1
|
Wei LN, Luo L, Lei HT, Guan T, Jiang C, Yin QC, Xu ZL, Li C. Nanoflower Microreactor Based Versatile Enhancer for Recognition Cofactor-Dependent Enzyme Biocatalysis toward Saxitoxin Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46495-46505. [PMID: 39167418 DOI: 10.1021/acsami.4c11419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Investigating organic carriers' utilization efficiency and bioactivity within organic-inorganic hybrid nanoflowers is critical to constructing sensitive immunosensors. Nevertheless, the sensitivity of immunosensors is interactively regulated by different classes of biomolecules such as antibodies and enzymes. In this work, we introduced a new alkaline phosphatase-antibody-CaHPO4 hybrid nanoflowers (AAHNFs) microreactor based colorimetric immunoprobe. This system integrates a biometric unit (antibody) with a signal amplification element (enzyme) through the biomineralization process. Specifically, the critical factors affecting antibody recognition activity in the formation mechanism of AAHNFs are investigated. The designed AAHNFs retain antibody recognition ability with enhanced protection for encapsulated proteins against high temperature, organic solvents, and long-term storage, facilitating the selective construction of lock structures against antigens. Additionally, a colorimetric immunosensor based on AAHNFs was developed. After ascorbic acid 2-phosphate hydrolysis by alkaline phosphatase (ALP), the generated ascorbic acid decomposes I2 to I-, inducing the localized surface plasmon resonance in the silver nanoplate, which is effectively tuned through shape conversion to develop the sensor. Further, a 3D-printed portable device is fabricated, integrated with a smartphone sensing platform, and applied to the data of collection and analysis. Notably, the immunosensor exhibits improved analytical performance with a 0.1-6.25 ng·mL-1 detection range and a 0.06 ng·mL-1 detection limit for quantitative saxitoxin (STX) analysis. The average recoveries of STX in real samples ranged from 85.9% to 105.9%. This study presents a more in-depth investigation of the recognition element performance, providing insights for improved antibody performance in practical applications.
Collapse
Affiliation(s)
- Liu-Na Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Tian Guan
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Cheng Jiang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Qing-Chun Yin
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570314, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Chenzhong Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
2
|
Trifoi LA, Dogantzis NP, Hodgson GK, Ortiz PD, Soha SA, Antonescu CN, Botelho RJ, Wylie RS, Impellizzeri S. Single-colour, visible light activation and excitation of the luminescence of a ‘switch-on’ dye and enhancement by silver nanoparticles. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Mravljak R, Podgornik A. Simple and Tailorable Synthesis of Silver Nanoplates in Gram Quantities. ACS OMEGA 2023; 8:2760-2772. [PMID: 36687100 PMCID: PMC9850728 DOI: 10.1021/acsomega.2c07452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Due to plasmonic and catalytic properties, silver nanoplates are of significant interest; therefore, their simple preparation in gram quantities is required. Preferably, the method is seedless, consists of few reagents, enables preparation of silver nanoplates with desired optical properties in high concentration, is scalable, and allows their long-term storage. The developed method is based on silver nitrate, sodium borohydride, polyvinylpyrrolidone, and H2O2 as the main reagents, while antifoam A204 is implemented to achieve better product quality on a larger scale. The effect of each component was evaluated and optimized. Solution volumes from 3 to 450 mL and concentrations of silver nanoplates from 0.88 to 4.8 g/L were tested. Their size was tailored from 25 nm to 8 μm simply by H2O2 addition, covering the entire visible plasmon spectra and beyond. They can be dried and spontaneously dispersed after at least one month of storage in the dark without any change in plasmonic properties. Their potential use in modern art was demonstrated by drying silver colloids on different surfaces in the presence of reagents or purified, resulting in a variety of colors but, more importantly, patterns of varying complexity, from simple multi-coffee-rings structures to dendritic forms and complex multilevel Sierpiński triangle fractals.
Collapse
Affiliation(s)
- Rok Mravljak
- Department
of Chemical Engineering and Technical Safety, Faculty of Chemistry
and Chemical Technology, University of Ljubljana, LjubljanaSI-1000, Slovenia
| | - Aleš Podgornik
- Department
of Chemical Engineering and Technical Safety, Faculty of Chemistry
and Chemical Technology, University of Ljubljana, LjubljanaSI-1000, Slovenia
- COBIK, Mirce 21, 5270Ajdovščina, Slovenia
| |
Collapse
|
4
|
Yadav S, Satija J. Shape dependent sensing potential of gold nanoparticles in etching based multicolorimetric plasmonic-ELISA. NANOSCALE ADVANCES 2022; 4:3928-3939. [PMID: 36133352 PMCID: PMC9470088 DOI: 10.1039/d2na00266c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
In the present study, a systematic investigation has been carried out for the first time to assess the potential of three different shapes of gold nanoparticles (AuNPs), viz. nanorods (AuNRs), nanotriangles (AuNTs), and nanospheres (AuNSs), to develop a horseradish peroxidase (HRP) enzyme-mediated etching-based plasmonic ELISA (p-ELISA) strategy. The etching of the AuNPs in ELISA is achieved by 3'-3-5'-5-tetramethylbenzidine (TMB2+), which is produced by the biocatalytic conversion of chromogenic TMB via HRP. All three types of AuNPs were interacted with varying concentrations of TMB2+ (7-131 μM) (product of HRP enzyme reaction) and characterized for visible color change and by UV-Vis spectroscopy and transmission electron microscopy (TEM). From the comparative analysis of all three shapes of AuNPs, AuNRs exhibited vivid visible color change and absorbance intensity change compared to spherical and triangle-shaped nanoparticles. The TEM analysis of the etched nanoparticles revealed the gradual etching pattern of AuNRs compared to AuNTs which resulted in multicolor generation as opposed to AuNTs where the etching was relatively very fast and thus shows a faster shape transformation and poor color discrimination. Further, the potential of the AuNR etching-based optimized strategy was successfully demonstrated to develop an indirect competitive p-ELISA for human IgG detection. The developed p-ELISA showed an ultra-low visual limit of detection of 1 fg mL-1 (∼6.54 aM) without the aid of any sophisticated instruments. In the future, the developed competitive p-ELISA strategy can be easily employed to develop cost-effective, portable, and point-of-care assays for the detection of various disease biomarkers with ultra-high sensitivity.
Collapse
Affiliation(s)
- Sangeeta Yadav
- School of Biosciences and Technology, Vellore Institute of Technology (VIT) Vellore-632014 Tamilnadu India
| | - Jitendra Satija
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT) Vellore-632014 Tamilnadu India
| |
Collapse
|
5
|
Jiang S, Cui C, Bai W, Wang W, Ren E, Xiao H, Zhou M, Cheng C, Guo R. Shape-controlled silver nanoplates colored fabric with tunable colors, photothermal antibacterial and colorimetric detection of hydrogen sulfide. J Colloid Interface Sci 2022; 626:1051-1061. [PMID: 35868195 DOI: 10.1016/j.jcis.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 07/02/2022] [Indexed: 10/31/2022]
Abstract
Anisotropic silver nanoplates are widely anticipated in multifunctional textiles, but their large-scale promotion is limited by the shortcomings of long reaction time, uncontrollable shape and low yield in the preparation process. In this study, a microwave-assisted strategy is provided to prepare shape-controllable silver nanoplates for coloration of non-woven fabric. Anisotropic Ag nanoplates are efficiently coated on the surface of chitosan-pretreated fabric by a simple solution impregnation method, which generates the fabric with tunable color and multiple functions. The Ag nanoplates loaded fabric exhibits excellent photothermal properties at 808 nm laser irradiation due to its unique plasmonic absorption features. Colored fabric shows a strong synergistic antibacterial effect, including silver ion release and hyperthermia caused by the photothermal effect under near-infrared (NIR) light. Additionally, colored fabrics can be used as colorimetric sensors for selective detection of H2S. The colorimetric values of visible color signal of fabric-based H2S gas sensor can be real-time precisely detected using a smartphone, enlightening its high potential as a wearable toxic gas alarm device for the simple and rapid detection of hazardous gases.
