydrogel-based artificial cells with a variety of different embedded functional subcompartments, which act as engineered synthetic organelles. The organelles enable the recreation of increasingly biomimetic behaviors, including stimulus-induced motility, content release through activation of membrane-associated proteins, and enzymatic communication with surrounding bioinspired compartments. In this way, we showcase a foundational strategy for the bottom-up construction of hydrogel-based artificial cell microsystems which replicate fundamental cellular behaviors, paving the way for the construction of next-generation biotechnological devices.
Collapse
Affiliation(s)
- Matthew E. Allen
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
- Department of Chemical Engineering, Imperial College London, South Kensington, LondonSW7 2AZ, UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
| | - James W. Hindley
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
| | - Nina O’Toole
- Department of Chemical Engineering, Imperial College London, South Kensington, LondonSW7 2AZ, UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
| | - Hannah S. Cooke
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
- Department of Chemical Engineering, Imperial College London, South Kensington, LondonSW7 2AZ, UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
| | - Claudia Contini
- Department of Chemical Engineering, Imperial College London, South Kensington, LondonSW7 2AZ, UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
| | - Robert V. Law
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
| | - Oscar Ces
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, South Kensington, LondonSW7 2AZ, UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
| |
Collapse
|
11
|
Kobayashi M, Noguchi H, Sato G, Watanabe C, Fujiwara K, Yanagisawa M. Phase-Separated Giant Liposomes for Stable Elevation of α-Hemolysin Concentration in Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11481-11489. [PMID: 37531551 DOI: 10.1021/acs.langmuir.3c02019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Staphylococcus aureus α-hemolysin (αHL) is one of the most popular proteins in nanopore experiments within lipid membranes. Higher concentrations of αHL within the lipid membrane are desirable to enhance the mass transport capacity through nanopores. However, the reconstitution of αHL at high concentrations is associated with the problem of membrane lytic disruption. In this study, we present a method that effectively increases αHL concentration while maintaining membrane stability. This method is achieved by using phase-separated giant liposomes, where coexisting liquid-disordered (Ld) and liquid-ordered phases (Lo) are enriched in unsaturated lipids and saturated lipids with cholesterol (Chol), respectively. Fluorescence observation of αHL in liposomes revealed that the presence of Chol facilitates αHL insertion into the membrane. Despite the preferential localization of αHL in the Ld phase rather than the Lo phase, the coexistence of both Lo and Ld phases prevents membrane disruption in the presence of concentrated αHL. We have explained this stabilization mechanism considering the lower membrane tension exhibited by phase-separated liposomes compared to homogeneous liposomes. Under hypertonic conditions, we have successfully increased the local concentration of αHL by invagination of the lipid-only region in the Ld phase, leaving αHL behind. This method exhibits potential for the reconstitution of various nanochannels and membrane proteins that prefer the Ld phase over the Lo phase, thus enabling the production of giant liposomes at high concentrations and the replication of the membrane-crowding condition observed in cells.
Collapse
Affiliation(s)
- Mizuki Kobayashi
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
- Graduate School of Arts and Sciences, Komaba Institute for Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Hiroshi Noguchi
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Gaku Sato
- Department of Biosciences and Informatics, Keio University, Kohoku-ku, Yokohama 223-8522, Japan
| | - Chiho Watanabe
- Graduate School of Arts and Sciences, Komaba Institute for Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
- School of Integrated Arts and Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi, Hiroshima 739-8521, Japan
| | - Kei Fujiwara
- Department of Biosciences and Informatics, Keio University, Kohoku-ku, Yokohama 223-8522, Japan
| | - Miho Yanagisawa
- Graduate School of Arts and Sciences, Komaba Institute for Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Lin AJ, Sihorwala AZ, Belardi B. Engineering Tissue-Scale Properties with Synthetic Cells: Forging One from Many. ACS Synth Biol 2023; 12:1889-1907. [PMID: 37417657 PMCID: PMC11017731 DOI: 10.1021/acssynbio.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
In metazoans, living cells achieve capabilities beyond individual cell functionality by assembling into multicellular tissue structures. These higher-order structures represent dynamic, heterogeneous, and responsive systems that have evolved to regenerate and coordinate their actions over large distances. Recent advances in constructing micrometer-sized vesicles, or synthetic cells, now point to a future where construction of synthetic tissue can be pursued, a boon to pressing material needs in biomedical implants, drug delivery systems, adhesives, filters, and storage devices, among others. To fully realize the potential of synthetic tissue, inspiration has been and will continue to be drawn from new molecular findings on its natural counterpart. In this review, we describe advances in introducing tissue-scale features into synthetic cell assemblies. Beyond mere complexation, synthetic cells have been fashioned with a variety of natural and engineered molecular components that serve as initial steps toward morphological control and patterning, intercellular communication, replication, and responsiveness in synthetic tissue. Particular attention has been paid to the dynamics, spatial constraints, and mechanical strengths of interactions that drive the synthesis of this next-generation material, describing how multiple synthetic cells can act as one.
