1
|
Khoo PS, Ilyas RA, Aiman A, Wei JS, Yousef A, Anis N, Zuhri MYM, Abral H, Sari NH, Syafri E, Mahardika M. Revolutionizing wastewater treatment: A review on the role of advanced functional bio-based hydrogels. Int J Biol Macromol 2024; 278:135088. [PMID: 39197608 DOI: 10.1016/j.ijbiomac.2024.135088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/26/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Water contamination poses a significant challenge to environmental and public health, necessitating sustainable wastewater treatment solutions. Adsorption is one of the most widely used techniques for purifying water, as it effectively removes contaminants by transferring them from the liquid phase to a solid surface. Bio-based hydrogel adsorbents are gaining popularity in wastewater treatment due to their versatility in fabrication and modification methods, which include blending, grafting, and crosslinking. Owning to their unique structure and large surface area, modified hydrogels containing reactive groups like amino, hydroxyl, and carboxyl, or functionalized hydrogels with inorganic nanoparticles particularly graphene nanomaterials, have demonstrated promising adsorption capabilities for both inorganic and organic contaminants. Bio-based hydrogels have excellent physicochemical properties and are non-toxic, environmentally friendly, and biodegradable, making them extremely effective at removing contaminants like heavy metal ions, dyes, pharmaceutical pollutants, and organic micropollutants. The versatility of hydrogels allows for various forms to be used, such as films, beads, and nanocomposites, providing flexibility in handling different contaminants like dyes, radionuclides, and heavy metals. Additionally, researchers also have shown the potential for recycling and regenerating post-treatment hydrogels. This approach not only addresses the challenges of wastewater treatment but also offers sustainable and effective solutions for mitigating water pollution.
Collapse
Affiliation(s)
- Pui San Khoo
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
| | - R A Ilyas
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia; Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia; Institute of Tropical Forest and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - Alif Aiman
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
| | - Jau Sh Wei
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
| | - Ahmad Yousef
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
| | - Nurul Anis
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
| | - M Y M Zuhri
- Institute of Tropical Forest and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Research Centre for Advanced Engineering Materials and Composites (AEMC), Department of Mechanical and Manufacturing Engineering, University Putra Malaysia (UPM), 43400 UPM Serdang, Selangor, Malaysia.
| | - Hairul Abral
- Laboratory of Nanoscience and Technology, Department of Mechanical Engineering, Andalas University, Padang 25163, Indonesia; Research Collaboration Center for Nanocellulose, BRIN-Andalas University, Padang 25163, Indonesia.
| | - Nasmi Herlina Sari
- Department of Mechanical Engineering, Faculty of Engineering, University of Mataram, West Nusa Tenggara 83125, Indonesia.
| | - Edi Syafri
- Department of Agricultural and Computer Engineering, Politeknik Pertanian Negeri Payakumbuh, Limapuluh Kota, West Sumatra 26271, Indonesia.
| | - Melbi Mahardika
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911, Indonesia.
| |
Collapse
|
2
|
Eygeris Y, Ulery N, Zharov I. pH-Responsive Membranes from Self-Assembly of Poly(2-(dimethylamino)ethyl methacrylate) Brush Silica Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15792-15798. [PMID: 37874739 DOI: 10.1021/acs.langmuir.3c02455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
We have prepared novel pH-responsive nanoporous membranes by the self-assembly of silica nanoparticles carrying poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes with a degree of polymerization (DP) in the 100-450 range. The nanoparticles were prepared by surface-initiated ARGET-ATRP, and the membranes were assembled by pressure-driven deposition onto porous supports. The permeability and pore size of the resulting robust membranes were studied using water and hexane flux and filtration cutoff experiments. The pore size of the PDMAEMA "hairy" silica nanoparticle (HNP) membranes measured by water flux was ca. 22 nm and was mostly independent of the polymer brush length. We attributed this to a combination of the PDMAEMA brushes swelling and their permeability to water. In contrast, the pore size measured by hexane flux strongly depended on the DP. The flux and pore size of these membranes in water strongly depended on the pH. The pore size decreased by a factor of 1.6 when the pH was changed from neutral to acidic. pH-Responsive HNP membranes combine many attractive properties, including control over the filtration cutoff, responsive permeability, and high flux at low pressure. The reversible self-assembly of the PDMAEMA HNP membranes may help not only in their facile preparation but also in material recycling if biofouling occurs. The key features of the PDMAEMA HNP assemblies are attractive in membrane separations, molecular valves, and biosensors, where having precise control over the pore size and pore gating is highly desirable.
Collapse
Affiliation(s)
- Yulia Eygeris
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Noah Ulery
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ilya Zharov
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
3
|
Qin S, Nap RJ, Huang K, Szleifer I. Influence of Membrane Permittivity on Charge Regulation of Weak Polyelectrolytes End-Tethered in Nanopores. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shiyi Qin
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Rikkert J. Nap
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Pirkin-Benameur J, Bouyer D, Quemener D. Self-oscillating polymer membranes with chemically fueled pore size oscillation mediated by pH-responsive polymer. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Açarı İK, Sel E, Özcan İ, Ateş B, Köytepe S, Thakur VK. Chemistry and engineering of brush type polymers: Perspective towards tissue engineering. Adv Colloid Interface Sci 2022; 305:102694. [PMID: 35597039 DOI: 10.1016/j.cis.2022.102694] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/21/2022] [Accepted: 05/06/2022] [Indexed: 11/01/2022]
Abstract
In tissue engineering, it is imperative to control the behaviour of cells/stem cells, such as adhesion, proliferation, propagation, motility, and differentiation for tissue regeneration. Surfaces that allow cells to behave in this way are critical as support materials in tissue engineering. Among these surfaces, brush-type polymers have an important potential for tissue engineering and biomedical applications. Brush structure and length, end groups, bonding densities, hydrophilicity, surface energy, structural flexibility, thermal stability, surface chemical reactivity, rheological and tribological properties, electron and energy transfer ability, cell binding and absorption abilities for various biological molecules of brush-type polymers were increased its importance in tissue engineering applications. In addition, thanks to these functional properties and adjustable surface properties, brush type polymers are used in different high-tech applications such as electronics, sensors, anti-fouling, catalysis, purification and energy etc. This review comprehensively highlights the use of brush-type polymers in tissue engineering applications. Considering the superior properties of brush-type polymer structures, it is believed that in the future, it will be an effective tool in structure designs containing many different biomolecules (enzymes, proteins, etc.) in the field of tissue engineering.