Collapse
Affiliation(s)
- Shan Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Ce Cui
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Wenhao Bai
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Weijie Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Erhui Ren
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hongyan Xiao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Cheng Cheng
- School of Chemical and Process Engineering, University of Leeds, Leeds, United Kingdom
| | - Ronghui Guo
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China.
| |
Collapse
|
6
|
Xiong Z, Liu L, Zhang Z, Cao L, Cao D, Du Z, Tang Y. Unravelling the role of surface modification in the dermocompatibility of silver nanoparticles in vitro and in vivo. CHEMOSPHERE 2022; 291:133111. [PMID: 34848219 DOI: 10.1016/j.chemosphere.2021.133111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
A clearer picture of interactions between differently coated silver nanoparticles (AgNPs) and biological interfaces that are confronted with by the dermal exposure route is of utmost importance for the risk assessment of various AgNPs-based formulations utilized in the medical and dermocosmetic fields. This work sought to understand how surface modification of AgNPs, especially those produced by green synthesis strategy, affects the surface chemistry and dermocompatibility. Phytosynthetized AgNPs diverse in bio-reducing/capping agents i.e. chlorogenic acid, glycyrrhizic acid and gallic acid, were prepared by a bioinspired green approach and characterized in terms of size, shape, crystal phase, surface charge, structure and antioxidant activity. Chemically synthetized AgNPs stabilized by trisodium citrate or polyvinylpyrrolidone were also analyzed for comparison. The biological test results illustrate that varying coating material for AgNP stabilization results in differential toxicity against dermal microbes and HaCaT keratinocytes in vitro and affects dermal absorption through intact/compromised skin in vivo. Among all test samples, the citrate-stabilized AgNPs displayed the maximum cytotoxicity and dermal absorption. It is also of interest to note that the phytosynthetized AgNPs with chlorogenic acid exhibited superior antioxidant activity, attenuated cytotoxicity and minimal skin deposition, while those modified with glycyrrhizic acid demonstrated a preferentially antibacterial activity against the pathogenic (Escherichia coli and Staphylococcus aureus) over the beneficial strains (Staphylococcus epidermidis) inhabiting human skin. Furthermore, percutaneous absorption of AgNPs into live epidermis was observed on all 7-13 nm sized AgNPs, irrespective of surface coating, with more pronounced skin deposition of silver species occurring for the chemically-synthetized AgNPs within compromised skin. Given all these results, it is concluded that surface modification with particular phytochemicals may render AgNPs with enhanced dermocompatibility or antimicrobial activity. This study provides a basis for risk assessments of phytosynthetized AgNPs in consumer products and suggests the possibility of tailoring AgNPs applicability via green chemistry approach.
Collapse
Affiliation(s)
- Ziyi Xiong
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China; Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Lei Liu
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China; Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Zhaolun Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China; Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Lihua Cao
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China; Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Ding Cao
- College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhenxia Du
- College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Ying Tang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China; Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
7
|
Li Y, Fang R, Wang D. A Reversible Moisture-Responsive Plasmonic Color-Raman and Transmittance Modulation Device by Dispersing Hyaluronan-Functionalized Ag into Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2219-2229. [PMID: 34962377 DOI: 10.1021/acsami.1c18259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plasmonic physical color generation, which mostly depends on selective absorption, creates unique colors by light transmission and scattering. Based on this, regulating plasmon and transparency with external stimulation is a promising approach for fabricating optical devices with enhanced visual displays; however, few studies have addressed the implementation of dual-optical modulation. In addition, developing a color response to environmental stimuli through the highly shape-sensitive plasmon depth modulation has long remained a significant challenge once the nanostructure is determined. Some stimulations also require high amounts of electricity, which can be costly. In this study, strategically designed hyaluronan-functionalized triangular silver nanoparticles (AgNPs) were embedded in polyvinyl alcohol-polyethylene nanofiber films to achieve a breakthrough in the moisture-responsive dual-optical modulation of the plasmonic color-Raman and transparency. Switchable colors that are reversible were induced in plasmon-resonance-modulation AgNPs via moisture stimulation, adjusting the expansion-tunable dielectric constant of hyaluronan-functionalized AgNPs and varying the electron density due to electron transfer. Furthermore, a moisture gradient was used to decrease the Raman scattering and increase the photoluminescence, which is a significant demonstration of smart-plasmonic evolution. This effect occurred due to the gradual transition from plasmon-driven photoluminescence quenching to photoluminescence enhancement as the interval of the Ag and hyaluronic acid molecules was increased. The transparency of the composite film was also dynamically regulated by turning moisture on/off. This occurred because of the significant difference in hygroscopic expansion between hyaluronan and the nanofibers, which generated a large variation in the total refractive index and caused changes in the surface roughness.
Collapse
Affiliation(s)
- Yingying Li
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Ranran Fang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
8
|
Xu C, Zhou J, Ye Y, Tang B. Insights into enzymatic mimicking activity of silver nanoprisms: spectral monitoring and analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120083. [PMID: 34171547 DOI: 10.1016/j.saa.2021.120083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Peroxidase-like reaction process involving o-phenylenediamine (OPD) and silver nanoprisms in the presence of hydrogen peroxide (H2O2) was monitored using time-resolved ultraviolet-visible (UV-Vis) absorption spectroscopy. The oxidation of OPD and etching of silver nanoprisms were investigated by analyzing the dynamic spectral data. Two-dimensional correlation spectroscopy (2D-COS) and principal component analysis (PCA) were employed to gain insights into the correlation between catalytic oxidation of OPD and etching of silver nanoprisms. It was found that OPD offered significant protection effect for silver nanoprisms so that morphologies of silver nanoprisms maintained at the beginning period after addition of H2O2. Moreover, silver nanoprisms accelerated the oxidation of OPD by H2O2, demonstrating enzymatic mimicking activity of silver nanoprisms. The combination of time-resolved UV-Vis absorption spectroscopy and spectral calculation methods could be used for exploration of complex reaction systems with spectral variations.
