1
|
Kang Y, Wang Y, Zhang H, Wang Z, Zhang X, Wang H. Functionalized 2D membranes for separations at the 1-nm scale. Chem Soc Rev 2024; 53:7939-7959. [PMID: 38984392 DOI: 10.1039/d4cs00272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The ongoing evolution of two-dimensional (2D) material-based membranes has prompted the realization of mass separations at the 1-nm scale due to their well-defined selective nano- and subnanochannels. Strategic membrane functionalization is further found to be key to augmenting channel accuracy and efficiency in distinguishing ions, gases and molecules within this range and is thus trending as a research focus in energy-, resource-, environment- and pharmaceutical-related applications. In this review, we present the fundamentals underpinning functionalized 2D membranes in various separations, elucidating the critical "method-interaction-property" relationship. Starting with an introduction to various functionalization strategies, we focus our discussion on functionalization-induced channel-species interactions and reveal how they shape the transport- and operation-related features of the membrane in different scenarios. We also highlight the limitations and challenges of current functionalized 2D membranes and outline the necessary breakthroughs needed to apply them as reliable and high-performance separation units across industries in the future.
Collapse
Affiliation(s)
- Yuan Kang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| | - Yuqi Wang
- School of Materials Science and Engineering, Zhejiang University, 310058, China
| | - Hao Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St. Lucia, 4072, Australia.
| | - Zhouyou Wang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| | - Xiwang Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St. Lucia, 4072, Australia.
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| |
Collapse
|
2
|
Dong X, Wan B, Zha JW. Versatile Landscape of Low- k Polyimide: Theories, Synthesis, Synergistic Properties, and Industrial Integration. Chem Rev 2024; 124:7674-7711. [PMID: 38847509 DOI: 10.1021/acs.chemrev.3c00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The development of microelectronics and large-scale intelligence nowadays promotes the integration, miniaturization, and multifunctionality of electronic and devices but also leads to the increment of signal transmission delays, crosstalk, and energy consumption. The exploitation of materials with low permittivity (low-k) is crucial for realizing innovations in microelectronics. However, due to the high permittivity of conventional interlayer dielectric material (k ∼ 4.0), it is difficult to meet the demands of current microelectronic technology development (k < 3.0). Organic dielectric materials have attracted much attention because of their relatively low permittivity owing to their low material density and low single bond polarization. Polyimide (PI) exhibits better application potential based on its well permittivity tunability (k = 1.1-3.2), high thermal stability (>500 °C), and mechanical property (modulus of elasticity up to 3.0-4.0 GPa). In this review, based on the synergistic relationship of dielectric parameters of materials, the development of nearly 20 years on low-k PI is thoroughly summarized. Moreover, process strategies for modifying low-k PI at the molecular level, multiphase recombination, and interface engineering are discussed exhaustively. The industrial application, technological challenges, and future development of low-k PI are also analyzed, which will provide meaningful guidance for the design and practical application of multifunctional low-k materials.
Collapse
Affiliation(s)
- Xiaodi Dong
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Baoquan Wan
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun-Wei Zha
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528300, China
| |
Collapse
|
3
|
Negaresh Z, Fazli M, Majid Hashemianzadeh S. H-passivated nanoporous graphene membranes for CO2/N2 separation: A reactive molecular dynamic simulation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Chen X, Fan K, Liu Y, Li Y, Liu X, Feng W, Wang X. Recent Advances in Fluorinated Graphene from Synthesis to Applications: Critical Review on Functional Chemistry and Structure Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101665. [PMID: 34658081 DOI: 10.1002/adma.202101665] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/27/2021] [Indexed: 05/11/2023]
Abstract
Fluorinated graphene (FG), as an emerging member of the graphene derivatives family, has attracted wide attention on account of its excellent performances and underlying applications. The introduction of a fluorine atom, with the strongest electronegativity (3.98), greatly changes the electron distribution of graphene, resulting in a series of unique variations in optical, electronic, magnetic, interfacial properties and so on. Herein, recent advances in the study of FG from synthesis to applications are introduced, and the relationship between its structure and properties is summarized in detail. Especially, the functional chemistry of FG has been thoroughly analyzed in recent years, which has opened a universal route for the functionalization and even multifunctionalization of FG toward various graphene derivatives, which further broadens its applications. Moreover, from a particular angle, the structure engineering of FG such as the distribution pattern of fluorine atoms and the regulation of interlayer structure when advanced nanotechnology gets involved is summarized. Notably, the elaborated structure engineering of FG is the key factor to optimize the corresponding properties for potential applications, and is also an up-to-date research hotspot and future development direction. Finally, perspectives and prospects for the problems and challenges in the study of FG are put forward.
Collapse
Affiliation(s)
- Xinyu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kun Fan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yu Li
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P. R. China
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P. R. China
| | - Xu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
5
|
Hu P, Wang S, Zhuo Y. Effects of element doping and H2O presence on CO2 adsorption using hexagonal boron nitride. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Bottom-up synthesis of graphene films hosting atom-thick molecular-sieving apertures. Proc Natl Acad Sci U S A 2021; 118:2022201118. [PMID: 34493654 DOI: 10.1073/pnas.2022201118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Incorporation of a high density of molecular-sieving nanopores in the graphene lattice by the bottom-up synthesis is highly attractive for high-performance membranes. Herein, we achieve this by a controlled synthesis of nanocrystalline graphene where incomplete growth of a few nanometer-sized, misoriented grains generates molecular-sized pores in the lattice. The density of pores is comparable to that obtained by the state-of-the-art postsynthetic etching (1012 cm-2) and is up to two orders of magnitude higher than that of molecular-sieving intrinsic vacancy defects in single-layer graphene (SLG) prepared by chemical vapor deposition. The porous nanocrystalline graphene (PNG) films are synthesized by precipitation of C dissolved in the Ni matrix where the C concentration is regulated by controlled pyrolysis of precursors (polymers and/or sugar). The PNG film is made of few-layered graphene except near the grain edge where the grains taper down to a single layer and eventually terminate into vacancy defects at a node where three or more grains meet. This unique nanostructure is highly attractive for the membranes because the layered domains improve the mechanical robustness of the film while the atom-thick molecular-sized apertures allow the realization of large gas transport. The combination of gas permeance and gas pair selectivity is comparable to that from the nanoporous SLG membranes prepared by state-of-the-art postsynthetic lattice etching. Overall, the method reported here improves the scale-up potential of graphene membranes by cutting down the processing steps.
Collapse
|
7
|
SI A, Kyzas GZ, Pal K, de Souza Jr. FG. Graphene functionalized hybrid nanomaterials for industrial-scale applications: A systematic review. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130518] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
8
|
Miao F, Jiang H, Cheng XL. Separation of C 1/C 3 binary organic gas mixtures via flexible nanoporous carbon molecular sieves: DFT calculations and MD simulations. J Mol Graph Model 2021; 106:107911. [PMID: 33848949 DOI: 10.1016/j.jmgm.2021.107911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The C1/C3 hydrocarbon gas separation characteristics of nanoporous carbon molecular sieves (CMS) are studied using DFT calculations and MD simulations. To efficiently separate the equimolar CH4/C3H8 and CH4/C3H6 gas mixtures, CNT gas transport channels are embed between the polyphenylene membranes which created structural deformation for both CNT and membrane. The adsorption and permeation of gas molecules via CMS and the effect of nanochannel density and electric field on gas selectivity are analyzed. In addition to the direct permeation, gas molecules that adsorbed on the NPG surface also making a significant contribution to the gas permeability comes from a surface mechanism. Results also uncovered that the gas selectivity is enhanced by the electric field along the + x and +y axes, whereas reduced by the electric field along the + z and -z axes. Plainly, this CMS provides a feasible way for the efficient separation of the C1/C3 organic gas mixtures.