Collapse
|
6
|
Chen G, Dormidontova E. PEO-Grafted Gold Nanopore: Grafting Density, Chain Length, and Curvature Effects. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guang Chen
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Elena Dormidontova
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
7
|
Besford QA, Schubotz S, Chae S, Özdabak Sert AB, Weiss ACG, Auernhammer GK, Uhlmann P, Farinha JPS, Fery A. Molecular Transport within Polymer Brushes: A FRET View at Aqueous Interfaces. Molecules 2022; 27:molecules27093043. [PMID: 35566393 PMCID: PMC9102696 DOI: 10.3390/molecules27093043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
Molecular permeability through polymer brush chains is implicated in surface lubrication, wettability, and solute capture and release. Probing molecular transport through polymer brushes can reveal information on the polymer nanostructure, with a permeability that is dependent on chain conformation and grafting density. Herein, we introduce a brush system to study the molecular transport of fluorophores from an aqueous droplet into the external “dry” polymer brush with the vapour phase above. The brushes consist of a random copolymer of N-isopropylacrylamide and a Förster resonance energy transfer (FRET) donor-labelled monomer, forming ultrathin brush architectures of about 35 nm in solvated height. Aqueous droplets containing a separate FRET acceptor are placed onto the surfaces, with FRET monitored spatially around the 3-phase contact line. FRET is used to monitor the transport from the droplet to the outside brush, and the changing internal distributions with time as the droplets prepare to recede. This reveals information on the dynamics and distances involved in the molecular transport of the FRET acceptor towards and away from the droplet contact line, which are strongly dependent on the relative humidity of the system. We anticipate our system to be extremely useful for studying lubrication dynamics and surface droplet wettability processes.
Collapse
Affiliation(s)
- Quinn A. Besford
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
- Correspondence: (Q.A.B.); (A.F.)
| | - Simon Schubotz
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
| | - Soosang Chae
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
| | - Ayşe B. Özdabak Sert
- Molecular Biology and Genetics Department, Istanbul Technical University, 34469 Istanbul, Turkey;
| | - Alessia C. G. Weiss
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
| | - Günter K. Auernhammer
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
| | - José Paulo S. Farinha
- Centro de Química Estrutural, Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
- Correspondence: (Q.A.B.); (A.F.)
| |
Collapse
|
8
|
Qi L, Qiao J. Advances in stimuli-responsive polymeric coatings for open-tubular capillary electrochromatography. J Chromatogr A 2022; 1670:462957. [DOI: 10.1016/j.chroma.2022.462957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
|
9
|
Enes da Silva MJ, Banerjee A, Lefferts L, Albanese JAF. In‐situ ATR‐IR Spectroscopy Reveals Complex Absorption‐Diffusion Dynamics in Model Polymer‐Membrane‐Catalyst Assemblies (PCMA). ChemCatChem 2022. [DOI: 10.1002/cctc.202101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maria Joao Enes da Silva
- University of Twente Institute for Nanotechnology: Universiteit Twente MESA+ Catalytic Processes and Materials Group NETHERLANDS
| | - Aayan Banerjee
- University of Twente Institute for Nanotechnology: Universiteit Twente MESA+ Catalytic Processes and Materials Group NETHERLANDS
| | - Leon Lefferts
- University of Twente Institute for Nanotechnology: Universiteit Twente MESA+ Catalytic Processes and Materials Group NETHERLANDS
| | - Jimmy Alexander Faria Albanese
- Universiteit Twente MESA+ Faculty of Science and Technology Drienerlolaan 5Meander ME361Netherlands 7522NB Enschede NETHERLANDS
| |
Collapse
|
10
|
Zhang BY, Luo HN, Zhang W, Liu Y. Research progress in self-oscillating polymer brushes. RSC Adv 2022; 12:1366-1374. [PMID: 35425176 PMCID: PMC8979042 DOI: 10.1039/d1ra07374e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/22/2021] [Indexed: 12/02/2022] Open
Abstract
Polymer brushes possess unique changes in physical and chemical properties when they are exposed to external stimuli and have a wide range of applications. Self-oscillating polymers are anchored on surfaces of certain materials and are coupled with some self-oscillating reactions (with the Belousov–Zhabotinsky (BZ) reaction as an example) to form self-oscillating polymer brushes. As an independent field of stimulus response functional surface research, the development of new intelligent bionic materials has good potential. This article reviews the oscillation mechanisms of self-oscillating polymer brushes and their classifications. First, the oscillation mechanisms of self-oscillating polymer brushes are introduced. Second, the research progress in self-oscillating polymers is discussed in terms of the type of self-oscillation reactions. Finally, possible future developments of self-oscillating polymer brushes are prospected. Polymer brushes possess unique changes in physical and chemical properties when they are exposed to external stimuli and have a wide range of applications.![]()
Collapse
Affiliation(s)
- Bao-Ying Zhang
- School of Chemical Engineering, China University of Mining and Technology Xuzhou Jiangsu 221116 China .,School of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University Zaozhuang Shandong 277160 China
| | - Hai-Nan Luo
- School of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University Zaozhuang Shandong 277160 China
| | - Wei Zhang
- School of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University Zaozhuang Shandong 277160 China
| | - Yang Liu
- School of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University Zaozhuang Shandong 277160 China
| |
Collapse
|
11
|
Suginta W, Sanram S, Aunkham A, Winterhalter M, Schulte A. The C2 entity of chitosugars is crucial in molecular selectivity of the Vibrio campbellii chitoporin. J Biol Chem 2021; 297:101350. [PMID: 34715124 PMCID: PMC8608610 DOI: 10.1016/j.jbc.2021.101350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
The marine bacterium Vibrio campbellii expresses a chitooligosaccharide-specific outer-membrane channel (chitoporin) for the efficient uptake of nutritional chitosugars that are externally produced through enzymic degradation of environmental host shell chitin. However, the principles behind the distinct substrate selectivity of chitoporins are unclear. Here, we employed black lipid membrane (BLM) electrophysiology, which handles the measurement of the flow of ionic current through porins in phospholipid bilayers for the assessment of porin conductivities, to investigate the pH dependency of chitosugar-chitoporin interactions for the bacterium's natural substrate chitohexaose and its deacetylated form, chitosan hexaose. We show that efficient passage of the N-acetylated chitohexaose through the chitoporin is facilitated by its strong affinity for the pore. In contrast, the deacetylated chitosan hexaose is impermeant; however, protonation of the C2 amino entities of chitosan hexaose allows it to be pulled through the channel in the presence of a transmembrane electric field. We concluded from this the crucial role of C2-substitution as the determining factor for chitoporin entry. A change from N-acetylamino- to amino-substitution effectively abolished the ability of approaching molecules to enter the chitoporin, with deacetylation leading to loss of the distinctive structural features of nanopore opening and pore access of chitosugars. These findings provide further understanding of the multistep pathway of chitin utilization by marine Vibrio bacteria and may guide the development of solid-state or genetically engineered biological nanopores for relevant technological applications.