Collapse
Affiliation(s)
- Alexander J Lin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ahmed Z Sihorwala
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Peruzzi JA, Galvez NR, Kamat NP. Engineering transmembrane signal transduction in synthetic membranes using two-component systems. Proc Natl Acad Sci U S A 2023; 120:e2218610120. [PMID: 37126679 PMCID: PMC10175788 DOI: 10.1073/pnas.2218610120] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/27/2023] [Indexed: 05/03/2023] Open
Abstract
Cells use signal transduction across their membranes to sense and respond to a wide array of chemical and physical signals. Creating synthetic systems which can harness cellular signaling modalities promises to provide a powerful platform for biosensing and therapeutic applications. As a first step toward this goal, we investigated how bacterial two-component systems (TCSs) can be leveraged to enable transmembrane-signaling with synthetic membranes. Specifically, we demonstrate that a bacterial two-component nitrate-sensing system (NarX-NarL) can be reproduced outside of a cell using synthetic membranes and cell-free protein expression systems. We find that performance and sensitivity of the TCS can be tuned by altering the biophysical properties of the membrane in which the histidine kinase (NarX) is integrated. Through protein engineering efforts, we modify the sensing domain of NarX to generate sensors capable of detecting an array of ligands. Finally, we demonstrate that these systems can sense ligands in relevant sample environments. By leveraging membrane and protein design, this work helps reveal how transmembrane sensing can be recapitulated outside of the cell, adding to the arsenal of deployable cell-free systems primed for real world biosensing.
Collapse
Affiliation(s)
- Justin A. Peruzzi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL60208
- Center for Synthetic Biology, Northwestern University, Evanston, IL60208
| | - Nina R. Galvez
- Center for Synthetic Biology, Northwestern University, Evanston, IL60208
- Department of Biomedical Engineering, Northwestern University, Evanston, IL60208
| | - Neha P. Kamat
- Center for Synthetic Biology, Northwestern University, Evanston, IL60208
- Department of Biomedical Engineering, Northwestern University, Evanston, IL60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
| |
Collapse
|
14
|
Reconstructed membrane vesicles from the microalga Dunaliella as a potential drug delivery system. Bioelectrochemistry 2023; 150:108360. [PMID: 36621049 DOI: 10.1016/j.bioelechem.2022.108360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/03/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
The aim of this biophysical study is to characterize reconstructed membrane vesicles obtained from microalgae in terms of their morphology, properties, composition, and ability to transport a model drug. The reconstructed vesicles were either emptied or non-emptied and exhibited a non-uniform distribution of spherical surface structures that could be associated with surface coat proteins, while in between there were pore-like structures of up to 10 nm that could contribute to permeability. The reconstructed vesicles were very soft and hydrophilic, which could be attributed to their composition. The vesicles were rich in proteins and were mostly derived from the cytoplasm and chloroplasts. We demonstrated that all lipid classes of D. tertiolecta are involved in the formation of the reconstructed membrane vesicles, where they play fundamental role to maintain the vesicle structure. The vesicles appeared to be permeable to calcein, impermeable to FITC-ovalbumin, and semipermeable to FITC-concanavalin A, which may be due to a specific surface interaction with glucose/mannose units that could serve as a basis for the development of drug carriers. Finally, the reconstructed membrane vesicles could pave a new way as sustainable and environmentally friendly marine bioinspired carriers and serve for studies on microtransport of materials and membrane-related processes contributing to advances in life sciences and biotechnology.