Collapse
Affiliation(s)
- Chengna Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Ji Zhou
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| | - Yong Ye
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Bin Tang
- Institute for Frontier Materials, Deakin University, Geelong, Australia; National Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430073, China.
| |
Collapse
|
9
|
Yu L, Jiang C, Xi L, Zhang X, Tong J, Chen Z, Chen R, He H. Colorimetric Detection of Benzoyl Peroxide in the Flour Samples Based on the Morphological Transition of Silver Nanoprisms. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Selective Aggregation of Silver Nanoprisms Induced by Monohydrogen Phosphate and its Application for Colorimetric Detection of Chromium (III) Ions. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00183-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Li P, Lee SM, Kim HY, Kim S, Park S, Park KS, Park HG. Colorimetric detection of individual biothiols by tailor made reactions with silver nanoprisms. Sci Rep 2021; 11:3937. [PMID: 33594153 PMCID: PMC7886879 DOI: 10.1038/s41598-021-83433-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/28/2021] [Indexed: 11/09/2022] Open
Abstract
We herein described a rapid, sensitive, and selective colorimetric sensing platform for biothiols in human serum, which relies on the dual functions of biothiols as anti-etching and aggregating agent for silver nanoprisms (AgNPRs). In principle, the target biothiols that bind to the surface of AgNPRs through Ag–S covalent interactions protect the AgNPRs from being etched by chloride ion (Cl−) in human serum, thus exhibiting the blue/purple color that is indicative of AgNPRs. On the other hand, the color of AgNPRs turned to yellow in the absence of biothiols or the presence of non-sulfur-containing amino acids, indicating the formation of small silver nanoparticles (AgNPs). Importantly, we found that individual biothiols (Hcy, Cys, and GSH) exert not only the anti-etching effect, but also the aggregating effect on AgNPRs, which can be modulated by simply tuning the pH conditions, and this consequently allows for the discriminative detection of each biothiol. Based on this simple and cost-effective strategy, we successfully determined the Hcy, Cys, and GSH in human serum with high sensitivity and selectivity within 10 min, demonstrating the diagnostic capability and potential in practical applications.
Collapse
Affiliation(s)
- Pei Li
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of Materials Science and Engineering, KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sang Mo Lee
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyo Yong Kim
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Soohyun Kim
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Steve Park
- Department of Materials Science and Engineering, KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
12
|
Pryshchepa O, Pomastowski P, Buszewski B. Silver nanoparticles: Synthesis, investigation techniques, and properties. Adv Colloid Interface Sci 2020; 284:102246. [PMID: 32977142 DOI: 10.1016/j.cis.2020.102246] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
The unique silver properties, especially in the form of nanoparticles (NPs), allow to utilize them in numerous applications. For instance, Ag NPs can be utilized for the production of electronic and solar energy harvesting devices, in advanced analytical techniques (NALDI, SERS), catalysis and photocatalysis. Moreover, the Ag NPs can be useful in medicine for bioimaging, biosensing as well as in antibacterial and anticancer therapies. The Ag NPs utilization requires comprehensive knowledge about their features regarding the synthesis approaches as well as exploitation conditions. Unfortunately, a large number of scientific articles provide only restricted information according to the objects under investigation. Additionally, the results could be affected by artifacts introduced with exploited equipment, the utilized technique or sample preparation stages. However, it is rather difficult to get information about problems, which may occur during the studies. Thus, the review provides information about novel trends in the Ag NPs synthesis, among which the physical, chemical, and biological approaches can be found. Basic information about approaches for the control of critical parameters of NPs, i.e. size and shape, was also revealed. It was shown, that the reducing agent, stabilizer, the synthesis environment, including trace ions, have a direct impact on the Ag NPs properties. Further, the capabilities of modern analytical techniques for Ag NPs and nanocomposites investigations were shown, among other microscopic (optical, TEM, SEM, STEM, AFM), spectroscopic (UV-Vis, IR, Raman, NMR, electron spectroscopy, XRD), spectrometric (MALDI-TOF MS, SIMS, ICP-MS), and separation (CE, FFF, gel electrophoresis) techniques were described. The limitations and possible artifacts of the techniques were mentioned. A large number of presented techniques is a distinguishing feature, which makes the review different from others. Finally, the physicochemical and biological properties of Ag NPs were demonstrated. It was shown, that Ag NPs features are dependent on their basic parameters, such as size, shape, chemical composition, etc. At the end of the review, the modern theories of the Ag NPs toxic mechanism were shown in a way that has never been presented before. The review should be helpful for scientists in their own studies, as it can help to prepare experiments more carefully.
Collapse
|
13
|
Kim SH, Woo HC, Kim MH. Solid-phase colorimetric sensing probe for bromide based on a tough hydrogel embedded with silver nanoprisms. Anal Chim Acta 2020; 1131:80-89. [PMID: 32928482 DOI: 10.1016/j.aca.2020.07.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/23/2022]
Abstract
Sharp-tipped anisotropic silver (Ag) nanostructures are attracting increasing attention because of their unusual optical properties. However, the sharp tips make such nanostructures thermodynamically unstable; thus, they have been considered unsuitable for use in colorimetric sensing because of their tendency to aggregate or transform in a solution state. In the present study, a colorimetric sensing platform for detecting bromide (Br-) in an aqueous medium was developed. The platform is based on the localized surface plasmon resonance (LSPR) properties of Ag nanoprisms with sharp tips. The key to using such Ag nanocrystals with extreme anisotropic structures is to adopt a solid-phase sensing platform. A Ag-nanoprism-embedded tough hydrogel with interpenetrating polymer networks was synthesized via aqueous-phase polymerization and crosslinking processes. The Ag nanoprisms immobilized inside the hydrogel were stable and did not exhibit aggregation or degradation over time; specifically, when the hydrogel was dried, the nanoprisms retained their inherent LSPR properties for an extended period. By taking advantage of the rapid and spontaneous morphological transformation of Ag nanoprisms inside the hybrid hydrogel exposed to Br- and the corresponding changes in their LSPR properties, we designed a plasmonic sensing platform for the sensitive and selective detection of Br- in an aqueous medium. The proposed colorimetric sensing platform was found to exhibit a wide sensing range and high selectivity, with a low limit of detection (LOD) of 10 μM, and offers substantial advantages over previously developed systems; specifically, it is portable, eco-friendly, safe to use and handle, stable for extended periods, and enables naked-eye detection. We believe that the as-proposed sensing platform can be used as a point-of-care analytical tool for detecting Br- in a broad range of samples.
Collapse
Affiliation(s)
- Sang Heon Kim
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Hee-Chul Woo
- Department of Chemical Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Mun Ho Kim
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
14
|
Zhang Q, Long L, Zhang G, Li ZY, Zheng Y. Seeded growth of silver nanoplates with rough edges and their applications for SERS. CrystEngComm 2020. [DOI: 10.1039/c9ce01451a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silver nanoplates with rough edges have been successfully fabricated via seeded growth by manipulating surface diffusion and kinetics-controlled growth.