Collapse
Affiliation(s)
- Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| | - Surapoj Sanram
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Anuwat Aunkham
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Albert Schulte
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| |
Collapse
|
12
|
Chun B, Chun MS. Electrostatic Potential Analysis in Polyelectrolyte Brush-Grafted Microchannels Filled with Polyelectrolyte Dispersion. MICROMACHINES 2021; 12:mi12121475. [PMID: 34945324 PMCID: PMC8706125 DOI: 10.3390/mi12121475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 11/24/2022]
Abstract
In this study, the model framework that includes almost all relevant parameters of interest has been developed to quantify the electrostatic potential and charge density occurring in microchannels grafted with polyelectrolyte brushes and simultaneously filled with polyelectrolyte dispersion. The brush layer is described by the Alexander-de Gennes model incorporated with the monomer distribution function accompanying the quadratic decay. Each ion concentration due to mobile charges in the bulk and fixed charges in the brush layer can be determined by multi-species ion balance. We solved 2-dimensional Poisson–Nernst–Planck equations adopted for simulating electric field with ion transport in the soft channel, by considering anionic polyelectrolyte of polyacrylic acid (PAA). Remarkable results were obtained regarding the brush height, ionization, electrostatic potential, and charge density profiles with conditions of brush, dispersion, and solution pH. The Donnan potential in the brush channel shows several times higher than the surface potential in the bare channel, whereas it becomes lower with increasing PAA concentration. Our framework is fruitful to provide comparative information regarding electrostatic interaction properties, serving as an important bridge between modeling and experiments, and is possible to couple with governing equations for flow field.
Collapse
Affiliation(s)
- Byoungjin Chun
- Complex Fluids Laboratory, Advanced Materials Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea
| | - Myung-Suk Chun
- Complex Fluids Laboratory, Advanced Materials Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Biomedical Engineering Department, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| |
Collapse
|
13
|
Qin S, Huang K, Szleifer I. Design of Multifunctional Nanopore Using Polyampholyte Brush with Composition Gradient. ACS NANO 2021; 15:17678-17688. [PMID: 34708653 DOI: 10.1021/acsnano.1c05543] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular organizations and charge patterns inside biological nanopores are optimized by evolution to enhance ionic and molecular transport. Inspired by the nuclear pore complex that employs asymmetrically arranged disordered proteins for its gating, we here design an artificial nanopore coated by an asymmetric polyampholyte brush as a model system to study the asymmetric mass transport under nanoconfinement. A nonequilibrium steady-state molecular theory is developed to account for the intricate charge regulation effect of the weak polyampholyte and to address the coupling between the polymer conformation and the external electric field. On the basis of this state-of-the-art theoretical method, we present a comprehensive theoretical description of the stimuli-responsive structural behaviors and transport properties inside the nanopore with all molecular details considered. Our model demonstrates that by incorporating a gradient of pH sensitivity into the polymer coatings of the nanopore, a variety of asymmetric charge patterns and functional structures can be achieved, in a pH-responsive manner that allows for multiple functions to be implemented into the designed system. The asymmetric charge pattern inside the nanopore leads to an electrostatic trap for major current carriers, which turns the nanopore into an ionic rectifier with a rectification factor above 1000 at optimized pH and salt concentration. Our theory further predicts that the nanopore design behaves like a double-gated nanofluidic device with pH-triggered opening of the gates, which can serve as an ion pump and pH-responsive molecular filter. These results deepen our understanding of asymmetric transport in nanoconfined systems and provide guidelines for designing polymer-coated smart nanopores.
Collapse
Affiliation(s)
- Shiyi Qin
- Department of Biomedical Engineering, Department of Chemistry, and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Igal Szleifer
- Department of Biomedical Engineering, Department of Chemistry, and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Xu S, Trujillo FJ, Xu J, Boyer C, Corrigan N. Influence of Molecular Weight Distribution on the Thermoresponsive Transition of Poly(N-isopropylacrylamide). Macromol Rapid Commun 2021; 42:e2100212. [PMID: 34121259 DOI: 10.1002/marc.202100212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/09/2021] [Indexed: 11/10/2022]
Abstract
A series of poly(N-isopropylacrylamide) (PNIPAm) homopolymers with narrow molecular weight distributions (MWDs) is prepared via photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. The thermal transition temperature of these polymer samples is analyzed via turbidity measurements in water/N,N'-dimethylformamide mixtures, which show that the cloud point temperatures are inversely proportional to the weight average molecular weight (Mw ). Binary mixtures of the narrowly distributed PNIPAm samples are also prepared and the statistical parameters for the MWDs of these blends are determined. Very interestingly, for binary blends of the PNIPAm samples, the thermoresponsive transition is not only dependent on the Mw , which has been shown previously, but also on higher order statistical parameters of the MWDs. Specifically, at very high values of skewness and kurtosis, the polymer blends deviate from a single sharp thermoresponsive transition toward a broader thermal response, and eventually to a regime of two more distinct transitions. This work highlights the importance of in-depth characterization of polymer MWDs for thermoresponsive polymers.
Collapse
Affiliation(s)
- Sihao Xu
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.,Cluster for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Francisco J Trujillo
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jiangtao Xu
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.,Cluster for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.,Cluster for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.,Cluster for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
15
|
Yong H, Molcrette B, Sperling M, Montel F, Sommer JU. Regulating the Translocation of DNA through Poly( N-isopropylacrylamide)-Decorated Switchable Nanopores by Cononsolvency Effect. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Huaisong Yong
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Bastien Molcrette
- Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, Lyon F-69342, France
| | - Marcel Sperling
- Fraunhofer-Institut für Angewandte Polymerforschung, Potsdam-Golm 14476, Germany
| | - Fabien Montel
- Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, Lyon F-69342, France
| | - Jens-Uwe Sommer
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
- Institute for Theoretical Physics, Technische Universität Dresden, Dresden 01069, Germany
| |
Collapse
|
16
|
Homma K, Ohta Y, Minami K, Yoshikawa G, Nagase K, Akimoto AM, Yoshida R. Autonomous Nanoscale Chemomechanical Oscillation on the Self-Oscillating Polymer Brush Surface by Precise Control of Graft Density. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4380-4386. [PMID: 33793253 DOI: 10.1021/acs.langmuir.1c00459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a novel functional surface, a self-oscillating polymer brush that undergoes autonomous, periodic swelling/deswelling during the Belousov-Zhabotinsky (BZ) reaction has been developed. Although extensive research has revealed how the fundamental aspects of the BZ reaction can be regulated based on the surface design of the self-oscillating polymer brush, design strategies for the induction of mechanical oscillation remain unexplored. Herein, we investigated the graft density effects on the phase transition behavior, which is an important design parameter for the mechanical oscillation of the modified polymer. The self-oscillating polymer-modified substrates with controlled graft densities were prepared by immobilizing various compositions of an initiator and a noninitiator followed by surface-initiated atom transfer radical polymerization of the self-oscillating polymer chains. In addition to the characterization of each prepared substrate, atomic force microscopy (AFM) and digital holographic microscopy (DHM) were employed to evaluate the density effects on the static and dynamic surface structures. AFM revealed that equilibrium swelling as well as thermoresponsive behavior is profoundly affected by the graft density. Moreover, using DHM, autonomous mechanical oscillation was captured only on the self-oscillating polymer brush with adequate graft density. Notably, the oscillation amplitude (150 nm) and the period (20 s) in this study were superior to those in a previous report on the self-oscillating polymer modified through the grafting-to method by 10- and 3-fold, respectively. This study presents design guidelines for future applications, such as autonomous transport devices.