Collapse
|
15
|
Heidari A, Sentürk OI, Yang S, Joesaar A, Gobbo P, Mann S, de Greef TFA, Wegner SV. Orthogonal Light-Dependent Membrane Adhesion Induces Social Self-Sorting and Member-Specific DNA Communication in Synthetic Cell Communities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206474. [PMID: 36599623 DOI: 10.1002/smll.202206474] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Developing orthogonal chemical communication pathways in diverse synthetic cell communities is a considerable challenge due to the increased crosstalk and interference associated with large numbers of different types of sender-receiver pairs. Herein, the authors control which sender-receiver pairs communicate in a three-membered community of synthetic cells through red and blue light illumination. Semipermeable protein-polymer-based synthetic cells (proteinosomes) with complementary membrane-attached protein adhesion communicate through single-stranded DNA oligomers and synergistically process biochemical information within a community consisting of one sender and two different receiver populations. Different pairs of red and blue light-responsive protein-protein interactions act as membrane adhesion mediators between the sender and receivers such that they self-assemble and socially self-sort into different multicellular structures under red and blue light. Consequently, distinct sender-receiver pairs come into the signaling range depending on the light illumination and are able to communicate specifically without activation of the other receiver population. Overall, this work shows how photoswitchable membrane adhesion gives rise to different self-sorting protocell patterns that mediate member-specific DNA-based communication in ternary populations of synthetic cells and provides a step towards the design of orthogonal chemical communication networks in diverse communities of synthetic cells.
Collapse
Affiliation(s)
- Ali Heidari
- Institute of Physiological Chemistry and Pathobiochemistry University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Oya I Sentürk
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Shuo Yang
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Alex Joesaar
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Pierangelo Gobbo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, 34127, Italy
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, Max Planck Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Tom F A de Greef
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| |
Collapse
|
16
|
Sihorwala AZ, Lin AJ, Stachowiak JC, Belardi B. Light-Activated Assembly of Connexon Nanopores in Synthetic Cells. J Am Chem Soc 2023; 145:3561-3568. [PMID: 36724060 PMCID: PMC10188233 DOI: 10.1021/jacs.2c12491] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During developmental processes and wound healing, activation of living cells occurs with spatiotemporal precision and leads to rapid release of soluble molecular signals, allowing communication and coordination between neighbors. Nonliving systems capable of similar responsive release hold great promise for information transfer in materials and site-specific drug delivery. One nonliving system that offers a tunable platform for programming release is synthetic cells. Encased in a lipid bilayer structure, synthetic cells can be outfitted with molecular conduits that span the bilayer and lead to material exchange. While previous work expressing membrane pore proteins in synthetic cells demonstrated content exchange, user-defined control over release has remained elusive. In mammalian cells, connexon nanopore structures drive content release and have garnered significant interest since they can direct material exchange through intercellular contacts. Here, we focus on connexon nanopores and present activated release of material from synthetic cells in a light-sensitive fashion. To do this, we re-engineer connexon nanopores to assemble after post-translational processing by a protease. By encapsulating proteases in light-sensitive liposomes, we show that assembly of nanopores can be triggered by illumination, resulting in rapid release of molecules encapsulated within synthetic cells. Controlling connexon nanopore activity provides an opportunity for initiating communication with extracellular signals and for transferring molecular agents to the cytoplasm of living cells in a rapid, light-guided manner.
Collapse
Affiliation(s)
- Ahmed Z Sihorwala
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Alexander J Lin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
17
|
Boyd MA, Thavarajah W, Lucks JB, Kamat NP. Robust and tunable performance of a cell-free biosensor encapsulated in lipid vesicles. SCIENCE ADVANCES 2023; 9:eadd6605. [PMID: 36598992 PMCID: PMC9812392 DOI: 10.1126/sciadv.add6605] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/23/2022] [Indexed: 05/21/2023]
Abstract
Cell-free systems have enabled the development of genetically encoded biosensors to detect a range of environmental and biological targets. Encapsulation of these systems in synthetic membranes to form artificial cells can reintroduce features of the cellular membrane, including molecular containment and selective permeability, to modulate cell-free sensing capabilities. Here, we demonstrate robust and tunable performance of a transcriptionally regulated, cell-free riboswitch encapsulated in lipid membranes, allowing the detection of fluoride, an environmentally important molecule. Sensor response can be tuned by varying membrane composition, and encapsulation protects from sensor degradation, facilitating detection in real-world samples. These sensors can detect fluoride using two types of genetically encoded outputs, enabling detection of fluoride at the Environmental Protection Agency maximum contaminant level of 0.2 millimolars. This work demonstrates the capacity of bilayer membranes to confer tunable permeability to encapsulated, genetically encoded sensors and establishes the feasibility of artificial cell platforms to detect environmentally relevant small molecules.