Collapse
Affiliation(s)
- Feng Miao
- Key Laboratory of Electronic and Information Engineering (Southwest Minzu University), State Ethnic Affairs Commission, Chengdu, 610041, China
| | - Hao Jiang
- General Education Department, Sichuan Police College, Luzhou, 646000, China.
| | - Xin-Lu Cheng
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
9
|
Hou D, Zhang S, Chen X, Song R, Zhang D, Yao A, Sun J, Wang W, Sun L, Chen B, Liu Z, Wang L. Decimeter-Scale Atomically Thin Graphene Membranes for Gas-Liquid Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10328-10335. [PMID: 33599473 DOI: 10.1021/acsami.0c23013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Graphene holds great potential for fabricating ultrathin selective membranes possessing high permeability without compromising selectivity and has attracted intensive interest in developing high-performance separation membranes for desalination, natural gas purification, hemodialysis, distillation, and other gas-liquid separation. However, the scalable and cost-effective synthesis of nanoporous graphene membranes, especially designing a method to produce an appropriate porous polymer substrate, remains very challenging. Here, we report a facile route to fabricate decimeter-scale (∼15 × 10 cm2) nanoporous atomically thin membranes (NATMs) via the direct casting of the porous polymer substrate onto graphene, which was produced by chemical vapor deposition (CVD). After the vapor-induced phase-inversion process under proper experimental conditions (60 °C and 60% humidity), the flexible nanoporous polymer substrate was formed. The resultant skin-free polymer substrate, which had the proper pore size and a uniform spongelike structure, provided enough mechanical support without reducing the permeance of the NATMs. It was demonstrated that after creating nanopores by the O2 plasma treatment, the NATMs were salt-resistant and simultaneously showed 3-5 times higher gas (CO2) permeance than the state-of-the-art commercial polymeric membranes. Therefore, our work provides guidance for the technological developments of graphene-based membranes and bridges the gap between the laboratory-scale "proof-of-concept" and the practical applications of NATMs in the industry.
Collapse
Affiliation(s)
- Dandan Hou
- Institute of microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
- Beijing Graphene Institute, Beijing 100095, China
| | - Shengping Zhang
- Institute of microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Peking University, Beijing 100871, China
- Beijing Graphene Institute, Beijing 100095, China
| | - Xiaobo Chen
- Institute of microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
| | - Ruiyang Song
- Institute of microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
| | - Dongxu Zhang
- Beijing Graphene Institute, Beijing 100095, China
| | - Ayan Yao
- Beijing Graphene Institute, Beijing 100095, China
| | - Jiayue Sun
- Beijing Graphene Institute, Beijing 100095, China
| | - Wenxuan Wang
- Beijing Graphene Institute, Beijing 100095, China
| | - Luzhao Sun
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Peking University, Beijing 100871, China
- Beijing Graphene Institute, Beijing 100095, China
| | - Buhang Chen
- Beijing Graphene Institute, Beijing 100095, China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Peking University, Beijing 100871, China
- Beijing Graphene Institute, Beijing 100095, China
| | - Luda Wang
- Institute of microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Peking University, Beijing 100871, China
- Beijing Graphene Institute, Beijing 100095, China
| |
Collapse
|
10
|
Zhang M, Sun B, Luo A, Huang S, Zhang X. Electrodialysis based direct air dehumidification: A molecular dynamics study on moisture diffusion and separation through graphene oxide membrane. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Deng J, Chuang W, Kao H, Wang B. Efficient small toxic gaseous molecule scavengers in
metal‐defective
graphene: A density functional analysis. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jin‐Pei Deng
- Department of Chemistry Tamkang University New Taipei City Taiwan
| | - Wen‐Hua Chuang
- Department of Chemistry Tamkang University New Taipei City Taiwan
| | - Hsien‐Chang Kao
- Department of Chemistry Tamkang University New Taipei City Taiwan
| | - Bo‐Cheng Wang
- Department of Chemistry Tamkang University New Taipei City Taiwan
| |
Collapse
|
12
|
Schlichting KP, Poulikakos D. Selective Etching of Graphene Membrane Nanopores: From Molecular Sieving to Extreme Permeance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36468-36477. [PMID: 32805790 DOI: 10.1021/acsami.0c07277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional materials are the essential building blocks of breakthrough membrane technologies due to minimal permeation barriers across atomically thin pores. Tunable pore size fabrication combined with independently controlled pore number density is necessary for outstanding performance but remains a challenge. There is a great need for parallel, upscalable methods that can control pore size from sub-nm to >5 nm, a pore size range required for membranes with effective molecular separation. Here we report a dry, facile, and scalable process introducing atomic defects by design, followed by selective etching of graphene edge atoms able to controllably expand the nanopore dimensions from sub-nm to 5 nm. The attainable average pore sizes at 1015 m-2 pore density promise applicability to various separation applications. We investigate the gas permeation and separation mechanisms, finding that these membranes display molecular sieving (H2/CH4 separation factor = 9.3; H2 permeance = 3370 gas permeation units (GPU)) and reveal the presence of interweaved transport phenomena of pore chemistry, surface flow, and gas molecule momentum transfer. We observe the smooth transition from molecular sieving to effusion at unprecedented permeance (H2/CH4 separation factor = 3.7; H2 permeance = 107 GPU). Our scalable graphene membrane fabrication approach in combination with sub-5 nm pores opens a new route employing 2D membranes to study gas transport and effectively paving the way to industrial applications.
Collapse
Affiliation(s)
- Karl-Philipp Schlichting
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| |
Collapse
|
13
|
Rezaee P, Naeij HR. A new approach to separate hydrogen from carbon dioxide using graphdiyne-like membrane. Sci Rep 2020; 10:13549. [PMID: 32782345 PMCID: PMC7419318 DOI: 10.1038/s41598-020-69933-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/22/2020] [Indexed: 11/23/2022] Open
Abstract
In order to separate a mixture of hydrogen (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {H}_{2}$$\end{document}H2) and carbon dioxide (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {CO}_{2}$$\end{document}CO2) gases, we have proposed a new approach employing the graphdiyne-like membrane (GDY-H) using density functional theory (DFT) calculations and molecular dynamics (MD) simulations. GDY-H is constructed by removing one-third diacetylenic (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{-}\text {C}{\equiv}\text {C}{-}\text {C}{\equiv}\text {C}{-}}$$\end{document}-C≡C-C≡C-) bonds linkages and replacing with hydrogen atoms in graphdiyne structure. Our DFT calculations exhibit poor selectivity and good permeances for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {H}_{2}$$\end{document}H2/\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {CO}_{2}$$\end{document}CO2 gases passing through this membrane. To improve the performance of the GDY-H membrane for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {H}_{2}$$\end{document}H2/\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {CO}_{2}$$\end{document}CO2 separation, we have placed two layers of GDY-H adjacent to each other which the distance between them is 2 nm. Then, we have inserted 1,3,5-triaminobenzene between two layers. In this approach, the selectivity of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {H}_{2}$$\end{document}H2/\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {CO}_{2}$$\end{document}CO2 is increased from 5.65 to completely purified \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {H}_{2}$$\end{document}H2 gas at 300 K. Furthermore, GDY-H membrane represents excellent permeance, about \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$10^8$$\end{document}108 gas permeation unit (GPU), for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {H}_{2}$$\end{document}H2 molecule at temperatures above 20 K. The \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {H}_{2}$$\end{document}H2 permeance is much higher than the value of the usual industrial limits. Moreover, our proposed approach shows a good balance between the selectivity and permeance parameters for the gas separation which is an essential factor for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {H}_{2}$$\end{document}H2 purification and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {CO}_{2}$$\end{document}CO2 capture processes in the industry.