Collapse
Affiliation(s)
- Kenta Homma
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuji Ohta
- School of Humanities and Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Kosuke Minami
- International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan
| | - Genki Yoshikawa
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan
- Materials Science and Engineering, Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Ibaraki, Tsukuba 305-8571, Japan
| | - Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Aya M Akimoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryo Yoshida
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
17
|
Trachsel L, Ramakrishna SN, Romio M, Spencer ND, Benetti EM. Topology and Molecular Architecture of Polyelectrolytes Determine Their pH-Responsiveness When Assembled on Surfaces. ACS Macro Lett 2021; 10:90-97. [PMID: 35548981 DOI: 10.1021/acsmacrolett.0c00750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polymer composition and topology of surface-grafted polyacids determine the amplitude of their pH-induced swelling transition. The intrinsic steric constraints characterizing cyclic poly(2-carboxypropyl-2-oxazoline) (c-PCPOXA) and poly(2-carboxyethyl-2-oxazoline) (c-PCEOXA) forming brushes on Au surfaces induce an enhancement in repulsive interactions between charged polymer segments upon deprotonation, leading to an amplified expansion and a significant increment in swelling with respect to their linear analogues of similar molar mass. On the other hand, it is the composition of polyacid grafts that governs their hydration in both undissociated and ionized forms, determining the degree of swelling during their pH-induced transition.
Collapse
Affiliation(s)
- Lucca Trachsel
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Shivaprakash N. Ramakrishna
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Matteo Romio
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| | - Nicholas D. Spencer
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Edmondo M. Benetti
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| |
Collapse
|
18
|
Wang TY, Tsao HK, Sheng YJ. Perforated Vesicles of ABA Triblock Copolymers with ON/OFF-Switchable Nanopores. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ting-Ya Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Heng-Kwong Tsao
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan, ROC
| | - Yu-Jane Sheng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| |
Collapse
|
19
|
Trachsel L, Romio M, Grob B, Zenobi-Wong M, Spencer ND, Ramakrishna SN, Benetti EM. Functional Nanoassemblies of Cyclic Polymers Show Amplified Responsiveness and Enhanced Protein-Binding Ability. ACS NANO 2020; 14:10054-10067. [PMID: 32628438 DOI: 10.1021/acsnano.0c03239] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The physicochemical properties of cyclic polymer adsorbates are significantly influenced by the steric and conformational constraints introduced during their cyclization. These translate into a marked difference in interfacial properties between cyclic polymers and their linear counterparts when they are grafted onto surfaces yielding nanoassemblies or polymer brushes. This difference is particularly clear in the case of cyclic polymer brushes that are designed to chemically interact with the surrounding environment, for instance, by associating with biological components present in the medium, or, alternatively, through a response to a chemical stimulus by a significant change in their properties. The intrinsic architecture characterizing cyclic poly(2-oxazoline)-based polyacid brushes leads to a broad variation in swelling and nanomechanical properties in response to pH change, in comparison with their linear analogues of identical composition and molecular weight. In addition, cyclic glycopolymer brushes derived from polyacids reveal an enhanced exposure of galactose units at the surface, due to their expanded topology, and thus display an increased lectin-binding ability with respect to their linear counterparts. This combination of amplified responsiveness and augmented protein-binding capacity renders cyclic brushes invaluable building blocks for the design of "smart" materials and functional biointerfaces.
Collapse
Affiliation(s)
- Lucca Trachsel
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Matteo Romio
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich; Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Benjamin Grob
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich; Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Nicholas D Spencer
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich; Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Shivaprakash N Ramakrishna
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich; Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Edmondo M Benetti
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich; Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
20
|
Haq F, Yu H, Wang Y, Wang L, Haroon M, Khan A, Mehmood S, Bilal-Ul-Amin, Lin T. Synthesis of carboxymethyl starch grafted poly (methacrylic acids) (CMS-g-PMAAs) and their application as an adsorbent for the removal of ammonia and phenol. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Bayat H, Raoufi M, Zamrik I, Schönherr H. Poly(diethylene glycol methylether methacrylate) Brush-Functionalized Anodic Alumina Nanopores: Curvature-Dependent Polymerization Kinetics and Nanopore Filling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2663-2672. [PMID: 32073275 DOI: 10.1021/acs.langmuir.9b03700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report on the synthesis and characterization of poly(diethylene glycol methylether methacrylate) (PDEGMA) brushes by surface-initiated atom transfer radical polymerization inside ordered cylindrical nanopores of anodic aluminum oxide with different pore radii between 20 and 185 nm. In particular, the dependence of polymerization kinetics and the degree of pore filling on the interfacial curvature were analyzed. On the basis of field emission scanning electron microscopy data and thermal gravimetric analysis (TGA), it was concluded that the polymerization rate was faster at the pore orifice compared to the pore interior and also as compared to the analogous reaction carried out on flat aluminum oxide substrates. The apparent steady-state polymerization rate near the orifice increased with decreasing pore size. Likewise, the overall apparent polymerization rate estimated from TGA data indicated stronger confinement for pores with increased curvature as well as increased mass transport limitations due to the blockage of the pore orifice. Only for pores with a diameter to length ratio of ∼1, PDEGMA brushes were concluded to grow uniformly with constant thickness. However, because of mass transport limitations in longer pores, incomplete pore filling was observed, which leads presumably to a PDEGMA gradient brush. This study contributes to a better understanding of polymer brush-functionalized nanopores and the impact of confinement, in which the control of polymer brush thickness together with grafting density along the nanopores is key for applications of PDEGMA brushes confined inside nanopores.