Collapse
Affiliation(s)
- Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Li Long
- School of Physics and Optoelectronics
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Gongguo Zhang
- Department of Chemistry and Chemical Engineering
- Jining University
- Jining 237000
- P. R. China
| | - Zhi-Yuan Li
- School of Physics and Optoelectronics
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Yiqun Zheng
- Department of Chemistry and Chemical Engineering
- Jining University
- Jining 237000
- P. R. China
| |
Collapse
|
15
|
Chen H, Pang X, Ni Z, Liu M, Zhang Y, Yao S. Upconversion nanoparticles with bright red luminescence for highly sensitive quantifying alkaline phosphatase activity based on target-triggered fusing reaction. Anal Chim Acta 2020; 1095:146-153. [DOI: 10.1016/j.aca.2019.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 11/15/2022]
|
16
|
Iodide-assisted silver nanoplates for colorimetric determination of chromium(III) and copper(II) via an aggregation/fusion/oxidation etching strategy. Mikrochim Acta 2019; 187:19. [DOI: 10.1007/s00604-019-3982-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/26/2019] [Indexed: 11/26/2022]
|
17
|
Chen X, Huang R, Shih TM, Wen YH. Shape Stability of Metallic Nanoplates: A Molecular Dynamics Study. NANOSCALE RESEARCH LETTERS 2019; 14:357. [PMID: 31784838 PMCID: PMC6884609 DOI: 10.1186/s11671-019-3192-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Metallic nanoplates have attracted widespread interests owing to their functional versatility, which relies heavily on their morphologies. In this study, the shape stability of several metallic nanoplates with body-centered-cubic (bcc) lattices is investigated by employing molecular dynamics simulations. It is found that the nanoplate with (110) surface planes is the most stable compared to the ones with (111) and (001) surfaces, and their shapes evolve with different patterns as the temperature increases. The formation of differently orientated facets is observed in the (001) nanoplates, which leads to the accumulation of shear stress and thus results in the subsequent formation of saddle shape. The associated shape evolution is quantitatively characterized. Further simulations suggest that the shape stability could be tuned by facet orientations, nanoplate sizes (including diameter and thickness), and components.
Collapse
Affiliation(s)
- Xiwen Chen
- Department of Physics, Xiamen University, Xiamen, 361005, China
| | - Rao Huang
- Department of Physics, Xiamen University, Xiamen, 361005, China.
| | - Tien-Mo Shih
- Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Yu-Hua Wen
- Department of Physics, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
18
|
Furletov AA, Apyari VV, Garshev AV, Volkov PA, Dmitrienko SG. Silver triangular nanoplates as a colorimetric probe for sensing thiols: Characterization in the interaction with structurally related thiols of different functionality. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
LERTVACHIRAPAIBOON C, MARUYAMA T, BABA A, EKGASIT S, SHINBO K, KATO K. Optical Sensing Platform for the Colorimetric Determination of Silver Nanoprisms and Its Application for Hydrogen Peroxide and Glucose Detections Using a Mobile Device Camera. ANAL SCI 2019; 35:271-276. [DOI: 10.2116/analsci.18p412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Takuya MARUYAMA
- Graduate School of Science and Technology, Niigata University
| | - Akira BABA
- Graduate School of Science and Technology, Niigata University
| | - Sanong EKGASIT
- Sensor Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University
| | - Kazunari SHINBO
- Graduate School of Science and Technology, Niigata University
| | - Keizo KATO
- Graduate School of Science and Technology, Niigata University
| |
Collapse
|
20
|
Miniaturized liquid chromatography coupled on-line to in-tube solid-phase microextraction for characterization of metallic nanoparticles using plasmonic measurements. A tutorial. Anal Chim Acta 2018; 1045:23-41. [PMID: 30454572 DOI: 10.1016/j.aca.2018.07.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 02/08/2023]
Abstract
This tutorial aims at providing guidelines for analyzing metallic nanoparticles (NPs) and their dispersions by using methods based on miniaturized liquid chromatography with diode array detection (MinLC-DAD) and coupled on-line to in-tube solid-phase microextraction (IT-SPME). Some practical advice and considerations are given for obtaining reliable results. In addition, this work outlines the potential applications that set these methodologies apart from microscopy-related techniques, dynamic light scattering, single particle ICP-MS, capillary electrophoresis, field-flow fractionation and other chromatographic configurations, which are discussed and mainly seek to accomplish size estimation and NP separation, speciation analysis and quantification of mainly AgNPs and AuNPs. MinLC-DAD has the potential to estimate the NP concentration and from it the average size of unknown samples by calibrating with a single standard, as well as studying potentially non-spherical particles and stability-related properties of their dispersions. While keeping the signal dependency with concentration and increasing the method sensitivity, IT-SPME-MinLC-DAD goes further allowing for the assessment of the dispersant effect and ultimately changes in the nanoparticle surroundings that range from modifications of the hydrodynamic diameter to the exposure to different reagents and matrices. The methodology can still be improved by either exploring newer IT-SPME adsorbents or by assaying new system configurations. Taking into account that this technique gives complementary information in relation to other techniques discussed here, this tutorial serves as a guide for analyzing metallic NPs towards a better understanding of the particle behavior under different scenarios.
Collapse
|
21
|
González-Fuenzalida RA, Sanjuan-Navarro L, Moliner-Martínez Y, Campíns-Falcó P. Quantitative study of the capture of silver nanoparticles by several kinds of soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:1226-1236. [PMID: 29554744 DOI: 10.1016/j.scitotenv.2018.02.307] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
The capacity of different soils to capture silver nanoparticles (AgNPs) by measuring changes of an AgNP intrinsic property such as the plasmon for the first time, was studied. In-tube solid-phase microextraction (IT-SPME) coupled on-line to capillary liquid chromatography (CapLC) with diode array detection (DAD) was employed for measuring the interactions between soil and in-contact AgNP dispersions. Its achieved LOD 9 pM assures quantitative retention measurements and selectivity for soil lixiviation was suitable. Electronic microscopy was employed for corroborating the entrapped Ag into the soils. Capture % of AgNPs was calculated in compost (>99%), mountain (>99%), orchard (15±1%) and urban (48±1%) soils. Also, the relation between some soil characteristics: solid organic matter (SOM), composition, pH, redox potential (Eh), electrical conductivity (EC) and size, and the retention of these metallic nanoparticles was studied. The results have also been estimated after sieving and the capture % of AgNPs was similar in the resulting fractions. AgNP adsorption on a given soil is mainly affected by its organic matter content for studied soils with higher SOM amounts (23-62%). However, for the soils with lower SOM amounts (4.6-8.3%) the role of HAs could prevent AgNP deposition onto soils. The proposed methodology can be utilized for quickly assessing the potential of a given soil considering its properties for capturing these nanoparticles, which can come at handy for their administration, characterization or remediation.
Collapse
Affiliation(s)
- R A González-Fuenzalida
- MINTOTA research group, Departament de Química Analítica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - L Sanjuan-Navarro
- MINTOTA research group, Departament de Química Analítica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Y Moliner-Martínez
- MINTOTA research group, Departament de Química Analítica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - P Campíns-Falcó
- MINTOTA research group, Departament de Química Analítica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
22
|
Wu P, Hu F, Wang R, Gao L, Huang T, Xin Y, He H. Colorimetric chiral recognition of D/L-phenylalanine based on triangular silver nanoplates. Amino Acids 2018; 50:1269-1278. [PMID: 29961142 DOI: 10.1007/s00726-018-2604-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
Abstract
A new colorimetric analysis approach for chiral recognition of D- and L-forms of phenylalanine (phe) was developed based on triangular silver nanoplates (TAg-NPs). The TAg-NPs could be used as chiral colorimetric probes for D- and L-forms of phe. Upon addition of D-phe to TAg-NPs solution, a color change from blue to purple to pink could be observed, while no obvious color change was found on addition of L-phe. L-phe could prevent the TAg-NPs from being etched to small size particles while the protective effect of D-phe was weak. Moreover, the enantiomeric excess of D-phe could be determined using the proposed chiral assay in the percentage of L-phe from 0 to 100% with a correlation coefficient of 0.9855. The phenomenon could be monitored by bare eyes and quantified analysis by UV-Vis spectrophotometry. The developed approach had several advantages, such as simplicity, visualization, short analysis time and low cost. This study presented a fast visualization analysis method of chiral D/L-phenylalanine and may lay the foundation for the development of visualization chiral recognition of other target analytes.