Collapse
Affiliation(s)
- Margrethe A. Boyd
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Walter Thavarajah
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemical and Biological Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
- Center for Water Research, Northwestern University, Evanston, IL, USA
| | - Julius B. Lucks
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemical and Biological Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
- Center for Water Research, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Corresponding author. (N.P.K.); (J.B.L.)
| | - Neha P. Kamat
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Corresponding author. (N.P.K.); (J.B.L.)
| |
Collapse
|
18
|
Mashima T, van Stevendaal MHME, Cornelissens FRA, Mason AF, Rosier BJHM, Altenburg WJ, Oohora K, Hirayama S, Hayashi T, van Hest JCM, Brunsveld L. DNA-Mediated Protein Shuttling between Coacervate-Based Artificial Cells. Angew Chem Int Ed Engl 2022; 61:e202115041. [PMID: 35133040 PMCID: PMC9303767 DOI: 10.1002/anie.202115041] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 11/30/2022]
Abstract
The regulation of protein uptake and secretion is crucial for (inter)cellular signaling. Mimicking these molecular events is essential when engineering synthetic cellular systems. A first step towards achieving this goal is obtaining control over the uptake and release of proteins from synthetic cells in response to an external trigger. Herein, we have developed an artificial cell that sequesters and releases proteinaceous cargo upon addition of a coded chemical signal: single‐stranded DNA oligos (ssDNA) were employed to independently control the localization of a set of three different ssDNA‐modified proteins. The molecular coded signal allows for multiple iterations of triggered uptake and release, regulation of the amount and rate of protein release and the sequential release of the three different proteins. This signaling concept was furthermore used to directionally transfer a protein between two artificial cell populations, providing novel directions for engineering lifelike communication pathways inside higher order (proto)cellular structures.
Collapse
Affiliation(s)
- Tsuyoshi Mashima
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands.,Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Marleen H M E van Stevendaal
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Femke R A Cornelissens
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Alexander F Mason
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Bas J H M Rosier
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Wiggert J Altenburg
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Shota Hirayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Jan C M van Hest
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| |
Collapse
|
19
|
Mashima T, Stevendaal MHME, Cornelissens FRA, Mason AF, Rosier BJHM, Altenburg WJ, Oohora K, Hirayama S, Hayashi T, Hest JCM, Brunsveld L. DNA‐Mediated Protein Shuttling between Coacervate‐Based Artificial Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tsuyoshi Mashima
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita 565-0871 Japan
| | - Marleen H. M. E. Stevendaal
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Femke R. A. Cornelissens
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Alexander F. Mason
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Bas J. H. M. Rosier
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Wiggert J. Altenburg
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Koji Oohora
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita 565-0871 Japan
| | - Shota Hirayama
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita 565-0871 Japan
| | - Takashi Hayashi
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita 565-0871 Japan
| | - Jan C. M. Hest
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| |
Collapse
|
20
|
Peng H, Lelievre A, Landenfeld K, Müller S, Chen IA. Vesicle encapsulation stabilizes intermolecular association and structure formation of functional RNA and DNA. Curr Biol 2022; 32:86-96.e6. [PMID: 34762821 PMCID: PMC8752491 DOI: 10.1016/j.cub.2021.10.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/02/2021] [Accepted: 10/21/2021] [Indexed: 01/12/2023]
Abstract
During the origin of life, encapsulation of RNA inside vesicles is believed to have been a defining feature of the earliest cells (protocells). The confined biophysical environment provided by membrane encapsulation differs from that of bulk solution and has been shown to increase activity as well as evolutionary rate for functional RNA. However, the structural basis of the effect on RNA has not been clear. Here, we studied how encapsulation of the hairpin ribozyme inside model protocells affects ribozyme kinetics, ribozyme folding into the active conformation, and cleavage and ligation activities. We further examined the effect of encapsulation on the folding of a stem-loop RNA structure and on the formation of a triplex structure in a pH-sensitive DNA switch. The results indicate that encapsulation promotes RNA-RNA association, both intermolecular and intramolecular, and also stabilizes tertiary folding, including the docked conformation characteristic of the active hairpin ribozyme and the triplex structure. The effects of encapsulation were sufficient to rescue the activity of folding-deficient mutants of the hairpin ribozyme. Stabilization of multiple modes of nucleic acid folding and interaction thus enhanced the activity of encapsulated nucleic acids. Increased association between RNA molecules may facilitate the formation of more complex structures and cooperative interactions. These effects could promote the emergence of biological functions in an "RNA world" and may have utility in the construction of minimal synthetic cells.