Collapse
Affiliation(s)
- Haider Bayat
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Mohammad Raoufi
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Imad Zamrik
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| |
Collapse
|
22
|
Wang A, Fang W, Zhang J, Gao S, Zhu Y, Jin J. Zwitterionic Nanohydrogels-Decorated Microporous Membrane with Ultrasensitive Salt Responsiveness for Controlled Water Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903925. [PMID: 31600021 DOI: 10.1002/smll.201903925] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/12/2019] [Indexed: 06/10/2023]
Abstract
Highly sensitive responsiveness is vital for stimuli-responsive membranes. However, it is a great challenge to fabricate stimuli-responsive membranes with ultrahigh gating ratio (the ratio of the salt solution permeating flux to the pure water permeating flux) and high response speed simultaneously. In this work, a salt-responsive membrane with an ultrahigh gating ratio is fabricated via a facile strategy by grafting zwitterionic nanohydrogels onto a poly(acrylic acid)-grafting-poly(vinylidene fluoride) (PAA-g-PVDF) microporous membrane. Due to the synergistic effect of two functional materials, PAA chains and zwitterionic nanohydrogels tethered on PAA chains, this stimuli-responsive membrane exhibits an ultrasensitive salt responsiveness with a gating ratio of up to 8.76 times for Na+ ions, 89.6 times for Mg2+ ions, and 89.3 times for Ca2+ ions. In addition, such zwitterionic nanohydrogels-grafted PAA-g-PVDF (ZNG-g-PVDF) membranes exhibit very rapid responses to stimuli. The permeating flux changes swiftly while altering the feed solution in a continuous filtration process. The excellent salt-responsive characteristics endow such a ZNG-g-PVDF membrane with great potential for applications like drug delivery, water treatment, and sensors.
Collapse
Affiliation(s)
- Aqiang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wangxi Fang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jingya Zhang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Shoujian Gao
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yuzhang Zhu
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jian Jin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
23
|
Jiang P, Ji H, Li G, Chen S, Lv L. Structure formation in pH-sensitive micro porous membrane from well-defined ethyl cellulose-g-PDEAEMA via non-solvent-induced phase separation process. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1722691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ping Jiang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China
| | - Hongmin Ji
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China
| | - Gen Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China
| | - Shaowei Chen
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China
| | - Linda Lv
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China
| |
Collapse
|
24
|
Etha SA, Sivasankar VS, Sachar HS, Das S. Strong stretching theory for pH-responsive polyelectrolyte brushes in large salt concentrations. Phys Chem Chem Phys 2020; 22:13536-13553. [DOI: 10.1039/d0cp02099k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we develop a theory for describing the thermodynamics, configuration, and electrostatics of strongly-stretched, pH-responsive polyelectrolyte (PE) brushes in the presence of large salt concentrations.
Collapse
Affiliation(s)
- Sai Ankit Etha
- Department of Mechanical Engineering
- University of Maryland
- College Park
- USA
| | | | | | - Siddhartha Das
- Department of Mechanical Engineering
- University of Maryland
- College Park
- USA
| |
Collapse
|
25
|
Cai H, Kou R, Liu G. Counterion-Tunable Thermosensitivity of Strong Polyelectrolyte Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16862-16868. [PMID: 31774295 DOI: 10.1021/acs.langmuir.9b02982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, poly(sodium styrene sulfonate) brushes have been employed as a precursor to prepare thermosensitive strong polyelectrolyte brushes (SPBs) through a counterion exchange strategy. The substitution of hydrophilic Na+ counterions by hydrophobic tetraalkylphosphonium counterions leads to a thermoresponsivity of the SPBs. The thermosensitive properties including hydration, stiffness, and surface water wettability of the SPBs can be modulated by the type of the tetraalkylphosphonium counterions. Nevertheless, the wet thickness of the SPBs with tetraalkylphosphonium counterions does not exhibit an obvious temperature dependency due to the high steric barrier in the crowded environment of SPBs generated by the large tetraalkylphosphonium counterions. The mixtures of small Na+ counterions and large tetraalkylphosphonium counterions are employed to realize the thermosensitive wet thickness without sacrificing other thermoresponsive properties of the SPBs because the mixed counterions can bring both a certain hydrophobicity and some free space to the brushes. This work opens up the opportunities available for the use of counterions to tune the thermosensitivity of SPBs.
Collapse
Affiliation(s)
- Hongtao Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , No. 96, JinZhai Road , Hefei 230026 , P. R. China
| | - Ran Kou
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , No. 96, JinZhai Road , Hefei 230026 , P. R. China
| | - Guangming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , No. 96, JinZhai Road , Hefei 230026 , P. R. China
| |
Collapse
|
26
|
Sachar HS, Sivasankar VS, Das S. Electrokinetic energy conversion in nanochannels grafted with pH-responsive polyelectrolyte brushes modelled using augmented strong stretching theory. SOFT MATTER 2019; 15:5973-5986. [PMID: 31290913 DOI: 10.1039/c9sm00765b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this paper, we develop a theory to quantify the electrokinetic energy conversion in electrolyte-filled nanochannels grafted with pH-responsive polyelectrolyte (PE) brushes. A pressure-driven flow drives the mobile electrolyte ions of the electric double layer (EDL) supported by the charged PE brushes leading to the generation of a streaming current, a streaming electric field and eventually an electrical energy. The salient feature of this study is that the brushes are described using our recently developed augmented Strong Stretching Theory (SST) model. In all the previous theoretical studies on liquid transport in PE-brush-grafted nanochannels, the brushes have either been assumed to be of constant height (independent of salt concentration or pH) or modelled using the Alexander-de-Gennes model that considers uniform monomer distribution along the brush height. Such simplifications have meant that the salt and the pH dependence of the brush height, the monomer distribution, and the resulting electrostatics have not been appropriately accounted for in the transport calculations. This paper addresses these limitations and provides a much more detailed description of the brushes while capturing the corresponding electrokinetic energy conversion. The results establish that the presence of the PE brushes ensures a localization of the average EDL charge density away from the grafting surface, thereby enabling the migration of the EDL ions with a larger background flow velocity; as a consequence, there is an enhancement of the streaming current, streaming electric field, and the resulting electrical energy generation under certain grafting densities of the PE brushes.
Collapse
Affiliation(s)
- Harnoor Singh Sachar
- Department of Mechanical Engineering, University of Maryland, College Park, MD-20742, USA.
| | | | | |
Collapse
|
27
|
Tao W, Wang J, Parak WJ, Farokhzad OC, Shi J. Nanobuffering of pH-Responsive Polymers: A Known but Sometimes Overlooked Phenomenon and Its Biological Applications. ACS NANO 2019; 13:4876-4882. [PMID: 30985108 PMCID: PMC6748625 DOI: 10.1021/acsnano.9b01696] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
With recent advances in polymer chemistry, materials science, and nanotechnology, pH-responsive polymers have a significant impact in a number of diverse fields. Fundamental studies of these polymers are thus highly desirable as they may lead to new insights into the rational design of pH-responsive polymers with specific effects. In this Perspective, we focus on the nanobuffering of pH-responsive polymers (NBPRP). Although researchers have known of such buffering effects for more than a century, for example, in the context of the Henderson-Hasselbalch equation, modern synthesis and analysis routes now enable us to analyze these effects on the nanometer scale. In this way, the NBPRP phenomenon was explicitly defined and described by Gauthier and colleagues in the February issue of ACS Nano. Here, we highlight several potential areas in which the NBPRP could enable innovative classes of biological applications. We expect deeper mechanistic understanding of nanobuffering effects induced by pH-responsive polymers to have a significant impact on the future development and applications of these polymers.