Collapse
|
14
|
Naberezhnyi D, Dementyev P. Molecular transport in ionic liquid/nanomembrane hybrids. Phys Chem Chem Phys 2020; 22:9808-9814. [PMID: 32337528 DOI: 10.1039/d0cp01233e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ionic liquids and nanoscale membranes are both considered as promising functional components to design next-generation gas separation technologies. Herein, we combine free-standing carbon nanomembranes (CNMs) with [bmim][Tf2N] ionic liquid having affinity to carbon dioxide, and explore molecular permeation through such a composite membrane. Gas transport measurements reveal an increase in the transmembrane flux of carbon dioxide as compared to that of bare CNMs, whereas passage of helium is found to be suppressed in accordance with the solubility constants. Upon exposure to water vapor, the behavior of the hybrid membrane appears to differ strikingly as hydrophilic properties of CNMs are camouflaged by the hydrophobic nature of the ionic liquid. Kinetic simulations are conducted to account for the change in permeation mechanism, and the results agree with the experimental data obtained. Our study confirms that molecular transport in two-dimensional membranes can be tailored by imparting chemical functionalities, but at the same time highlights practical challenges in surface modification.
Collapse
Affiliation(s)
- Daniil Naberezhnyi
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Bielefeld 33615, Germany.
| | - Petr Dementyev
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Bielefeld 33615, Germany.
| |
Collapse
|
15
|
Tribological behaviors of polyimide composite films enhanced with fluorographene. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123707] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Wang X, Ma X, Zhang L, Jiang G, Yang M. Dielectric and optical properties of porous graphenes with uniform pore structures. J Mol Model 2019; 25:266. [PMID: 31444632 DOI: 10.1007/s00894-019-4127-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/07/2019] [Indexed: 11/30/2022]
Abstract
Chemical synthesis for graphenes with uniform pore structures opens a new way for the precise modulation toward the performances of graphene-based materials. A family of porous graphenes with continuous and ordered pore distributions was designed by tracking the synthetic paths and studied by using density functional theory calculations. Three compounds with different pore sizes and orientations have remarkably different energy band structures. Introduction of pores opens the band gap of graphene. While the valence band maximum (VBM) is subject to small changes, the conduction band minimum (CBM) shifts with pore size and orientation. Furthermore, distinct in-plane anisotropy was noted in electron delocalization for the VBM and CBM bands. Enlargement of pore size alters the electron delocalization between the longitudinal and transverse directions. Confined by the ribbons and bridges that are separated by pores, electric dipoles cost more energy to respond to the applied fields, and electron excitations become more difficult in less conjugated systems. Our calculations reveal that for the graphenes with uniform pore structures, their band structures and optoelectronic properties are expected to be modulated by careful control over pore size and orientation through chemical synthesis.
Collapse
Affiliation(s)
- Xian Wang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, China
| | - Xingtao Ma
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, China
| | - Li Zhang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, China.
| | - Gang Jiang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, China
| | - Mingli Yang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
17
|
Ali I, Basheer AA, Mbianda XY, Burakov A, Galunin E, Burakova I, Mkrtchyan E, Tkachev A, Grachev V. Graphene based adsorbents for remediation of noxious pollutants from wastewater. ENVIRONMENT INTERNATIONAL 2019; 127:160-180. [PMID: 30921668 DOI: 10.1016/j.envint.2019.03.029] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 05/18/2023]
Abstract
The contamination of water resources with noxious pollutants is a serious issue. Many aquatic systems are contaminated with different toxic inorganic and organic species; coming to wastewater from various anthropogenic sources such as industries, agriculture, mining, and domestic households. Keeping in view of this, wastewater treatment appears to the main environmental challenge. Adsorption is one of the most efficient techniques for removing all most all types of pollutants i.e. inorganics and organics. Nowadays, graphene and its composite materials are gaining importance as nano adsorbents. Graphene; a two-dimensional nanomaterial having single-atom graphite layer; has attracted a great interest in many application areas (including wastewater treatment) due to its unique physico-chemical properties. The present paper is focused on the remediation of noxious wastes from wastewater using graphene based materials as adsorbents, and it contains all the details on materials - i.e., from their synthesis to application in the field of wastewater treatment (removal of hazardous contaminants of different chemical nature - heavy and rare-earth metal ions, and organic compounds - from wastewater effluents. The efficiency of the adsorption and desorption of these substances is considered. Certainly, this article will be useful for nano environmentalist to design future experiments for water treatment.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, College of Sciences, Taibah University, Al-Medina Al-Munawara 41477, Saudi Arabia; Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi 110025, India.
| | - Al Arsh Basheer
- State University of New York, Flint Entrance, Amherst, NY 14260, Buffalo, USA.
| | - X Y Mbianda
- Department of Applied Chemistry, University of Johannesburg, Johannesburg 17011, South Africa
| | - Alexander Burakov
- Tambov State Technical University, 106 Sovetskaya Str., Tambov 392000, Russia
| | - Evgeny Galunin
- Tambov State Technical University, 106 Sovetskaya Str., Tambov 392000, Russia
| | - Irina Burakova
- Tambov State Technical University, 106 Sovetskaya Str., Tambov 392000, Russia
| | - Elina Mkrtchyan
- Tambov State Technical University, 106 Sovetskaya Str., Tambov 392000, Russia
| | - Alexey Tkachev
- Tambov State Technical University, 106 Sovetskaya Str., Tambov 392000, Russia
| | - Vladimir Grachev
- A.N. Frumkin Instutute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Ave., Bldg. 4, Moscow 119071, Russia
| |
Collapse
|
18
|
Crystallization of gas-selective nanoporous graphene by competitive etching and growth: a modeling study. Sci Rep 2019; 9:5202. [PMID: 30914744 PMCID: PMC6435714 DOI: 10.1038/s41598-019-41645-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/13/2019] [Indexed: 11/08/2022] Open
Abstract
A robust synthesis methodology for crystallizing nanoporous single-layer graphene hosting a high density of size-selective nanopores is urgently needed to realize the true potential of two-dimensional membranes for gas separation. Currently, there are no controllable etching techniques for single-layer graphene that are self-limiting, and that can generate size-selective nanopores at a high pore-density. In this work, we simulate a unique chemical vapor deposition based crystallization of graphene on Cu(111), in the presence of an etchant, to generate a high density (>1013 cm-2) of sub-nanometer-sized, elongated nanopores in graphene. An equilibrium between the growth rate and the etching rate is obtained, and beyond a critical time, the total number of the carbon atoms and the edge carbon atoms do not change. Using an optimal first-order etching chemistry, a log-mean pore-size of 5.0 ± 1.7 (number of missing carbon atoms), and a pore-density of 3 × 1013 cm-2 was achieved. A high throughput calculation route for estimating gas selectivity from ensembles of thousands of nanopores was developed. The optimized result yielded H2/CO2, H2/N2 and H2/CH4 selectivities larger than 200, attributing to elongated pores generated by the competitive etching and growth. The approach of competitive etching during the crystal growth is quite generic and can be applied to a number of two-dimensional materials.