Collapse
Affiliation(s)
- Huan Peng
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Amandine Lelievre
- Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | | | - Sabine Müller
- Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Irene A. Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA,Lead Contact:
| |
Collapse
|
21
|
Wang C, Yang J, Lu Y. Modularize and Unite: Toward Creating a Functional Artificial Cell. Front Mol Biosci 2021; 8:781986. [PMID: 34912849 PMCID: PMC8667554 DOI: 10.3389/fmolb.2021.781986] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
An artificial cell is a simplified model of a living system, bringing breakthroughs into both basic life science and applied research. The bottom-up strategy instructs the construction of an artificial cell from nonliving materials, which could be complicated and interdisciplinary considering the inherent complexity of living cells. Although significant progress has been achieved in the past 2 decades, the area is still facing some problems, such as poor compatibility with complex bio-systems, instability, and low standardization of the construction method. In this review, we propose creating artificial cells through the integration of different functional modules. Furthermore, we divide the function requirements of an artificial cell into four essential parts (metabolism, energy supplement, proliferation, and communication) and discuss the present researches. Then we propose that the compartment and the reestablishment of the communication system would be essential for the reasonable integration of functional modules. Although enormous challenges remain, the modular construction would facilitate the simplification and standardization of an artificial cell toward a natural living system. This function-based strategy would also broaden the application of artificial cells and represent the steps of imitating and surpassing nature.
Collapse
Affiliation(s)
- Chen Wang
- Key Laboratory of Industrial Biocatalysis, Department of Chemical Engineering, Ministry of Education, Tsinghua University, Beijing, China
| | - Junzhu Yang
- Key Laboratory of Industrial Biocatalysis, Department of Chemical Engineering, Ministry of Education, Tsinghua University, Beijing, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Department of Chemical Engineering, Ministry of Education, Tsinghua University, Beijing, China
| |
Collapse
|
22
|
Sharma B, Moghimianavval H, Hwang SW, Liu AP. Synthetic Cell as a Platform for Understanding Membrane-Membrane Interactions. MEMBRANES 2021; 11:912. [PMID: 34940413 PMCID: PMC8706075 DOI: 10.3390/membranes11120912] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 01/27/2023]
Abstract
In the pursuit of understanding life, model membranes made of phospholipids were envisaged decades ago as a platform for the bottom-up study of biological processes. Micron-sized lipid vesicles have gained great acceptance as their bilayer membrane resembles the natural cell membrane. Important biological events involving membranes, such as membrane protein insertion, membrane fusion, and intercellular communication, will be highlighted in this review with recent research updates. We will first review different lipid bilayer platforms used for incorporation of integral membrane proteins and challenges associated with their functional reconstitution. We next discuss different methods for reconstitution of membrane fusion and compare their fusion efficiency. Lastly, we will highlight the importance and challenges of intercellular communication between synthetic cells and synthetic cells-to-natural cells. We will summarize the review by highlighting the challenges and opportunities associated with studying membrane-membrane interactions and possible future research directions.
Collapse
Affiliation(s)
- Bineet Sharma
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.S.); (H.M.)
| | - Hossein Moghimianavval
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.S.); (H.M.)
| | - Sung-Won Hwang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.S.); (H.M.)
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
23
|
Robinson AO, Venero OM, Adamala KP. Toward synthetic life: Biomimetic synthetic cell communication. Curr Opin Chem Biol 2021; 64:165-173. [PMID: 34597982 PMCID: PMC8784175 DOI: 10.1016/j.cbpa.2021.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
Engineering synthetic minimal cells provide a controllable chassis for studying the biochemical principles of natural life, increasing our understanding of complex biological processes. Recently, synthetic cell engineering has enabled communication between both natural live cells and other synthetic cells. A system such as these enable studying interactions between populations of cells, both natural and artificial, and engineering small molecule cell communication protocols for a variety of basic research and practical applications. In this review, we summarize recent progress in engineering communication between synthetic and natural cells, and we speculate about the possible future directions of this work.