Collapse
Affiliation(s)
- Pinping Wu
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 211198, Jiangsu, China
| | - Fan Hu
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 211198, Jiangsu, China
| | - Ruya Wang
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 211198, Jiangsu, China
| | - Lingxuan Gao
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 211198, Jiangsu, China
| | - Tao Huang
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 211198, Jiangsu, China
| | - Yufu Xin
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 211198, Jiangsu, China
| | - Hua He
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 211198, Jiangsu, China. .,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
23
|
Abramenko NB, Demidova TB, Abkhalimov ЕV, Ershov BG, Krysanov EY, Kustov LM. Ecotoxicity of different-shaped silver nanoparticles: Case of zebrafish embryos. JOURNAL OF HAZARDOUS MATERIALS 2018; 347:89-94. [PMID: 29291521 DOI: 10.1016/j.jhazmat.2017.12.060] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 05/27/2023]
Abstract
As the worldwide application of silver nanomaterials in commercial products increases every year, and concern about the environmental risks of such nanoparticles also grows. A clear understanding of how different characteristics of nanoparticles contribute in their toxic behavior to organisms are imperative for predicting and control nanotoxicity. Within our research, we investigated the toxic effect of two types of silver nanoparticles (spherical and flat Ag nanoparticles) on zebrafish (Danio rerio) embryos. Particular interest was paid to proper characterization of Ag nanoparticles initially and during the experiment. A proper test medium was found and used for ecotoxicity evaluation. The behavior of flat silver nanoparticles with respect to embryos of zebrafish was analyzed and compared to the ecotoxicity of silver ionic form (AgNO3). Both types of nanoparticles showed a more pronounced toxic effect to Danio rerio embryos than silver ions (AgNO3), while silver nanoplates were more harmful than Ag nanospheres. While previous investigations showed that toxicity of Ag nanoparticles can be explained by the presence of Ag+ in solution of silver nanoparticles, our results demonstrate that the harmful effects of nanosilver may be associated with silver nanoparticles themselves than with ionic silver released into solution.
Collapse
Affiliation(s)
- Natalia B Abramenko
- N.D. Zelinsky Institute of Organic Chemistry, 119991, Leninsky Prospect, 47, Moscow, Russia; National Science and Technology University MISiS, 119071, Leninsky Prospekt 4, Moscow, Russia
| | - Tatiana B Demidova
- A.N. Severtsov Institute of Ecology and Evolution, 119071, Leninsky Prospect, 33, Moscow, Russia
| | - Еvgeny V Abkhalimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 119071, Leninsky Prospect, 31-4, Moscow, Russia.
| | - Boris G Ershov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 119071, Leninsky Prospect, 31-4, Moscow, Russia
| | - Eugene Yu Krysanov
- A.N. Severtsov Institute of Ecology and Evolution, 119071, Leninsky Prospect, 33, Moscow, Russia
| | - Leonid M Kustov
- N.D. Zelinsky Institute of Organic Chemistry, 119991, Leninsky Prospect, 47, Moscow, Russia; National Science and Technology University MISiS, 119071, Leninsky Prospekt 4, Moscow, Russia.
| |
Collapse
|
24
|
Furletov AA, Apyari VV, Garshev AV, Volkov PA, Tolmacheva VV, Dmitrienko SG. Sorption of Triangular Silver Nanoplates on Polyurethane Foam. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418020061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Graf C, Nordmeyer D, Sengstock C, Ahlberg S, Diendorf J, Raabe J, Epple M, Köller M, Lademann J, Vogt A, Rancan F, Rühl E. Shape-Dependent Dissolution and Cellular Uptake of Silver Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1506-1519. [PMID: 29272915 DOI: 10.1021/acs.langmuir.7b03126] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The cellular uptake and dissolution of trigonal silver nanoprisms (edge length 42 ± 15 nm, thickness 8 ± 1 nm) and mostly spherical silver nanoparticles (diameter 70 ± 25 nm) in human mesenchymal stem cells (hMSC's) and human keratinocytes (HaCaT cells) were investigated. Both particles are stabilized by polyvinylpyrrolidone (PVP), with the prisms additionally stabilized by citrate. The nanoprisms dissolved slightly in pure water but strongly in isotonic saline or at pH 4, corresponding to the lowest limit for the pH during cellular uptake. The tips of the prisms became rounded within minutes due to their high surface energy. Afterward, the dissolution process slowed down due to the presence of both PVP stabilizing Ag{100} sites and citrate blocking Ag{111} sites. On the contrary, nanospheres, solely stabilized by PVP, dissolved within 24 h. These results correlate with the finding that particles in both cell types have lost >90% of their volume within 24 h. hMSC's took up significantly more Ag from nanoprisms than from nanospheres, whereas HaCaT cells showed no preference for one particle shape. This can be rationalized by the large cellular interaction area of the plateletlike nanoprisms and the bending stiffness of the cell membranes. hMSC's have a highly flexible cell membrane, resulting in an increased uptake of plateletlike particles. HaCaT cells have a membrane with a 3 orders of magnitude higher Young's modulus than for hMSC. Hence, the energy gain due to the larger interaction area of the nanoprisms is compensated for by the higher energy needed for cell membrane deformation compared to that for spheres, leading to no shape preference.
Collapse
Affiliation(s)
- Christina Graf
- Physikalische und Theoretische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin , 14195 Berlin, Germany
| | - Daniel Nordmeyer
- Physikalische und Theoretische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin , 14195 Berlin, Germany
| | - Christina Sengstock
- Bergmannsheil University Hospital/Surgical Research, Ruhr-University Bochum , 44789 Bochum, Germany
| | - Sebastian Ahlberg
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin , 10117 Berlin, Germany
| | - Jörg Diendorf
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen , 45117 Essen, Germany
| | - Jörg Raabe
- Swiss Light Source, Paul Scherrer Institut , 5232 Villigen, Switzerland
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen , 45117 Essen, Germany
| | - Manfred Köller
- Bergmannsheil University Hospital/Surgical Research, Ruhr-University Bochum , 44789 Bochum, Germany
| | - Jürgen Lademann
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin , 10117 Berlin, Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin , 10117 Berlin, Germany
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin , 10117 Berlin, Germany
| | - Eckart Rühl
- Physikalische und Theoretische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin , 14195 Berlin, Germany
| |
Collapse
|
26
|
Gangishetty MK, Scott RWJ, Kelly TL. Thermal degradation mechanism of triangular Ag@SiO2 nanoparticles. Dalton Trans 2018; 45:9827-34. [PMID: 26875498 DOI: 10.1039/c6dt00169f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Triangular silver nanoparticles are promising materials for light harvesting applications because of their strong plasmon bands; these absorption bands are highly tunable, and can be varied over the entire visible range based on the particle size. A general concern with these materials is that they are unstable at elevated temperatures. When thermally annealed, they suffer from changes to the particle morphology, which in turn affects their optical properties. Because of this stability issue, these materials cannot be used in applications requiring elevated temperatures. In order to address this problem, it is important to first understand the degradation mechanism. Here, we measure the changes in particle morphology, oxidation state, and coordination environment of Ag@SiO2 nanotriangles caused by thermal annealing. UV-vis spectroscopy and TEM reveal that upon annealing the Ag@SiO2 nanotriangles in air, the triangular cores are truncated and smaller nanoparticles are formed. Ag K-edge X-ray absorption spectroscopy (XANES and EXAFS) shows that the small particles consist of Ag(0), and that there is a decrease in the Ag-Ag coordination number with an increase in the annealing temperature. We hypothesize that upon annealing Ag in air, it is first oxidized to AgxO, after which it subsequently decomposes back to well-dispersed Ag(0) nanoparticles. In contrast, when the Ag@SiO2 nanotriangles are annealed in N2, since there is no possibility of oxidation, no small particles are formed. Instead, the triangular core rearranges to form a disc-like shape.