Collapse
|
19
|
Chaitoglou S, Giannakopoulou T, Speliotis T, Vavouliotis A, Trapalis C, Dimoulas A. Mo 2C/graphene heterostructures: low temperature chemical vapor deposition on liquid bimetallic Sn-Cu and hydrogen evolution reaction electrocatalytic properties. NANOTECHNOLOGY 2019; 30:125401. [PMID: 30566921 DOI: 10.1088/1361-6528/aaf9e8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Thin 2D Mo2C/graphene vertical heterostructures have attracted significant attention due to their potential application as electrodes in the hydrogen evolution reaction (HER) and energy storage. A common drawback in the chemical vapor deposition synthesis of these structures is the demand for high temperature growth, which should be higher than the melting temperature of the metal catalyst. The most common metallic catalyst is Cu, which has a melting temperature of 1084 °C. Here, we report the growth of thin, ∼200 nm in thickness, semitransparent micrometer-sized Mo2C domains and Mo2C/graphene heterostructures at lower temperatures using liquid Sn-Cu alloys. No Sn-associated defects are observed, making the alloy an appealing growth substrate. Raman spectroscopy reveals the vertical interaction between graphene and Mo2C, as shown by the variation in the strain of the graphene film. The results demonstrate the capability to grow continuous nanometer-thin Mo2C films at temperatures as low as 880 °C, without sacrificing the growth rate. Mo2C films are proven to be efficient electrocatalysts for the HER. Moreover, we demonstrate the beneficial role of graphene overgrown on Mo2C in reducing the HER overpotential values, which is attributed to more efficient charge transfer kinetics, compared to pure Mo2C films.
Collapse
Affiliation(s)
- Stefanos Chaitoglou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research 'DEMOKRITOS', 15310, Athens, Greece
| | | | | | | | | | | |
Collapse
|
20
|
First-principles modeling of water permeation through periodically porous graphene derivatives. J Colloid Interface Sci 2019; 538:367-376. [DOI: 10.1016/j.jcis.2018.11.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 01/24/2023]
|
21
|
Zhao J, He G, Huang S, Villalobos LF, Dakhchoune M, Bassas H, Agrawal KV. Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation. SCIENCE ADVANCES 2019; 5:eaav1851. [PMID: 30746475 PMCID: PMC6357726 DOI: 10.1126/sciadv.aav1851] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/10/2018] [Indexed: 05/19/2023]
Abstract
One of the bottlenecks in realizing the potential of atom-thick graphene membrane for gas sieving is the difficulty in incorporating nanopores in an otherwise impermeable graphene lattice, with an angstrom precision at a high-enough pore density. We realize this design by developing a synergistic, partially decoupled defect nucleation and pore expansion strategy using O2 plasma and O3 treatment. A high density (ca. 2.1 × 1012 cm-2) of H2-sieving pores was achieved while limiting the percentage of CH4-permeating pores to 13 to 22 parts per million. As a result, a record-high gas mixture separation performance was achieved (H2 permeance, 1340 to 6045 gas permeation units; H2/CH4 separation factor, 15.6 to 25.1; H2/C3H8 separation factor, 38.0 to 57.8). This highly scalable pore etching strategy will accelerate the development of single-layer graphene-based energy-efficient membranes.
Collapse
Affiliation(s)
- J. Zhao
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1951, Switzerland
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - G. He
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1951, Switzerland
| | - S. Huang
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1951, Switzerland
| | - L. F. Villalobos
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1951, Switzerland
| | - M. Dakhchoune
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1951, Switzerland
| | - H. Bassas
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1951, Switzerland
| | - K. V. Agrawal
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1951, Switzerland
- Corresponding author.
| |
Collapse
|
22
|
Huang S, Dakhchoune M, Luo W, Oveisi E, He G, Rezaei M, Zhao J, Alexander DTL, Züttel A, Strano MS, Agrawal KV. Single-layer graphene membranes by crack-free transfer for gas mixture separation. Nat Commun 2018; 9:2632. [PMID: 29980683 PMCID: PMC6035196 DOI: 10.1038/s41467-018-04904-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/24/2018] [Indexed: 11/08/2022] Open
Abstract
The single-layer graphene film, when incorporated with molecular-sized pores, is predicted to be the ultimate membrane. However, the major bottlenecks have been the crack-free transfer of large-area graphene on a porous support, and the incorporation of molecular-sized nanopores. Herein, we report a nanoporous-carbon-assisted transfer technique, yielding a relatively large area (1 mm2), crack-free, suspended graphene film. Gas-sieving (H2/CH4 selectivity up to 25) is observed from the intrinsic defects generated during the chemical-vapor deposition of graphene. Despite the ultralow porosity of 0.025%, an attractive H2 permeance (up to 4.1 × 10-7 mol m-2 s-1 Pa-1) is observed. Finally, we report ozone functionalization-based etching and pore-modification chemistry to etch hydrogen-selective pores, and to shrink the pore-size, improving H2 permeance (up to 300%) and H2/CH4 selectivity (up to 150%). Overall, the scalable transfer, etching, and functionalization methods developed herein are expected to bring nanoporous graphene membranes a step closer to reality.
Collapse
Affiliation(s)
- Shiqi Huang
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, 1950, Switzerland
| | - Mostapha Dakhchoune
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, 1950, Switzerland
| | - Wen Luo
- Laboratory of Materials for Renewable Energy (LMER), École Polytechnique Fédérale de Lausanne (EPFL), Sion, 1950, Switzerland
| | - Emad Oveisi
- Interdisciplinary Centre for Electron Microscopy (CIME), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Guangwei He
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, 1950, Switzerland
| | - Mojtaba Rezaei
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, 1950, Switzerland
| | - Jing Zhao
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, 1950, Switzerland
| | - Duncan T L Alexander
- Interdisciplinary Centre for Electron Microscopy (CIME), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Andreas Züttel
- Laboratory of Materials for Renewable Energy (LMER), École Polytechnique Fédérale de Lausanne (EPFL), Sion, 1950, Switzerland
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Kumar Varoon Agrawal
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, 1950, Switzerland.
| |
Collapse
|
23
|
Lyu Q, Sun S, Li C, Hu S, Lin LC. Rational Design of Two-Dimensional Hydrocarbon Polymer as Ultrathin-Film Nanoporous Membranes for Water Desalination. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18778-18786. [PMID: 29733183 DOI: 10.1021/acsami.8b04630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Membrane-based water desalination has drawn considerable attention for its potential in addressing the increasingly limited water resources, but progress remains limited due to the inherent constraints of conventional membrane materials. In this work, by employing state-of-the-art molecular simulation techniques, we demonstrated that two-dimensional hydrocarbon polymer membranes, materials that possess intrinsic and tunable nanopores, can provide opportunities as molecular sieves for producing drinkable water from saline sources. Moreover, we identified a unique relationship between the permeation and selectivity for membranes with elliptical pores, which breaks the commonly known trade-off between the pore size and desalination performance. Specifically, increase in the area of elliptical pores with a controlled minor diameter can offer an improved water flux without compromising the ability to reject salts. Water distributions and water dynamics at atomic levels with the potential of mean force profiles for water and ions were also analyzed to understand the dependence of permeation and selectivity on the pore geometry. The outcomes of this work are instrumental to the future development of ultrathin-film reverse osmosis membranes and provide guidelines for the design of membranes with more effective and efficient pore structures.
Collapse
Affiliation(s)
- Qiang Lyu
- William G. Lowrie Department of Chemical and Biomolecular Engineering , The Ohio State University , Columbus , Ohio 43210 , United States
| | | | | | | | - Li-Chiang Lin
- William G. Lowrie Department of Chemical and Biomolecular Engineering , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
24
|
Chronopoulos DD, Bakandritsos A, Pykal M, Zbořil R, Otyepka M. Chemistry, properties, and applications of fluorographene. APPLIED MATERIALS TODAY 2017; 9:60-70. [PMID: 29238741 PMCID: PMC5721099 DOI: 10.1016/j.apmt.2017.05.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 05/23/2023]
Abstract
Fluorographene, formally a two-dimensional stoichiometric graphene derivative, attracted remarkable attention of the scientific community due to its extraordinary physical and chemical properties. We overview the strategies for the preparation of fluorinated graphene derivatives, based on top-down and bottom-up approaches. The physical and chemical properties of fluorographene, which is considered as one of the thinnest insulators with a wide electronic band gap, are presented. Special attention is paid to the rapidly developing chemistry of fluorographene, which was advanced in the last few years. The unusually high reactivity of fluorographene, which can be chemically considered perfluorinated hydrocarbon, enables facile and scalable access to a wide portfolio of graphene derivatives, such as graphene acid, cyanographene and allyl-graphene. Finally, we summarize the so far reported applications of fluorographene and fluorinated graphenes, spanning from sensing and bioimaging to separation, electronics and energy technologies.