Collapse
Affiliation(s)
- Abbey O Robinson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Orion M Venero
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
24
|
System concentration shift as a regulator of transcription-translation system within liposomes. iScience 2021; 24:102859. [PMID: 34386726 PMCID: PMC8346668 DOI: 10.1016/j.isci.2021.102859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022] Open
Abstract
Biochemical systems in living cells have their optimum concentration ratio among each constituent element to maintain their functionality. However, in the case of the biochemical system with complex interactions and feedbacks among elements, their activity as a system greatly changes by the concentration shift of the entire system irrespective of the concentration ratio among elements. In this study, by using a transcription-translation (TX-TL) system as the subject, we illustrate the principle of the nonlinear relationship between the system concentration and the activity of the system. Our experiment and simulation showed that shifts of the system concentration of TX-TL by dilution and concentration works as a switch of activity and demonstrated its ability to induce a biochemical system to confer the permeability of small molecules to liposomes. These results contribute to the creation of artificial cells with the switch and provide an insight into the emergence of protocells.
Collapse
|
25
|
EPA and DHA differentially modulate membrane elasticity in the presence of cholesterol. Biophys J 2021; 120:2317-2329. [PMID: 33887229 PMCID: PMC8390804 DOI: 10.1016/j.bpj.2021.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/15/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) modify the activity of a wide range of membrane proteins and are increasingly hypothesized to modulate protein activity by indirectly altering membrane physical properties. Among the various physical properties affected by PUFAs, the membrane area expansion modulus (Ka), which measures membrane strain in response to applied force, is expected to be a significant controller of channel activity. Yet, the impact of PUFAs on membrane Ka has not been measured previously. Through a series of micropipette aspiration studies, we measured the apparent Ka (Kapp) of phospholipid model membranes containing nonesterified fatty acids. First, we measured membrane Kapp as a function of the location of the unsaturated bonds and degree of unsaturation in the incorporated fatty acids and found that Kapp generally decreases in the presence of fatty acids with three or more unsaturated bonds. Next, we assessed how select ω-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), affect the Kapp of membranes containing cholesterol. In vesicles prepared with high amounts of cholesterol, which should increase the propensity of the membrane to phase segregate, we found that inclusion of DHA decreases the Kapp in comparison to EPA. We also measured how these ω-3 PUFAs affect membrane fluidity and bending rigidity to determine how membrane Kapp changes in relation to these other physical properties. Our study shows that PUFAs generally decrease the Kapp of membranes and that EPA and DHA have differential effects on Kapp when membranes contain higher levels of cholesterol. Our results suggest membrane phase behavior and the distribution of membrane-elasticizing amphiphiles impact the ability of a membrane to stretch.
Collapse
|
26
|
Boyd MA, Kamat NP. Designing Artificial Cells towards a New Generation of Biosensors. Trends Biotechnol 2020; 39:927-939. [PMID: 33388162 DOI: 10.1016/j.tibtech.2020.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 01/31/2023]
Abstract
The combination of biological and synthetic materials has great potential to generate new types of biosensors. Toward this goal, recent advances in artificial cell development have demonstrated the capacity to detect a variety of analytes and environmental changes by encapsulating genetically encoded sensors within bilayer membranes, expanding the contexts within which biologically based sensing can operate. This chassis not only acts as a container for cell-free sensors, but can also play an active role in artificial cell sensing by serving as an additional gate mediating the transfer of environmental information. Here, we focus on recent progress toward stimuli-responsive artificial cells and discuss strategies for membrane functionalization in order to expand cell-free biosensing capabilities and applications.