Collapse
Affiliation(s)
- Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Junqing Wang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Wolfgang J. Parak
- Center for Hybrid Nanostructures (CHyN), Univeristät Hamburg, 22607 Hamburg, Germany
| | - Omid C. Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
28
|
|
29
|
Polymer membranes as templates for bio-applications ranging from artificial cells to active surfaces. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Sachar HS, Sivasankar VS, Das S. Revisiting the strong stretching theory for pH-responsive polyelectrolyte brushes: effects of consideration of excluded volume interactions and an expanded form of the mass action law. SOFT MATTER 2019; 15:559-574. [PMID: 30520929 DOI: 10.1039/c8sm02163e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this paper, we develop a theory to account for the effect of excluded volume (EV) interactions in the strong stretching theory (SST) based description of pH-responsive polyelectrolyte (PE) brushes. The existing studies have considered the PE brushes to be present in a θ-solvent and hence have neglected the EV interactions; however, such a consideration cannot describe the situations where the pH-responsive brushes are in a "good" solvent. Secondly, we consider a more expanded form of the mass action law, governing the pH-dependent ionization of the PE molecules, in the SST description of the PE brushes. This expanded form of the mass action law considers different values of γa3 (γ is the density of chargeable sites on the PE molecule and a is the PE Kuhn length) and therefore is an improvement over the existing SST models of PE brushes as well as other theories involving pH-responsive PE molecules that always consider γa3 = 1. Our results demonstrate that the EV effects enhance the brush height by inducing additional PE inter-segmental repulsion. Similarly, the consideration of the expanded form of the mass action law would lead to a reduced (enhanced) brush height for γa3 < 1 (γa3 > 1). We also quantify variables such as the monomer density distribution, the distribution of the ends of the PE brush, and the EDL electrostatic potential and explain their differences with respect to those obtained with no EV interactions or γa3 = 1.
Collapse
Affiliation(s)
- Harnoor Singh Sachar
- Department of Mechanical Engineering, University of Maryland, College Park, MD-20742, USA.
| | | | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, MD-20742, USA.
| |
Collapse
|
31
|
Dettori R, Yang Q, Achenie LEK, Schwarz RD. A Temperature-, pH- and Voltage-Responsive Nanogate with a Remarkably High Factor of Change in Ion Currents due to ON/OFF Switching. Chemistry 2018; 24:18897-18902. [PMID: 30252993 DOI: 10.1002/chem.201804842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Indexed: 11/10/2022]
Abstract
In biological cells, nuclear pore complexes (NPCs) embedded in cell membranes are capable of controlling the flow of ions, for example, Na+ , K+ , and Ca2+ by responding to stimuli, for example, pH and voltage. Inspired by NPCs, researchers have been endeavoring to develop nanogates to achieve the control of ion transport, but the developed nanogates only have a low factor of change in ion currents due to ON/OFF switching. As such nanopores with high temperature and pH responsivities were developed in this work. According to the experimental results, at a voltage of 3 V, the change in ion currents due to pH change is up to a factor of 170, which is remarkably high compared to other nanogates reported. Quantum chemical (QC) calculation results show that a protonated cytosine molecule (C+ ) and an unprotonated cytosine molecule (C) form three pairs of hydrogen bonds and consequently a nucleobase pair, CC+ , leading to the binding of various strands, assembly of a strand net, and blockage of ion transport. The nanogate developed is capable of responding to temperature change. At a voltage of 3 V, the factor of change in ion currents in response to temperature variation is as high as 110. Further experiments were performed to investigate the influence of the NaCl concentrations and small opening diameters exerted on nanogate performance.
Collapse
Affiliation(s)
| | - Quan Yang
- Sandia National Laboratories, Livermore, CA, 94551-0969, USA.,Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Luke E K Achenie
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Roland D Schwarz
- Department of Material Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| |
Collapse
|
32
|
Desai PR, Das S. Lubrication in polymer-brush bilayers in the weak interpenetration regime: Molecular dynamics simulations and scaling theories. Phys Rev E 2018; 98:022503. [PMID: 30253630 DOI: 10.1103/physreve.98.022503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Indexed: 11/06/2022]
Abstract
We conduct molecular dynamics (MD) simulations and develop scaling laws to quantify the lubrication behavior of weakly interpenetrated polymer brush bilayers in the presence of an external shear force. The weakly interpenetrated regime is characterized by 1<d_{g}/d_{0}<2, where d_{g} is the gap between the opposing surfaces (where the brushes are grafted) and d_{0} is the unperturbed brush height. MD simulations predict that in the shear thinning regime, characterized by a larger shear force or a large Weissenberg number (W), R_{g}^{2}∼W^{0.19} and η∼W^{-0.38}, where R_{g} is the chain extension in the direction of the shear and η is the viscosity. These scaling behaviors, which are distinctly different from that witnessed in strongly compressed regime (for such a regime, characterized by d_{g}/d_{0}<1, R_{g}^{2}∼W^{0.53}, and η∼W^{-0.46}), match excellently with those predicted by our scaling theory.
Collapse
Affiliation(s)
- Parth Rakesh Desai
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
33
|
Poly(N-isopropylacrylamide) grafting solution parameters for controlling temperature responsiveness in PET membranes fabricated using 248 nm KrF excimer laser. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
34
|
Poly ( N -isopropylacrylamide) grafted temperature responsive PET membranes: An ultrafast method for membrane processing using KrF excimer laser at 248 nm. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Borsley S, Cockroft SL. In Situ Synthetic Functionalization of a Transmembrane Protein Nanopore. ACS NANO 2018; 12:786-794. [PMID: 29244946 DOI: 10.1021/acsnano.7b08105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Monitoring current flow through a single nanopore has proved to be a powerful technique for the in situ detection of molecular structure, binding, and reactivity. Transmembrane proteins, such as α-hemolysin, provide particularly attractive platforms for nanopore sensing applications due to their atomically precise structures. However, many nanopore applications require the introduction of functional groups to tune selectivity. To date, such modifications have required genetic modification of the protein prior to functionalization. Here we demonstrate the in situ synthetic modification of a wild-type α-hemolysin nanopore embedded in a membrane. We show that reversible dynamic covalent iminoboronate formation and the resulting changes in the ion current flowing through an individual nanopore can be used to map the reactive behavior of lysine residues within the nanopore channel. Crucially, the modification of lysine residues located outside the nanopore channel was found not to affect the stability or utility of the nanopore. Finally, knowledge of the reactivity patterns enabled the irreversible functionalization of a single, assignable lysine residue within the nanopore channel. The approach constitutes a simple, generic tool for the rapid, in situ synthetic modification of protein nanopores that circumvents the need for prior genetic modification.