Collapse
|
25
|
Guo C, Wang C. Carbon dioxide capture by planar (AlN) n clusters (n=3-5). J Mol Model 2017; 23:288. [PMID: 28948383 DOI: 10.1007/s00894-017-3459-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 09/05/2017] [Indexed: 11/27/2022]
Abstract
Searching for materials and technologies of efficient CO2 capture is of the utmost importance to reduce the CO2 impact on the environment. Therefore, the (AlN)n clusters (n = 3-5) are researched using density functional theoretical calculations. The results of the optimization show that the most stable structures of (AlN)n clusters all display planar configurations at B3LYP and G3B3 methods, which are consistent with the reported results. For these planar clusters, we further systematically studied their interactions with carbon dioxide molecules to understand their adsorption behavior at the B3LYP/6-311+G(d,p) level, including geometric optimization, binding energy, bond index, and electrostatic. We found that the planar structures of (AlN)n (n = 3-5) can capture 3-5 CO2 molecules. The result indicates that (AlN)n (n = 3-5) clusters binding with CO2 is an exothermic process (the capture of every CO2 molecule on (AlN)n clusters releases at least 30 kcal mol-1 in relative free energy values). These analysis results are expected to further motivate the applications of clusters to be efficient CO2 capture materials.
Collapse
Affiliation(s)
- Chen Guo
- College of Science, Northeast Agricultural University, Harbin, Heilongjiang, People's Republic of China, 150030.
| | - Chong Wang
- Department of Chemistry, College of Science, Northeast Forestry University, Harbin, 150040, People's Republic of China
| |
Collapse
|
26
|
Geng D, Zhao X, Chen Z, Sun W, Fu W, Chen J, Liu W, Zhou W, Loh KP. Direct Synthesis of Large-Area 2D Mo 2 C on In Situ Grown Graphene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28722179 DOI: 10.1002/adma.201700072] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/10/2017] [Indexed: 05/17/2023]
Abstract
As a new member of the MXene group, 2D Mo2 C has attracted considerable interest due to its potential application as electrodes for energy storage and catalysis. The large-area synthesis of Mo2 C film is needed for such applications. Here, the one-step direct synthesis of 2D Mo2 C-on-graphene film by molten copper-catalyzed chemical vapor deposition (CVD) is reported. High-quality and uniform Mo2 C film in the centimeter range can be grown on graphene using a Mo-Cu alloy catalyst. Within the vertical heterostructure, graphene acts as a diffusion barrier to the phase-segregated Mo and allows nanometer-thin Mo2 C to be grown. Graphene-templated growth of Mo2 C produces well-faceted, large-sized single crystals with low defect density, as confirmed by scanning transmission electron microscopy (STEM) measurements. Due to its more efficient graphene-mediated charge-transfer kinetics, the as-grown Mo2 C-on-graphene heterostructure shows a much lower onset voltage for hydrogen evolution reactions as compared to Mo2 C-only electrodes.
Collapse
Affiliation(s)
- Dechao Geng
- Department of Chemistry and Centre for Advanced 2D Materials, National University of Singapore, 3 Science Drive 3, 17543, Singapore
| | - Xiaoxu Zhao
- Department of Chemistry and Centre for Advanced 2D Materials, National University of Singapore, 3 Science Drive 3, 17543, Singapore
| | - Zhongxin Chen
- Department of Chemistry and Centre for Advanced 2D Materials, National University of Singapore, 3 Science Drive 3, 17543, Singapore
| | - Weiwei Sun
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA
- Materials Science and Technology Division, Oak Ridge National Lab, Oak Ridge, TN, 37831, USA
| | - Wei Fu
- Department of Chemistry and Centre for Advanced 2D Materials, National University of Singapore, 3 Science Drive 3, 17543, Singapore
| | - Jianyi Chen
- Department of Chemistry and Centre for Advanced 2D Materials, National University of Singapore, 3 Science Drive 3, 17543, Singapore
| | - Wei Liu
- Department of Chemistry and Centre for Advanced 2D Materials, National University of Singapore, 3 Science Drive 3, 17543, Singapore
| | - Wu Zhou
- Materials Science and Technology Division, Oak Ridge National Lab, Oak Ridge, TN, 37831, USA
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kian Ping Loh
- Department of Chemistry and Centre for Advanced 2D Materials, National University of Singapore, 3 Science Drive 3, 17543, Singapore
| |
Collapse
|
27
|
Yuan Z, Govind Rajan A, Misra RP, Drahushuk LW, Agrawal KV, Strano MS, Blankschtein D. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation. ACS NANO 2017; 11:7974-7987. [PMID: 28696710 DOI: 10.1021/acsnano.7b02523] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Due to its atomic thickness, porous graphene with sub-nanometer pore sizes constitutes a promising candidate for gas separation membranes that exhibit ultrahigh permeances. While graphene pores can greatly facilitate gas mixture separation, there is currently no validated analytical framework with which one can predict gas permeation through a given graphene pore. In this work, we simulate the permeation of adsorptive gases, such as CO2 and CH4, through sub-nanometer graphene pores using molecular dynamics simulations. We show that gas permeation can typically be decoupled into two steps: (1) adsorption of gas molecules to the pore mouth and (2) translocation of gas molecules from the pore mouth on one side of the graphene membrane to the pore mouth on the other side. We find that the translocation rate coefficient can be expressed using an Arrhenius-type equation, where the energy barrier and the pre-exponential factor can be theoretically predicted using the transition state theory for classical barrier crossing events. We propose a relation between the pre-exponential factor and the entropy penalty of a gas molecule crossing the pore. Furthermore, on the basis of the theory, we propose an efficient algorithm to calculate CO2 and CH4 permeances per pore for sub-nanometer graphene pores of any shape. For the CO2/CH4 mixture, the graphene nanopores exhibit a trade-off between the CO2 permeance and the CO2/CH4 separation factor. This upper bound on a Robeson plot of selectivity versus permeance for a given pore density is predicted and described by the theory. Pores with CO2/CH4 separation factors higher than 102 have CO2 permeances per pore lower than 10-22 mol s-1 Pa-1, and pores with separation factors of ∼10 have CO2 permeances per pore between 10-22 and 10-21 mol s-1 Pa-1. Finally, we show that a pore density of 1014 m-2 is required for a porous graphene membrane to exceed the permeance-selectivity upper bound of polymeric materials. Moreover, we show that a higher pore density can potentially further boost the permeation performance of a porous graphene membrane above all existing membranes. Our findings provide insights into the potential and the limitations of porous graphene membranes for gas separation and provide an efficient methodology for screening nanopore configurations and sizes for the efficient separation of desired gas mixtures.