Collapse
Affiliation(s)
- Margrethe A Boyd
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Neha P Kamat
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
27
|
Groaz A, Moghimianavval H, Tavella F, Giessen TW, Vecchiarelli AG, Yang Q, Liu AP. Engineering spatiotemporal organization and dynamics in synthetic cells. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1685. [PMID: 33219745 DOI: 10.1002/wnan.1685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/13/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
Constructing synthetic cells has recently become an appealing area of research. Decades of research in biochemistry and cell biology have amassed detailed part lists of components involved in various cellular processes. Nevertheless, recreating any cellular process in vitro in cell-sized compartments remains ambitious and challenging. Two broad features or principles are key to the development of synthetic cells-compartmentalization and self-organization/spatiotemporal dynamics. In this review article, we discuss the current state of the art and research trends in the engineering of synthetic cell membranes, development of internal compartmentalization, reconstitution of self-organizing dynamics, and integration of activities across scales of space and time. We also identify some research areas that could play a major role in advancing the impact and utility of engineered synthetic cells. This article is categorized under: Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiong Yang
- University of Michigan, Ann Arbor, Michigan, USA
| | - Allen P Liu
- University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
28
|
Qian X, Nymann Westensee I, Brodszkij E, Städler B. Cell mimicry as a bottom-up strategy for hierarchical engineering of nature-inspired entities. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1683. [PMID: 33205632 DOI: 10.1002/wnan.1683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Artificial biology is an emerging concept that aims to design and engineer the structure and function of natural cells, organelles, or biomolecules with a combination of biological and abiotic building blocks. Cell mimicry focuses on concepts that have the potential to be integrated with mammalian cells and tissue. In this feature article, we will emphasize the advancements in the past 3-4 years (2017-present) that are dedicated to artificial enzymes, artificial organelles, and artificial mammalian cells. Each aspect will be briefly introduced, followed by highlighting efforts that considered key properties of the different mimics. Finally, the current challenges and opportunities will be outlined. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Xiaomin Qian
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | | | - Edit Brodszkij
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
29
|
Fujiwara S, Shoji K, Watanabe C, Kawano R, Yanagisawa M. Microfluidic Formation of Honeycomb-Patterned Droplets Bounded by Interface Bilayers via Bimodal Molecular Adsorption. MICROMACHINES 2020; 11:mi11070701. [PMID: 32698458 PMCID: PMC7407938 DOI: 10.3390/mi11070701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 01/02/2023]
Abstract
Assembled water-in-oil droplets bounded by lipid bilayers are used in synthetic biology as minimal models of cell tissue. Microfluidic devices successfully generate monodispersed droplets and assemble them via droplet interface bilayesr (DIB) formation. However, a honeycomb pattern of DIB-bounded droplets, similar to epithelial tissues, remains unrealized because the rapid DIB formation between the droplets hinders their ability to form the honeycomb pattern. In this paper, we demonstrate the microfluidic formation of a honeycomb pattern of DIB-bounded droplets using two surfactants with different adsorption rates on the droplet surface. A non-DIB forming surfactant (sorbitan monooleate, Span 80) was mixed with a lipid (1,2-dioleoyl-sn-glycero-3-phosphocholine, PC), whose adsorption rate on the droplet surface and saturated interfacial tension were lower than those of Span 80. By changing the surfactant composition, we established the conditions under which the droplets initially form a honeycomb pattern and subsequently adhere to each other via DIB formation to minimize the interfacial energy. In addition, the reconstituted membrane protein nanopores at the DIBs were able to transport molecules. This new method, using the difference in the adsorption rates of two surfactants, allows the formation of a honeycomb pattern of DIB-bounded droplets in a single step, and thus facilitates research using DIB-bounded droplet assemblies.
Collapse
Affiliation(s)
- Shougo Fujiwara
- Komaba Institute for Science, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan; (S.F.); (C.W.)
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Kan Shoji
- Department of Biotechnology and Life Science., Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan; (K.S.); (R.K.)
- Department of Mechanical Engineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan
| | - Chiho Watanabe
- Komaba Institute for Science, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan; (S.F.); (C.W.)
| | - Ryuji Kawano
- Department of Biotechnology and Life Science., Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan; (K.S.); (R.K.)
| | - Miho Yanagisawa
- Komaba Institute for Science, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan; (S.F.); (C.W.)
- Department of Basic Science, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Correspondence: ; Tel.: +81-3-5465-7302
| |
Collapse
|
30
|
Omersa N, Aden S, Kisovec M, Podobnik M, Anderluh G. Design of Protein Logic Gate System Operating on Lipid Membranes. ACS Synth Biol 2020; 9:316-328. [PMID: 31995709 PMCID: PMC7308068 DOI: 10.1021/acssynbio.9b00340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Lipid membranes are becoming increasingly popular in synthetic biology due to their biophysical properties and crucial role in communication between different compartments. Several alluring protein-membrane sensors have already been developed, whereas protein logic gates designs on membrane-embedded proteins are very limited. Here we demonstrate the construction of a two-level protein-membrane logic gate with an OR-AND logic. The system consists of an engineered pH-dependent pore-forming protein listeriolysin O and its DARPin-based inhibitor, conjugated to a lipid vesicle membrane. The gate responds to low pH and removal of the inhibitor from the membrane either by switching to a reducing environment, protease cleavage, or any other signal depending on the conjugation chemistry used for inhibitor attachment to the membrane. This unique protein logic gate vesicle system advances generic sensing and actuator platforms used in synthetic biology and could be utilized in drug delivery.