Collapse
Affiliation(s)
- Stefan Borsley
- EaStCHEM School of Chemistry, University of Edinburgh , Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Scott L Cockroft
- EaStCHEM School of Chemistry, University of Edinburgh , Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
36
|
Tufani A, Ozaydin Ince G. Smart membranes with pH-responsive control of macromolecule permeability. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Wu Y, Nizam MN, Ding X, Xu FJ. Rational Design of Peptide-Functionalized Poly(Methacrylic Acid) Brushes for On-Chip Detection of Protease Biomarkers. ACS Biomater Sci Eng 2017; 4:2018-2025. [DOI: 10.1021/acsbiomaterials.7b00584] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yeping Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology) Ministry of Education, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Muhammad Naeem Nizam
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology) Ministry of Education, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology) Ministry of Education, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology) Ministry of Education, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
38
|
Benetti EM, Kang C, Mandal J, Divandari M, Spencer ND. Modulation of Surface-Initiated ATRP by Confinement: Mechanism and Applications. Macromolecules 2017; 50:5711-5718. [PMID: 29755138 PMCID: PMC5940320 DOI: 10.1021/acs.macromol.7b00919] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/20/2017] [Indexed: 01/26/2023]
Abstract
The mechanism of surface-initiated atom transfer polymerization (SI-ATRP) of methacrylates in confined volumes is systematically investigated by finely tuning the distance between a grafting surface and an inert plane by means of nanosized patterns and micrometer thick foils. The polymers were synthesized from monolayers of photocleavable initiators, which allow the analysis of detached brushes by size-exclusion chromatography (SEC). Compared to brushes synthesized under "open" polymerization mixtures, nearly a 4-fold increase in brush molar mass was recorded when SI-ATRP was performed within highly confined reaction volumes. Correlating the SI-ATRP of methyl methacrylate (MMA), with and without "sacrificial" initiator, to that of lauryl methacrylate (LMA) and analyzing the brush growth rates within differently confined volumes, we demonstrate faster grafting kinetics with increasing confinement due to the progressive hindering of CuII-based deactivators from the brush propagating front. This effect is especially noticeable when viscous polymerization mixtures are generated and enables the synthesis of several hundred nanometer thick brushes within relatively short polymerization times. The faster rates of confined SI-ATRP can be additionally used to fabricate, in one pot, precisely structured brush gradients, when volume confinement is continuously varied across a single substrate by spatially tuning the vertical distance between the grafting and the confining surfaces.
Collapse
Affiliation(s)
- Edmondo M. Benetti
- Laboratory of Surface Science
and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg
5, CH-8093 Zürich, Switzerland
| | - Chengjun Kang
- Laboratory of Surface Science
and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg
5, CH-8093 Zürich, Switzerland
| | - Joydeb Mandal
- Laboratory of Surface Science
and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg
5, CH-8093 Zürich, Switzerland
| | - Mohammad Divandari
- Laboratory of Surface Science
and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg
5, CH-8093 Zürich, Switzerland
| | - Nicholas D. Spencer
- Laboratory of Surface Science
and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg
5, CH-8093 Zürich, Switzerland
| |
Collapse
|
39
|
Chen WL, Menzel M, Prucker O, Wang E, Ober CK, Rühe J. Morphology of Nanostructured Polymer Brushes Dependent on Production and Treatment. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00714] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
| | - Matthias Menzel
- Department
of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany
| | - Oswald Prucker
- Department
of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany
| | | | | | - Jürgen Rühe
- Department
of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
40
|
Chen G, Das S. Massively Enhanced Electroosmotic Transport in Nanochannels Grafted with End-Charged Polyelectrolyte Brushes. J Phys Chem B 2017; 121:3130-3141. [DOI: 10.1021/acs.jpcb.7b00493] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Guang Chen
- Department of Mechanical
Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Siddhartha Das
- Department of Mechanical
Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
41
|
Chen WL, Menzel M, Watanabe T, Prucker O, Rühe J, Ober CK. Reduced Lateral Confinement and Its Effect on Stability in Patterned Strong Polyelectrolyte Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3296-3303. [PMID: 28266860 DOI: 10.1021/acs.langmuir.7b00165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The stability of strong polyelectrolyte brushes (PEBs) was studied in bulk and in patterned structures. Thick PEBs of poly([(2-methacryloyloxy)ethyl]trimethylammonium chloride) with thicknesses >100 nm were synthesized using single electron transfer living radical polymerization. Brush patterning was identified using deep-ultraviolet photolithography by means of either a top-down (TD) or bottom-up (BU) method, with features as small as 200 nm. The brushes were soaked in water under a range of pH or temperature conditions, and the hydrolysis was monitored through dry-state ellipsometry and atomic force microscopy measurements. BU patterns showed reduced degrafting for smaller patterns, which was attributed to increased stress relaxation at such dimensions. In contrast to the already relaxed BU-patterned brush, a TD-patterned brush possesses perpendicular structures that result from the use of orthogonal lithography. It was found that the TD process induces cross-linking on the sidewall, which subsequently fortifies the sidewall materials. This modification of the polymer brushes hindered the stress relaxation of the patterns, and the degrafting trends became irrelevant to the pattern sizes. With proper tuning, the cross-linking on the sidewall was minimized and the degrafting trends were again relaxation-dependent.