Collapse
Affiliation(s)
- Mahesh K Gangishetty
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| | - Robert W J Scott
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| | - Timothy L Kelly
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
27
|
Ershov BG, Abkhalimov EV, Timofeev AA. Structural transformation of silver nanoprisms in aqueous solution initiated by Cl−, Br−, and I− ions: electrochemical mechanism. DOKLADY PHYSICAL CHEMISTRY 2018. [DOI: 10.1134/s0012501617120053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Furletov AA, Apyari VV, Garshev AV, Dmitrienko SG, Zolotov YA. Triangular silver nanoplates as a spectrophotometric reagent for the determination of mercury(II). JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934817120061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Terenteva EA, Apyari VV, Kochuk EV, Dmitrienko SG, Zolotov YA. Use of silver nanoparticles in spectrophotometry. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934817110107] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
30
|
Wijaya YN, Kim J, Choi WM, Park SH, Kim MH. A systematic study of triangular silver nanoplates: one-pot green synthesis, chemical stability, and sensing application. NANOSCALE 2017; 9:11705-11712. [PMID: 28776049 DOI: 10.1039/c7nr03077k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
While there has been remarkable success in generating silver (Ag) nanoplates, and they have considerable potential applications, their degradation behavior in certain environments remains poorly understood. In the current work, we investigated the chemical stability of triangular Ag nanoplates. A one-step water-based synthesis method regulated by the coordination of ligands to Ag cations was successfully employed to produce triangular Ag nanoplates with a high yield. The Ag nanoplates were irreversibly degraded when they were aged with poly(styrene-4-sulfonate) (PSS) at room temperature, and the corresponding localized surface plasmon resonances (LSPR) of the Ag nanoplates changed as well. In contrast, when the Ag nanoplates were aged with potassium persulfate (KPS), the shape evolution of Ag nanoplates was found to depend on the external temperature, and the Ag nanoplate solutions showed different final colors when different external temperatures were applied. These results exhibit important implications for the behavior of triangular Ag nanoplates in a wide variety of plasmonic applications and can be applied to the colorimetric sensing of the temperature history.
Collapse
Affiliation(s)
- Yosia Nico Wijaya
- Department of Polymer Engineering, Pukyong National University, 365 Sinseon-ro, Nam-gu, Busan 48547, Republic of Korea.
| | | | | | | | | |
Collapse
|
31
|
Synergistic effect of silver nanoparticle content on the optical and thermo-mechanical properties of poly(l-lactic acid)/glycerol triacetate blends. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-1992-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Fang X, Ren H, Zhao H, Li Z. Ultrasensitive visual and colorimetric determination of dopamine based on the prevention of etching of silver nanoprisms by chloride. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2024-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Banasiuk R, Frackowiak JE, Krychowiak M, Matuszewska M, Kawiak A, Ziabka M, Lendzion-Bielun Z, Narajczyk M, Krolicka A. Synthesis of antimicrobial silver nanoparticles through a photomediated reaction in an aqueous environment. Int J Nanomedicine 2016; 11:315-24. [PMID: 26855570 PMCID: PMC4725629 DOI: 10.2147/ijn.s93611] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A fast, economical, and reproducible method for nanoparticle synthesis has been developed in our laboratory. The reaction is performed in an aqueous environment and utilizes light emitted by commercially available 1 W light-emitting diodes (λ =420 nm) as the catalyst. This method does not require nanoparticle seeds or toxic chemicals. The irradiation process is carried out for a period of up to 10 minutes, significantly reducing the time required for synthesis as well as environmental impact. By modulating various reaction parameters silver nanoparticles were obtained, which were predominantly either spherical or cubic. The produced nanoparticles demonstrated strong antimicrobial activity toward the examined bacterial strains. Additionally, testing the effect of silver nanoparticles on the human keratinocyte cell line and human peripheral blood mononuclear cells revealed that their cytotoxicity may be limited by modulating the employed concentrations of nanoparticles.
Collapse
Affiliation(s)
- Rafał Banasiuk
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | | | - Marta Krychowiak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Marta Matuszewska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Kawiak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Magdalena Ziabka
- Faculty of Materials Science and Ceramics, Department of Ceramics and Refractories, AGH-University of Science and Technology, Kraków, Poland
| | - Zofia Lendzion-Bielun
- Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, Szczecin, Poland
| | - Magdalena Narajczyk
- Faculty of Biology, Laboratory of Electron Microscopy, University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Krolicka
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
34
|
Si B, Wang Y, Lu S, Liu E, Hu X, Fan J. Upconversion luminescence nanoprobe based on luminescence resonance energy transfer from NaYF4:Yb, Tm to Ag nanodisks. RSC Adv 2016. [DOI: 10.1039/c6ra17837e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An upconversion luminescence nanoprobe based on LRET from UCNPs to Ag nanodisks for the detection of biothiols.