Collapse
Affiliation(s)
- Zhe Yuan
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Ananth Govind Rajan
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Lee W Drahushuk
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Kumar Varoon Agrawal
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne , Route Cantonale, 1015 Lausanne, Switzerland
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
28
|
Boutilier MSH, Jang D, Idrobo JC, Kidambi PR, Hadjiconstantinou NG, Karnik R. Molecular Sieving Across Centimeter-Scale Single-Layer Nanoporous Graphene Membranes. ACS NANO 2017; 11:5726-5736. [PMID: 28609103 DOI: 10.1021/acsnano.7b01231] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Molecular sieving across atomically thin nanoporous graphene is predicted to enable superior gas separation performance compared to conventional membranes. Although molecular sieving has been demonstrated across a few pores in microscale graphene membranes, leakage through nonselective defects presents a major challenge toward realizing selective membranes with high densities of pores over macroscopic areas. Guided by multiscale gas transport modeling of nanoporous graphene membranes, we designed the porous support beneath the graphene to isolate small defects and minimize leakage through larger defects. Ion bombardment followed by oxygen plasma etching was used to produce subnanometer pores in graphene at a density of ∼1011 cm-2. Gas permeance measurements demonstrate selectivity that exceeds the Knudsen effusion ratio and scales with the kinetic diameter of the gas molecules, providing evidence of molecular sieving across centimeter-scale nanoporous graphene. The extracted nanoporous graphene performance is comparable to or exceeds the Robeson limit for polymeric gas separation membranes, confirming the potential of nanoporous graphene membranes for gas separations.
Collapse
Affiliation(s)
- Michael S H Boutilier
- Department of Mechanical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Doojoon Jang
- Department of Mechanical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Juan-Carlos Idrobo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Piran R Kidambi
- Department of Mechanical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Nicolas G Hadjiconstantinou
- Department of Mechanical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Rohit Karnik
- Department of Mechanical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
29
|
Wang L, Boutilier MSH, Kidambi PR, Jang D, Hadjiconstantinou NG, Karnik R. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. NATURE NANOTECHNOLOGY 2017; 12:509-522. [PMID: 28584292 DOI: 10.1038/nnano.2017.72] [Citation(s) in RCA: 388] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/20/2017] [Indexed: 05/22/2023]
Abstract
Graphene and other two-dimensional materials offer a new approach to controlling mass transport at the nanoscale. These materials can sustain nanoscale pores in their rigid lattices and due to their minimum possible material thickness, high mechanical strength and chemical robustness, they could be used to address persistent challenges in membrane separations. Here we discuss theoretical and experimental developments in the emerging field of nanoporous atomically thin membranes, focusing on the fundamental mechanisms of gas- and liquid-phase transport, membrane fabrication techniques and advances towards practical application. We highlight potential functional characteristics of the membranes and discuss applications where they are expected to offer advantages. Finally, we outline the major scientific questions and technological challenges that need to be addressed to bridge the gap from theoretical simulations and proof-of-concept experiments to real-world applications.
Collapse
Affiliation(s)
- Luda Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael S H Boutilier
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Piran R Kidambi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Doojoon Jang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Nicolas G Hadjiconstantinou
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Rohit Karnik
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
30
|
Gugliuzza A, Politano A, Drioli E. The advent of graphene and other two-dimensional materials in membrane science and technology. Curr Opin Chem Eng 2017. [DOI: 10.1016/j.coche.2017.03.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Liu X, Wang R. Effective removal of hydrogen sulfide using 4A molecular sieve zeolite synthesized from attapulgite. JOURNAL OF HAZARDOUS MATERIALS 2017; 326:157-164. [PMID: 28013159 DOI: 10.1016/j.jhazmat.2016.12.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 05/24/2023]
Abstract
In this work, 4A molecular sieve zeolite was synthesized from attapulgite (ATP) in different conditions and was applied initially for H2S removal. The sorbent was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectra and N2 adsorption/desorption. The effects of the synthesis condition and adsorption temperature were studied by dynamic adsorption experiment. The optimal adsorption temperature is 50°C. The H2S adsorption results have showed that the optimal synthesis conditions are as follows: the ratio of silicon to aluminum and ratio of sodium to silicon are both 1.5, the ratio of water to sodium is 30, crystallization temperature and crystallization time is 90°C, 4h, respectively. The breakthrough and saturation sulfur sorption capacities of zeolite synthesized under optimum conditions are up to nearly 10 and 15mg/g-sorbent, respectively, and the H2S removal rate is nearly 100%. The adsorption kinetics nonlinear fitting results show that the adsorption system follows Bingham model. These results indicate that 4A molecular sieve zeolite synthesized from attapulgite can be used for H2S removal promisingly.
Collapse
Affiliation(s)
- Xinpeng Liu
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250199, PR China
| | - Rui Wang
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250199, PR China.
| |
Collapse
|
32
|
Karlický F, Otyepková E, Lo R, Pitoňák M, Jurečka P, Pykal M, Hobza P, Otyepka M. Adsorption of Organic Molecules to van der Waals Materials: Comparison of Fluorographene and Fluorographite with Graphene and Graphite. J Chem Theory Comput 2017; 13:1328-1340. [PMID: 28145699 PMCID: PMC5352977 DOI: 10.1021/acs.jctc.6b01130] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Indexed: 11/28/2022]
Abstract
Understanding strength and nature of noncovalent binding to surfaces imposes significant challenge both for computations and experiments. We explored the adsorption of five small nonpolar organic molecules (acetone, acetonitrile, dichloromethane, ethanol, ethyl acetate) to fluorographene and fluorographite using inverse gas chromatography and theoretical calculations, providing new insights into the strength and nature of adsorption of small organic molecules on these surfaces. The measured adsorption enthalpies on fluorographite range from -7 to -13 kcal/mol and are by 1-2 kcal/mol lower than those measured on graphene/graphite, which indicates higher affinity of organic adsorbates to fluorographene than to graphene. The dispersion-corrected functionals performed well, and the nonlocal vdW DFT functionals (particularly optB86b-vdW) achieved the best agreement with the experimental data. Computations show that the adsorption enthalpies are controlled by the interaction energy, which is dominated by London dispersion forces (∼70%). The calculations also show that bonding to structural features, like edges and steps, as well as defects does not significantly increase the adsorption enthalpies, which explains a low sensitivity of measured adsorption enthalpies to coverage. The adopted Langmuir model for fitting experimental data enabled determination of adsorption entropies. The adsorption on the fluorographene/fluorographite surface resulted in an entropy loss equal to approximately 40% of the gas phase entropy.
Collapse
Affiliation(s)
- František Karlický
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký
University Olomouc, tř.
17. listopadu 12, 77 146 Olomouc, Czech Republic
| | - Eva Otyepková
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký
University Olomouc, tř.
17. listopadu 12, 77 146 Olomouc, Czech Republic
| | - Rabindranath Lo
- Institute
of Organic Chemistry and Biochemistry, Academy
of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166
10 Prague 6, Czech Republic
| | - Michal Pitoňák
- Department
of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská Dolina, 842 15 Bratislava, Slovakia
- Computing Center
of the Slovak Academy of Sciences, Dúbravská cesta č. 9, 845 35 Bratislava, Slovakia
| | - Petr Jurečka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký
University Olomouc, tř.
17. listopadu 12, 77 146 Olomouc, Czech Republic
| | - Martin Pykal
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký
University Olomouc, tř.
17. listopadu 12, 77 146 Olomouc, Czech Republic
| | - Pavel Hobza
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký
University Olomouc, tř.
17. listopadu 12, 77 146 Olomouc, Czech Republic
- Institute
of Organic Chemistry and Biochemistry, Academy
of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166
10 Prague 6, Czech Republic
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký
University Olomouc, tř.