Collapse
Affiliation(s)
| | - Matthias Menzel
- Department of Microsystems Engineering (IMTEK), University of Freiburg , 79110 Freiburg, Germany
| | - Tsukasa Watanabe
- Department of Applied Chemistry, Tokyo Metropolitan University , Hachioji 192-0397, Tokyo, Japan
| | - Oswald Prucker
- Department of Microsystems Engineering (IMTEK), University of Freiburg , 79110 Freiburg, Germany
| | - Jürgen Rühe
- Department of Microsystems Engineering (IMTEK), University of Freiburg , 79110 Freiburg, Germany
| | | |
Collapse
|
42
|
Qu F, Ma X, Zhu L, Chen F. Switchable electrode functionalized with an azobenzene-containing copolymer thin film using the Langmuir–Schaefer technique for a “smart” uric acid/air fuel cell. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
43
|
Dehghani ES, Naik VV, Mandal J, Spencer ND, Benetti EM. Physical Networks of Metal-Ion-Containing Polymer Brushes Show Fully Tunable Swelling, Nanomechanical and Nanotribological Properties. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ella S. Dehghani
- Laboratory for Surface Science
and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg
5, CH-8093 Zurich, Switzerland
| | - Vikrant V. Naik
- Laboratory for Surface Science
and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg
5, CH-8093 Zurich, Switzerland
| | - Joydeb Mandal
- Laboratory for Surface Science
and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg
5, CH-8093 Zurich, Switzerland
| | - Nicholas D. Spencer
- Laboratory for Surface Science
and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg
5, CH-8093 Zurich, Switzerland
| | - Edmondo M. Benetti
- Laboratory for Surface Science
and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg
5, CH-8093 Zurich, Switzerland
| |
Collapse
|
44
|
Zhou D, Pierucci L, Gao Y, O'Keeffe Ahern J, Huang X, Sigen A, Wang W. Thermo- and pH-Responsive, Coacervate-Forming Hyperbranched Poly(β-amino ester)s for Selective Cell Binding. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5793-5802. [PMID: 28170215 DOI: 10.1021/acsami.6b15005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report a new type of thermo- and pH-responsive, coacervate-forming highly degradable polymer-hyperbranched poly(β-amino esters) (HPAEs) and its selective cell binding behaviors. The HPAEs were synthesized from 5-amino-1-pentanol (S5) and trimethylolpropane ethoxylate triacrylate (TMPETA) via an A2+B3 type Michael addition. The existence of multiple hydrogen bond pairs as well as tertiary amines makes the S5-TMPETA polymers manifest temperature- and pH-dependent phase transition. By varying the length of the ethylene glycol (EG) spacers in the TMPETA, polymer molecular weight, concentration, and pH value, the phase transition of the S5-TMPETA can be easily tuned in aqueous and buffer solutions, as evidenced by UV-vis spectroscopy and DLS measurements. Especially, the S5-TMPETA prepared from S5 and trimethylolpropane ethoxylate triacrylate 692 (S5-TMPETA692) shows a lower critical solution temperature (LCST) around 33 °C, above which the S5-TMPTEA can form coacervate particles able to encapsulate functional molecules effectively. Importantly, when incubation with HeLa cells, the S5-TMPTETA692 exhibits a temperature- and pH-responsive selective cell binding behaviors. In addition, the S5-TMPETA are highly hydrolyzable and elicit negligible cytotoxicity. This new type of "smart" polymer should find use in a variety of biomedical applications.
Collapse
Affiliation(s)
- Dezhong Zhou
- Charles Institute of Dermatology, School of Medicine, University College Dublin , Dublin 4, Ireland
| | - Luca Pierucci
- Charles Institute of Dermatology, School of Medicine, University College Dublin , Dublin 4, Ireland
| | - Yongsheng Gao
- Charles Institute of Dermatology, School of Medicine, University College Dublin , Dublin 4, Ireland
| | - Jonathan O'Keeffe Ahern
- Charles Institute of Dermatology, School of Medicine, University College Dublin , Dublin 4, Ireland
| | - Xiaobei Huang
- Charles Institute of Dermatology, School of Medicine, University College Dublin , Dublin 4, Ireland
- School of Materials Science and Engineering, Sichuan University , Chengdu 610064, China
| | - A Sigen
- Charles Institute of Dermatology, School of Medicine, University College Dublin , Dublin 4, Ireland
| | - Wenxin Wang
- School of Materials Science and Engineering, Tianjin University , Tianjin 300072, China
- Charles Institute of Dermatology, School of Medicine, University College Dublin , Dublin 4, Ireland
| |
Collapse
|
45
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 607] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
46
|
He X, Zhang K, Li T, Jiang Y, Yu P, Mao L. Micrometer-Scale Ion Current Rectification at Polyelectrolyte Brush-Modified Micropipets. J Am Chem Soc 2017; 139:1396-1399. [DOI: 10.1021/jacs.6b11696] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Xiulan He
- Beijing
National Laboratory for Molecular Science, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kailin Zhang
- Beijing
National Laboratory for Molecular Science, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
| | - Ting Li
- Beijing
National Laboratory for Molecular Science, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Jiang
- Beijing
National Laboratory for Molecular Science, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Yu
- Beijing
National Laboratory for Molecular Science, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing
National Laboratory for Molecular Science, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Abstract
This review summarizes pH-responsive monomers, polymers and their derivative nano- and micro-structures including micelles, cross-linked micelles, microgels and hydrogels.
Collapse
Affiliation(s)
- G. Kocak
- Department of Chemistry
- Faculty of Arts and Science
- Eskisehir Osmangazi University
- Eskisehir
- Turkey
| | - C. Tuncer
- Department of Chemistry
- Faculty of Arts and Science
- Eskisehir Osmangazi University
- Eskisehir
- Turkey
| | - V. Bütün
- Department of Chemistry
- Faculty of Arts and Science
- Eskisehir Osmangazi University
- Eskisehir
- Turkey
| |
Collapse
|
48
|
Bandara YMNDY, Karawdeniya BI, Dwyer JR. Real-Time Profiling of Solid-State Nanopores During Solution-Phase Nanofabrication. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30583-30589. [PMID: 27709879 DOI: 10.1021/acsami.6b10045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We describe a method for simply characterizing the size and shape of a nanopore during solution-based fabrication and surface modification, using only low-overhead approaches native to conventional nanopore measurements. Solution-based nanopore fabrication methods are democratizing nanopore science by supplanting the traditional use of charged-particle microscopes for fabrication, but nanopore profiling has customarily depended on microscopic examination. Our approach exploits the dependence of nanopore conductance in solution on nanopore size, shape, and surface chemistry in order to characterize nanopores. Measurements of the changing nanopore conductance during formation by etching or deposition can be analyzed using our method to characterize the nascent nanopore size and shape, beyond the typical cylindrical approximation, in real-time. Our approach thus accords with ongoing efforts to broaden the accessibility of nanopore science from fabrication through use: it is compatible with conventional instrumentation and offers straightforward nanoscale characterization of the core tool of the field.
Collapse
Affiliation(s)
- Y M Nuwan D Y Bandara
- Department of Chemistry, University of Rhode Island , 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Buddini Iroshika Karawdeniya
- Department of Chemistry, University of Rhode Island , 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Jason R Dwyer
- Department of Chemistry, University of Rhode Island , 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
49
|
Nonlinear dependence of the ion current rectification factor on bias voltage in conical nanopipettes. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
50
|
Müller S, Cavallaro A, Vasilev K, Voelcker NH, Schönherr H. Temperature-Controlled Antimicrobial Release from Poly(diethylene glycol methylether methacrylate)-Functionalized Bottleneck-Structured Porous Silicon for the Inhibition of Bacterial Growth. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Stephanie Müller
- Physical Chemistry I; Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ); University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Alex Cavallaro
- School of Engineering; University of South Australia; Mawson Lakes SA 5095 Australia
| | - Krasimir Vasilev
- School of Engineering; University of South Australia; Mawson Lakes SA 5095 Australia
| | - Nicolas H. Voelcker
- Future Industries Institute; University of South Australia; Mawson Lakes Boulevard 5095 Adelaide Australia
| | - Holger Schönherr
- Physical Chemistry I; Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ); University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| |
Collapse
|