Collapse
Affiliation(s)
- Boni Si
- School of Chemical Engineering
- Northwest University
- Xi'an
- P. R. China
| | - Yongbo Wang
- School of Chemical Engineering
- Northwest University
- Xi'an
- P. R. China
| | - Siwu Lu
- School of Chemical Engineering
- Northwest University
- Xi'an
- P. R. China
| | - Enzhou Liu
- School of Chemical Engineering
- Northwest University
- Xi'an
- P. R. China
| | - Xiaoyun Hu
- School of Physics
- Northwest University
- Xi'an
- P. R. China
| | - Jun Fan
- School of Chemical Engineering
- Northwest University
- Xi'an
- P. R. China
| |
Collapse
|
35
|
TAKAHASHI Y, SUGA K, ISHIDA T, YAMADA S. Thermal and Chemical Stabilization of Silver Nanoplates for Plasmonic Sensor Application. ANAL SCI 2016; 32:275-80. [DOI: 10.2116/analsci.32.275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yukina TAKAHASHI
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
- Center for Future Chemistry, Kyushu University
| | - Koichi SUGA
- Department of Materials Physics and Chemistry, Graduate School of Engineering, Kyushu University
| | - Takuya ISHIDA
- Department of Materials Physics and Chemistry, Graduate School of Engineering, Kyushu University
| | - Sunao YAMADA
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
- Center for Future Chemistry, Kyushu University
| |
Collapse
|
36
|
González-Fuenzalida RA, Moliner-Martínez Y, Molins-Legua C, Parada-Artigues V, Verdú-Andrés J, Campins-Falcó P. New Tools for Characterizing Metallic Nanoparticles: AgNPs, A Case Study. Anal Chem 2015; 88:1485-93. [DOI: 10.1021/acs.analchem.5b04751] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Rodrigo A. González-Fuenzalida
- MINTOTA Research Group. Departament
de Química Analítica, Facultat de Química, Universitat de Valencia, C/Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Yolanda Moliner-Martínez
- MINTOTA Research Group. Departament
de Química Analítica, Facultat de Química, Universitat de Valencia, C/Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Carmen Molins-Legua
- MINTOTA Research Group. Departament
de Química Analítica, Facultat de Química, Universitat de Valencia, C/Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Vanesa Parada-Artigues
- MINTOTA Research Group. Departament
de Química Analítica, Facultat de Química, Universitat de Valencia, C/Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Jorge Verdú-Andrés
- MINTOTA Research Group. Departament
de Química Analítica, Facultat de Química, Universitat de Valencia, C/Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Pilar Campins-Falcó
- MINTOTA Research Group. Departament
de Química Analítica, Facultat de Química, Universitat de Valencia, C/Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
37
|
Zhang Z, Chen Z, Wang S, Cheng F, Chen L. Iodine-Mediated Etching of Gold Nanorods for Plasmonic ELISA Based on Colorimetric Detection of Alkaline Phosphatase. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27639-45. [PMID: 26619266 DOI: 10.1021/acsami.5b07344] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Here, we propose a plasmonic enzyme-linked immunosorbent assay (ELISA) based on highly sensitive colorimetric detection of alkaline phosphatase (ALP), which is achieved by iodine-mediated etching of gold nanorods (AuNRs). Once the sandwich-type immunocomplex is formed, the ALP bound on the polystyrene microwells will hydrolyze ascorbic acid 2-phosphate into ascorbic acid. Subsequently, iodate is reduced to iodine, a moderate oxidant, which etches AuNRs from rod to sphere in shape. The shape change of AuNRs leads to a blue-shift of longitudinal localized surface plasmon resonance. As a result, the solution of AuNRs changes from blue to red. Benefiting from the highly sensitive detection of ALP, the proposed plasmonic ELISA has achieved an ultralow detection limit (100 pg/mL) for human immunoglobulin G (IgG). Importantly, the visual detection limit (3.0 ng/mL) allows the rapid differential diagnosis with the naked eye. The further detection of human IgG in fetal bovine serum indicates its applicability to the determination of low abundance protein in complex biological samples.
Collapse
Affiliation(s)
- Zhiyang Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS , Yantai Shandong 264003, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Zhaopeng Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS , Yantai Shandong 264003, P. R. China
| | - Shasha Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS , Yantai Shandong 264003, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Fangbin Cheng
- Ocean School, Yantai University , Yantai 264005, P. R. China
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS , Yantai Shandong 264003, P. R. China
| |
Collapse
|
38
|
|
39
|
Zou X, Shi J, Zhang H. Morphological evolution and reconstruction of silver nanoparticles in aquatic environments: the roles of natural organic matter and light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2015; 292:61-69. [PMID: 25795274 DOI: 10.1016/j.jhazmat.2015.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 06/04/2023]
Abstract
With the proliferation of silver nanoparticles (AgNPs), their potential entry into the environment has attracted increasing concern. Although photochemical transformation is an important fate of AgNPs in aquatic environments due to their strong light absorption, little is known about the evolution and transformation mechanisms of AgNPs. This study investigated the morphological evolution and reconstruction of AgNPs during photoconversion in the presence of natural organic matter (NOM). In the dark, the AgNPs formed chain-like structures through bridging effects with NOM at concentrations of 0.1 and 1 mg/L, and the proportion of Ag(+) in solution in the presence of 10 mg/L NOM was reduced by roughly half compared with that in the absence of NOM. Under irradiation, NOM participated in the photoreaction of AgNPs and can decelerate the photoreaction of AgNPs via several mechanisms, including light attenuation, the formation of a NOM coating, and competing with Ag for photons. Additionally, NOM can substitute for citrate as a stabilizing agent to compensate for the loss of AgNP stability due to citrate mineralization under extended irradiation, producing stable triangular nanosilver in aquatic environments. This study sheds light on the behavioral differences of AgNPs in different aquatic systems, which create uncertainties and difficulties in assessing the environmental risks of AgNPs.
Collapse
Affiliation(s)
- Xiaoyan Zou
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Junpeng Shi
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Hongwu Zhang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China; Ningbo Research Center for Urban Environment, Chinese Academy of Sciences, Ningbo, China.
| |
Collapse
|
40
|
Li RZ, Hu A, Bridges D, Zhang T, Oakes KD, Peng R, Tumuluri U, Wu Z, Feng Z. Robust Ag nanoplate ink for flexible electronics packaging. NANOSCALE 2015; 7:7368-7377. [PMID: 25824693 DOI: 10.1039/c5nr00312a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanoinks are currently a topic of heightened interest with respect to low temperature bonding processes and printable electronics. We have developed an innovative polyvinylpyrrolidone (PVP)-stabilized Ag nanoplate ink amenable to very strong low temperature packaging, and investigated the relationship between bonding strength and electrical conductivity post-bonding. PVP shell plastic deformations observed in failure microcracks with the formation of PVP nanofibers, revealed bonding strength at low temperatures (<250 °C) was primarily due to adhesive bonding. It is found that, utilizing photonic sintering, ∼ 70 °C reduction of transformation temperature from adhesive to metallic bonding was achieved compared to that of thermal sintering. A numerical simulation was developed to better understand the influences of the light-induced heat generation, which demonstrated near-infrared light can facilitate sintering. Bonding strengths of 27 MPa were achieved at room temperatures, and 29.4 MPa at 210 °C with photonic sintering. Moreover, the anisotropic resistivity was observed with different thermal dependences. These results demonstrate Ag nanoplate inks have potential for low temperature 3D interconnections in lead-free microcircuits, flexible electronic packaging, and diverse sensing applications.
Collapse
Affiliation(s)
- Ruo-Zhou Li
- School of Electronic Science and Engineering, Southeast University, Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, Nanjing 210096, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lee KE, Hesketh AV, Kelly TL. Chemical stability and degradation mechanisms of triangular Ag, Ag@Au, and Au nanoprisms. Phys Chem Chem Phys 2015; 16:12407-14. [PMID: 24827005 DOI: 10.1039/c4cp00954a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Anisotropic metal nanoparticles have found use in a variety of plasmonic applications because of the large near-field enhancements associated with them; however, the very features that give rise to these enhancements (e.g., sharply curved edges and tips) often have high surface energies and are easily degraded. This paper describes the stability and degradation mechanisms of triangular silver, gold-coated silver, and gold nanoprisms upon exposure to a wide variety of adverse conditions, including halide ions, thiols, amines and elevated temperatures. The silver nanoprisms were immediately and irreversibly degraded under all of the conditions studied. In contrast, the core-shell Ag@Au nanoprisms were less susceptible to etching by chlorides and bromides, but were rapidly degraded by iodides, amines and thiols by a different degradation pathway. Only the pure gold nanoprisms were stable to all of the conditions tested. These results have important implications for the suitability of triangular nanoprisms in many applications; this is particularly true in biological or environmental fields, where the nanoparticles would inevitably be exposed to a wide variety of chemical stimuli.