17. listopadu 12, 77 146 Olomouc, Czech Republic
| |
Collapse
|
33
|
Wu Y, Chen L, Qin S, Li J, Zhou H, Chen J. Functionalized graphene-reinforced rubber composite: Mechanical and tribological behavior study. J Appl Polym Sci 2017. [DOI: 10.1002/app.44970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yanping Wu
- State Key Laboratory of Solid Lubrication; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou 730000 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Lei Chen
- State Key Laboratory of Solid Lubrication; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou 730000 China
| | - Songlv Qin
- Key Laboratory of Marine Materials and Related Technologies; Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences; Ningbo 315201 China
- Department of Polymer Materials; Laboratory of Polymer Chemistry, College of Materials Science and Engineering, Shanghai University; Shanghai 200444 China
| | - Jinlong Li
- Key Laboratory of Marine Materials and Related Technologies; Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences; Ningbo 315201 China
| | - Huidi Zhou
- State Key Laboratory of Solid Lubrication; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou 730000 China
| | - Jianmin Chen
- State Key Laboratory of Solid Lubrication; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou 730000 China
| |
Collapse
|
34
|
Wu Y, Jia P, Xu L, Chen Z, Xiao L, Sun J, Zhang J, Huang Y, Bielawski CW, Geng J. Tuning the Surface Properties of Graphene Oxide by Surface-Initiated Polymerization of Epoxides: An Efficient Method for Enhancing Gas Separation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4998-5005. [PMID: 28094492 DOI: 10.1021/acsami.6b14895] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Here, we describe an in situ approach for growing polyepoxides from the surfaces of graphene oxide (GO) using a surface-initiated polymerization reaction. The polymerization methodology is facile and general as a broad range of epoxides carrying various functional groups have been successfully polymerized by simply adding GO powders in the epoxide monomers. The resultant polyepoxide grafted GO are found to show enhanced dispersibility in various common solvents and to exhibit increased d-spacing between the basal planes. In particular, grafting poly(2,3-epoxy-1-propanol) (PEP) to GO results in a composite (i.e., GO-g-PEP) that is dispersible in water and miscible with polyether block amide, i.e., Pebax MH 1657. Preliminary studies have indicated the membranes prepared using Pebax/GO-g-PEP composites exhibit enhanced CO2 permeabilities and selectivities in comparison to H2, O2, or N2. The excellent performance in gas separation is attributed to the layered structure of the GO-g-PEP sheets with enlarged d-spacing and the functional groups present on the PEP chains grafted to the surfaces of GO sheets.
Collapse
Affiliation(s)
- Yu Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , 29 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Pan Jia
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , 29 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Linli Xu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , 29 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Zhangyan Chen
- Institute of Chemistry, Chinese Academy of Sciences , 2 Zhongguancun North First Street, Haidian District, Beijing, 100190, China
| | | | - Jinhua Sun
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , 29 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Jun Zhang
- Institute of Chemistry, Chinese Academy of Sciences , 2 Zhongguancun North First Street, Haidian District, Beijing, 100190, China
| | - Yong Huang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , 29 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Christopher W Bielawski
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS) , Ulsan 44919, Republic of Korea
- Department of Chemistry and Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | - Jianxin Geng
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , 29 Zhongguancun East Road, Haidian District, Beijing 100190, China
| |
Collapse
|
35
|
Deng JP, Chuang WH, Tai CK, Kao HC, Pan JH, Wang BC. Density functional analysis of gaseous molecules adsorbed on metal ion/defective nano-sheet graphene. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Zahri K, Goh PS, Ismail AF. The incorporation of graphene oxide into polysulfone mixed matrix membrane for CO2/CH4separation. ACTA ACUST UNITED AC 2016. [DOI: 10.1088/1755-1315/36/1/012007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Numerical Simulation of Salt Water Passing Mechanism Through Nanoporous Single-Layer Graphene Membrane. CHEMICAL PRODUCT AND PROCESS MODELING 2016. [DOI: 10.1515/cppm-2015-0068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In recent years carbon nanotubes and other carbon nanostructures such as graphene sheets have attracted a lot of attention due to their unique mechanical, thermal and electrical properties. These structures can be used in desalination of sea water, removal of hazardous substances from water tanks, gases separation, and so on. The nanoporous single layer graphene membranes are very efficient for desalinating water due to their very low thickness. In this method, water-flow thorough the membrane and salt rejection strongly depend on the applied pressure and size of nanopores that are created in graphene membrane. In this study, the mechanism of passing water and salt ions through nanoporous single-layer graphene membrane are simulated using classical molecular dynamics. We examined the effects of applied pressure and size of nanopores on desalination performance of NPG membrane. Unlike previous researches, we considered the flexibility of the membrane. The results show that by increasing the applied pressure and diameter of the nanopores, water-flow through membrane increases, meanwhile salt rejection decreases.
Collapse
|
38
|
Wang Y, Yang Q, Li J, Yang J, Zhong C. Exploration of nanoporous graphene membranes for the separation of N2 from CO2: a multi-scale computational study. Phys Chem Chem Phys 2016; 18:8352-8. [DOI: 10.1039/c5cp06569k] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The graphene membrane, H-pore-13, with its appropriate pore size of 4.06 Å, exhibits high N2 selectivity over CO2 with a N2 permeance of 105 GPU. It is further revealed that electrostatic sieving plays a crucial role in hindering the passage of CO2 molecules through H-pore-13.
Collapse
Affiliation(s)
- Yong Wang
- Research Institute of Special Chemicals
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Qingyuan Yang
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jinping Li
- Research Institute of Special Chemicals
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Jiangfeng Yang
- Research Institute of Special Chemicals
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Chongli Zhong
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
39
|
Tan X, Kou L, Tahini HA, Smith SC. Charge-modulated permeability and selectivity in graphdiyne for hydrogen purification. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2015.1086486] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Wang T, Zhao L, Shen JN, Wu LG, Van der Bruggen B. Enhanced Performance of Polyurethane Hybrid Membranes for CO2 Separation by Incorporating Graphene Oxide: The Relationship between Membrane Performance and Morphology of Graphene Oxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8004-8011. [PMID: 26024066 DOI: 10.1021/acs.est.5b00138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polyurethane hybrid membranes containing graphene oxide (GO) with different morphologies were prepared by in situ polymerization. The separation of CO2/N2 gas mixtures was studied using these novel membranes. The results from the morphology characterization of GO samples indicated that the oxidation process in the improved Hummers method introduced oxygenated functional groups into graphite, making graphite powder exfoliate into GO nanosheets. The surface defects on the GO sheets increased when oxidation increased due to the introduction of more oxygenated functional groups. Both the increase in oxygenated functional groups on the GO surface and the decrease in the number of GO layers leads to a better distribution of GO in the polymer matrix, increasing thermal stability and gas separation performance of membranes. The addition of excess oxidant destroyed the structure of GO sheets and forms structural defects, which depressed the separation performance of membranes. The hybrid membranes containing well-distributed GO showed higher permeability and permeability selectivity for the CO2. The formation of GO aggregates in the hybrid membranes depressed the membrane performance at a high content of GO.
Collapse
Affiliation(s)
- Ting Wang
- †School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Li Zhao
- †School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jiang-nan Shen
- ‡Center for Membrane and Water Science, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China
| | - Li-guang Wu
- †School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Bart Van der Bruggen
- §Department of Chemical Engineering, Process Engineering for Sustainable Systems (ProcESS), KU Leuven, W. de Croylaan 46, B-3001 Leuven, Belgium
| |
Collapse
|
41
|
Tian Z, Dai S, Jiang DE. Expanded Porphyrins as Two-Dimensional Porous Membranes for CO2 Separation. ACS APPLIED MATERIALS & INTERFACES 2015; 7:13073-13079. [PMID: 25988306 DOI: 10.1021/acsami.5b03275] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Porphyrin-based two-dimensional polymers have uniform micropores and close to atom-thin thicknesses, but they have not been explored for gas separation. Herein we design various expanded porphyrin derivatives for their potential application in membrane gas separation, using CO2/N2 as an example. Pore sizes are determined based on both van der Waals radii and electron density distribution. Potential energy curves for CO2 and N2 passing through are mapped by dispersion-corrected density functional theory calculations. The passing-through barriers are used to evaluate CO2/N2 separation selectivity. Promising subunits for CO2 separation have been selected from the selectivity estimates. 2D membranes composed of amethyrin derivatives are shown to have high ideal selectivity on the order of 10(6) for CO2/N2 separation. Classical molecular dynamics simulation yields a permeance of 10(4)-10(5) GPU for CO2 through extended 2D membranes based on amethyrin derivatives. This work demonstrates that porphyrin systems could offer an attractive bottom-up approach for 2D porous membranes.