Collapse
Affiliation(s)
- Neža Omersa
- Department
of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia
- Biomedicine
Doctoral Program, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Saša Aden
- Department
of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia
- Biomedicine
Doctoral Program, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Matic Kisovec
- Department
of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department
of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia
| | - Gregor Anderluh
- Department
of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia
| |
Collapse
|
31
|
Peruzzi JA, Jacobs ML, Vu TQ, Wang KS, Kamat NP. Barcoding Biological Reactions with DNA-Functionalized Vesicles. Angew Chem Int Ed Engl 2019; 58:18683-18690. [PMID: 31596992 PMCID: PMC6901749 DOI: 10.1002/anie.201911544] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 11/08/2022]
Abstract
Targeted vesicle fusion is a promising approach to selectively control interactions between vesicle compartments and would enable the initiation of biological reactions in complex aqueous environments. Here, we explore how two features of vesicle membranes, DNA tethers and phase-segregated membranes, promote fusion between specific vesicle populations. Membrane phase-segregation provides an energetic driver for membrane fusion that increases the efficiency of DNA-mediated fusion events. The orthogonality provided by DNA tethers allows us to direct fusion and delivery of DNA cargo to specific vesicle populations. Vesicle fusion between DNA-tethered vesicles can be used to initiate in vitro protein expression to produce model soluble and membrane proteins. Engineering orthogonal fusion events between DNA-tethered vesicles provides a new strategy to control the spatiotemporal dynamics of cell-free reactions, expanding opportunities to engineer artificial cellular systems.
Collapse
Affiliation(s)
- Justin A Peruzzi
- Department of Chemical and Biological Engineering, Northwestern University, USA
| | - Miranda L Jacobs
- Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Technological Institute, 2145 Sheridan Road, Evanston, Il, 60208, USA
| | - Timothy Q Vu
- Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Technological Institute, 2145 Sheridan Road, Evanston, Il, 60208, USA
| | - Kenneth S Wang
- Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Technological Institute, 2145 Sheridan Road, Evanston, Il, 60208, USA
| | - Neha P Kamat
- Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Technological Institute, 2145 Sheridan Road, Evanston, Il, 60208, USA
- Center for Synthetic Biology, Northwestern University, USA
- Chemistry of Life Processes Institute, Northwestern University, USA
| |
Collapse
|
32
|
Peruzzi JA, Jacobs ML, Vu TQ, Wang KS, Kamat NP. Barcoding Biological Reactions with DNA‐Functionalized Vesicles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911544] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Justin A. Peruzzi
- Department of Chemical and Biological Engineering Northwestern University USA
| | - Miranda L. Jacobs
- Department of Biomedical Engineering Northwestern University McCormick School of Engineering Technological Institute 2145 Sheridan Road Evanston Il 60208 USA
| | - Timothy Q. Vu
- Department of Biomedical Engineering Northwestern University McCormick School of Engineering Technological Institute 2145 Sheridan Road Evanston Il 60208 USA
| | - Kenneth S. Wang
- Department of Biomedical Engineering Northwestern University McCormick School of Engineering Technological Institute 2145 Sheridan Road Evanston Il 60208 USA
| | - Neha P. Kamat
- Department of Biomedical Engineering Northwestern University McCormick School of Engineering Technological Institute 2145 Sheridan Road Evanston Il 60208 USA
- Center for Synthetic Biology Northwestern University USA
- Chemistry of Life Processes Institute Northwestern University USA
| |
Collapse
|
33
|
Chakraborty T, Bartelt SM, Steinkühler J, Dimova R, Wegner SV. Light controlled cell-to-cell adhesion and chemical communication in minimal synthetic cells. Chem Commun (Camb) 2019; 55:9448-9451. [DOI: 10.1039/c9cc04768a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Light controlled adhesions between sender and receiver GUVs, used as minimal synthetic cells, photoregulates their spatial proximity and chemical communication.
Collapse
Affiliation(s)
| | - S. M. Bartelt
- Max Planck Institute for Polymer Research
- Mainz
- Germany
| | - J. Steinkühler
- Department of Theory and Biosystems
- Max Planck Institute of Colloids and Interfaces
- Potsdam
- Germany
| | - R. Dimova
- Department of Theory and Biosystems
- Max Planck Institute of Colloids and Interfaces
- Potsdam
- Germany
| | - S. V. Wegner
- Max Planck Institute for Polymer Research
- Mainz
- Germany
| |
Collapse
|