Collapse
Affiliation(s)
- Kee Eun Lee
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| | | | | |
Collapse
|
42
|
Krajczewski J, Kołątaj K, Kudelski A. Light-induced growth of various silver seed nanoparticles: A simple method of synthesis of different silver colloidal SERS substrates. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.02.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Mitra J, Sharma A. Luminescent, ferromagnetic silver glyconanoparticles: synthesis to annealing-induced substrate specific transformation. RSC Adv 2015. [DOI: 10.1039/c5ra01324k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sugar cane juice has been harnessed as a green reducing agent for the synthesis of silver nanoparticles, followed by annealing of the latter into helical and rod-like structures on polymer and silicon surfaces respectively.
Collapse
Affiliation(s)
- Jaba Mitra
- Department of Chemical Engineering
- Indian Institute of Technology
- Kanpur
- India
| | - Ashutosh Sharma
- Department of Chemical Engineering
- Indian Institute of Technology
- Kanpur
- India
| |
Collapse
|
44
|
Gangishetty MK, Scott RWJ, Kelly TL. Panchromatic enhancement of light-harvesting efficiency in dye-sensitized solar cells using thermally annealed Au@SiO₂ triangular nanoprisms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:14352-14359. [PMID: 25369560 DOI: 10.1021/la503878m] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Plasmonic enhancement is an attractive method for improving the efficiency of dye-sensitized solar cells (DSSCs). Plasmonic materials with sharp features, such as triangular metal nanoparticles, show stronger plasmonic effects than their spherical analogues; however, these nanoparticles are also often thermally unstable. In this work, we investigated the thermal stability of Au@SiO2 triangular nanoprisms by annealing at different temperatures. Morphological changes were observed at temperatures greater than 250 °C, which resulted in a blue shift of the localized surface plasmon resonance (LSPR). Annealing at 450 °C led to a further blue shift; however, this resulted in better overlap of the LSPR with the absorption spectrum of black dye. By introducing 0.05% (w/w) Au@SiO2 nanoprisms into DSSCs, we were able to achieve a panchromatic enhancement of the light-harvesting efficiency. This led to a 15% increase in the power conversion efficiency from 3.9 ± 0.6% to 4.4 ± 0.4%.
Collapse
Affiliation(s)
- Mahesh K Gangishetty
- Department of Chemistry, University of Saskatchewan , 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | | | | |
Collapse
|
45
|
Tang B, Zhang M, Yao Y, Sun L, Li J, Xu S, Chen W, Xu W, Wang X. Photoinduced reversible shape conversion of silver nanoparticles assisted by TiO₂. Phys Chem Chem Phys 2014; 16:21999-2007. [PMID: 25205167 DOI: 10.1039/c4cp02874k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Silver nanoprisms were transformed into nanodecahedra through photoinduction of ultraviolet (UV) light in the presence of titanium dioxide (TiO2) quantum dots (QDs). Subsequently, the silver nanodecahedra were reconverted to silver nanoprisms under sodium lamp if there was sufficient citrate in the reaction system. The localized surface plasmon resonance (LSPR) optical properties of silver nanoparticles were tuned during photoinduced shape conversion. The photocatalytic activity of TiO2 QDs assisted the conversion of prisms to decahedra upon UV light irradiation. Nevertheless, the presence of TiO2 did not inhibit the photoinduced reconversion from decahedra to prisms by sodium light. It was demonstrated that citrate was indispensable in the photoinduction process. In addition, oxygen in solution played a vital role in the reversible shape conversion of silver nanoparticles. Moreover, simulated sunlight can convert silver nanoprisms to nanodecahedra instead of UV light with assistance of TiO2 QDs, which would promote the photoinduced reaction of silver nanoparticles based on a natural light source.
Collapse
Affiliation(s)
- Bin Tang
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430073, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Li G, Jiang Y, Chen D, Li J, Lu S. Increased silver activity as a result of controllable reaction-driven reconstruction for high-index facets. J Catal 2014. [DOI: 10.1016/j.jcat.2014.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Chang CW, Lin FC, Chiu CY, Su CY, Huang JS, Perng TP, Yen TJ. HNO₃-assisted polyol synthesis of ultralarge single-crystalline Ag microplates and their far propagation length of surface plasmon polariton. ACS APPLIED MATERIALS & INTERFACES 2014; 6:11791-8. [PMID: 24987801 DOI: 10.1021/am502549d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We developed a HNO3-assisted polyol reduction method to synthesize ultralarge single-crystalline Ag microplates routinely. The edge length of the synthesized Ag microplates reaches 50 μm, and their top facets are (111). The mechanism for dramatically enlarging single-crystalline Ag structure stems from a series of competitive anisotropic growths, primarily governed by carefully tuning the adsorption of Ag(0) by ethylene glycol and the desorption of Ag(0) by a cyanide ion on Ag(100). Finally, we measured the propagation length of surface plasmon polaritons along the air/Ag interface under 534 nm laser excitation. Our single-crystalline Ag microplate exhibited a propagation length (11.22 μm) considerably greater than that of the conventional E-gun deposited Ag thin film (5.27 μm).
Collapse
Affiliation(s)
- Cheng-Wei Chang
- Department of Materials Science and Engineering, National Tsing Hua University , 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan
| | | | | | | | | | | | | |
Collapse
|
48
|
A colorimetric method for highly sensitive and accurate detection of iodide by finding the critical color in a color change process using silver triangular nanoplates. Anal Chim Acta 2013; 798:74-81. [DOI: 10.1016/j.aca.2013.08.037] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 11/20/2022]
|
49
|
A facile photochemical route for the synthesis of triangular Ag nanoplates and colorimetric sensing of H2O2. J Photochem Photobiol A Chem 2013. [DOI: 10.1016/j.jphotochem.2013.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Tang B, Li J, Hou X, Afrin T, Sun L, Wang X. Colorful and Antibacterial Silk Fiber from Anisotropic Silver Nanoparticles. Ind Eng Chem Res 2013. [DOI: 10.1021/ie3033872] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Bin Tang
- Institute for Frontier
Materials, Deakin University, Geelong,
Victoria 3216, Australia
| | - Jingliang Li
- Institute for Frontier
Materials, Deakin University, Geelong,
Victoria 3216, Australia
| | - Xueliang Hou
- Institute for Frontier
Materials, Deakin University, Geelong,
Victoria 3216, Australia
| | - Tarannum Afrin
- Institute for Frontier
Materials, Deakin University, Geelong,
Victoria 3216, Australia
| | - Lu Sun
- Institute for Frontier
Materials, Deakin University, Geelong,
Victoria 3216, Australia
- Ministry of Education Key Laboratory
for Textile Fibers and Products, Wuhan Textile University, Wuhan 430073, China
| | - Xungai Wang
- Institute for Frontier
Materials, Deakin University, Geelong,
Victoria 3216, Australia
- Ministry of Education Key Laboratory
for Textile Fibers and Products, Wuhan Textile University, Wuhan 430073, China
| |
Collapse
|