Collapse
Affiliation(s)
- Ziqi Tian
- †Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Sheng Dai
- ‡Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6201, United States
- §Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - De-en Jiang
- †Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
42
|
Azamat J, Khataee A, Joo SW. Molecular dynamics simulation of trihalomethanes separation from water by functionalized nanoporous graphene under induced pressure. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.01.048] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Liu H, Chen Z, Dai S, Jiang DE. Selectivity trend of gas separation through nanoporous graphene. J SOLID STATE CHEM 2015. [DOI: 10.1016/j.jssc.2014.01.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Yilmazer ND, Korth M. Enhanced semiempirical QM methods for biomolecular interactions. Comput Struct Biotechnol J 2015; 13:169-75. [PMID: 25848495 PMCID: PMC4372622 DOI: 10.1016/j.csbj.2015.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 12/21/2022] Open
Abstract
Recent successes and failures of the application of 'enhanced' semiempirical QM (SQM) methods are reviewed in the light of the benefits and backdraws of adding dispersion (D) and hydrogen-bond (H) correction terms. We find that the accuracy of SQM-DH methods for non-covalent interactions is very often reported to be comparable to dispersion-corrected density functional theory (DFT-D), while computation times are about three orders of magnitude lower. SQM-DH methods thus open up a possibility to simulate realistically large model systems for problems both in life and materials science with comparably high accuracy.
Collapse
Affiliation(s)
| | - Martin Korth
- Institute of Theoretical Chemistry, Ulm University, D-89069 Ulm, Germany
| |
Collapse
|
45
|
Zhao L, Cheng C, Chen YF, Wang T, Du CH, Wu LG. Enhancement on the permeation performance of polyimide mixed matrix membranes by incorporation of graphene oxide with different oxidation degrees. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3456] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Li Zhao
- School of Environmental Science and Engineering; Zhejiang Gongshang University; Hangzhou 310012 China
| | - Cheng Cheng
- School of Environmental Science and Engineering; Zhejiang Gongshang University; Hangzhou 310012 China
| | - Yu-Fei Chen
- School of Environmental Science and Engineering; Zhejiang Gongshang University; Hangzhou 310012 China
| | - Ting Wang
- School of Environmental Science and Engineering; Zhejiang Gongshang University; Hangzhou 310012 China
| | - Chun-Hui Du
- School of Environmental Science and Engineering; Zhejiang Gongshang University; Hangzhou 310012 China
| | - Li-Guang Wu
- School of Environmental Science and Engineering; Zhejiang Gongshang University; Hangzhou 310012 China
| |
Collapse
|
46
|
Li S, Smith DGA, Patkowski K. An accurate benchmark description of the interactions between carbon dioxide and polyheterocyclic aromatic compounds containing nitrogen. Phys Chem Chem Phys 2015; 17:16560-74. [DOI: 10.1039/c5cp02365c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We assessed the performance of a large variety of modern density functional theory approaches for the adsorption of carbon dioxide on molecular models of pyridinic N-doped graphene.
Collapse
Affiliation(s)
- Sicheng Li
- Department of Chemistry and Biochemistry
- Auburn University
- Auburn
- USA
| | | | - Konrad Patkowski
- Department of Chemistry and Biochemistry
- Auburn University
- Auburn
- USA
| |
Collapse
|
47
|
Wen B, Sun C, Bai B. Inhibition effect of a non-permeating component on gas permeability of nanoporous graphene membranes. Phys Chem Chem Phys 2015; 17:23619-26. [DOI: 10.1039/c5cp03195h] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The inhibition effect of a non-permeating component on gas permeability of nanoporous graphene membranes is identified using molecular dynamics simulations.
Collapse
Affiliation(s)
- Boyao Wen
- State Key Laboratory of Multiphase Flow in Power Engineering
- Xi’an Jiaotong University
- Xi'an
- China
| | - Chengzhen Sun
- State Key Laboratory of Multiphase Flow in Power Engineering
- Xi’an Jiaotong University
- Xi'an
- China
| | - Bofeng Bai
- State Key Laboratory of Multiphase Flow in Power Engineering
- Xi’an Jiaotong University
- Xi'an
- China
| |
Collapse
|
48
|
Wang X, Dai Y, Wang W, Ren M, Li B, Fan C, Liu X. Fluorographene with high fluorine/carbon ratio: a nanofiller for preparing low-κ polyimide hybrid films. ACS APPLIED MATERIALS & INTERFACES 2014; 6:16182-16188. [PMID: 25188677 DOI: 10.1021/am5042516] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Sufficient amounts of fluorographene sheets with different sheet-size and fluorine/carbon ratio were synthesized for preparing of fluorographene/polyimide hybrids in order to explore the effect of fluorographene on the dielectric properties of hybrid materials. It is found that the fluorine/carbon ratio, width of band gap, and sheet-size of fluorographene play the important roles in determining the final dielectric properties of hybrids. The fluorographene with high fluorine/carbon ratio (F/C ≈ 1) presents broaden band gap, enhanced hydrophobicity, good dispersity and thermal stability, etc. Even at a very low filling, only 1 wt %, its polyimide hybrids exhibited drastically reduced dielectric constants as low as 2.1 without sacrificing thermal stability, improved mechanical properties obviously and decreased water absorption by about 120% to 1.0 wt %. This provides a novel route for improving the dielectric properties of materials and a new thought to carry out the application of fluorographene as an advanced material.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University , Chengdu, Sichuan 610065, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Molecular simulation study on the adsorption and separation of acidic gases in a model nanoporous carbon. Chem Eng Sci 2014. [DOI: 10.1016/j.ces.2014.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Tao Y, Xue Q, Liu Z, Shan M, Ling C, Wu T, Li X. Tunable hydrogen separation in porous graphene membrane: first-principle and molecular dynamic simulation. ACS APPLIED MATERIALS & INTERFACES 2014; 6:8048-58. [PMID: 24621326 DOI: 10.1021/am4058887] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
First-principle density functional theory (DFT) calculation and molecular dynamic (MD) simulation are employed to investigate the hydrogen purification performance of two-dimensional porous graphene material (PG-ESX). First, the pore size of PG-ES1 (3.2775 Å) is expected to show high selectivity of H2 by DFT calculation. Then MD simulations demonstrate the hydrogen purification process of the PG-ESX membrane. The results indicate that the selectivity of H2 over several other gas molecules that often accompany H2 in industrial steam methane reforming or dehydrogenation of alkanes (such as N2, CO, and CH4) is sensitive to the pore size of the membrane. PG-ES and PG-ES1 membranes both exhibit high selectivity for H2 over other gases, but the permeability of the PG-ES membrane is much lower than the PG-ES1 membrane because of the smaller pore size. The PG-ES2 membrane with bigger pores demonstrates low selectivity for H2 over other gases. Energy barrier and electron density have been used to explain the difference of selectivity and permeability of PG-ESX membranes by DFT calculations. The energy barrier for gas molecules passing through the membrane generally increase with the decreasing of pore sizes or increasing of molecule kinetic diameter, due to the different electron overlap between gas and a membrane. The PG-ES1 membrane is far superior to other carbon membranes and has great potential applications in hydrogen purification, energy clean combustion, and making new concept membrane for gas separation.
Collapse
Affiliation(s)
- Yehan Tao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum , Qingdao 266580, Shandong, P. R. China
| | | | | | | | | | | | | |
Collapse
|