1
|
Shi S, Duan H, Ou X. Targeted delivery of anti-osteoporosis therapy: Bisphosphonate-modified nanosystems and composites. Biomed Pharmacother 2024; 175:116699. [PMID: 38705129 DOI: 10.1016/j.biopha.2024.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024] Open
Abstract
Osteoporosis (OP) constitutes a significant health concern that profoundly affects individuals' quality of life. Bisphosphonates, conventional pharmaceuticals widely employed in OP treatment, encounter limitations related to inadequate drug targeting and a short effective duration, thereby compromising their clinical efficacy. The burgeoning field of nanotechnology has witnessed the development and application of diverse functional nanosystems designed for OP treatment. Owing to the bone tissue affinity of bisphosphonates, these nanosystems are modified to address shortcomings associated with traditional drug delivery. In this review, we explore the potential of bisphosphonate-modified nanosystems as a promising strategy for addressing osteoporotic conditions. With functional modification, these nanosystems exhibit a targeted and reversible effect on osteoporotic remodeling, presenting a promising solution to enhance precision in drug delivery. The synthesis methods, physicochemical properties, and in vitro/in vivo performance of bisphosphonate-modified nanosystems are comprehensively examined in this review. Through a thorough analysis of recent advances and accomplishments in this field, we aim to provide insights into the potential applications and future directions of bisphosphonate-modified nanosystems for targeted and reversible osteoporotic remodeling.
Collapse
Affiliation(s)
- Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an Honghui Hospital North District, Xi'an, Shaanxi 710000, China
| | - Honghao Duan
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an Honghui Hospital North District, Xi'an, Shaanxi 710000, China
| | - Xuehai Ou
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an Honghui Hospital North District, Xi'an, Shaanxi 710000, China.
| |
Collapse
|
2
|
Gao W, Li JJ, Shi J, Lan H, Guo Y, Fu D. Ångstrom-scale gold particles loaded with alendronate via alpha-lipoic acid alleviate bone loss in osteoporotic mice. J Nanobiotechnology 2024; 22:212. [PMID: 38689294 PMCID: PMC11059737 DOI: 10.1186/s12951-024-02466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Osteoporosis is a highly prevalent metabolic disease characterized by low systemic bone mass and deterioration of bone microarchitecture, resulting in reduced bone strength and increased fracture risk. Current treatment options for osteoporosis are limited by factors such as efficacy, cost, availability, side effects, and acceptability to patients. Gold nanoparticles show promise as an emerging osteoporosis therapy due to their osteogenic effects and ability to allow therapeutic delivery but have inherent constraints, such as low specificity and the potential for heavy metal accumulation in the body. This study reports the synthesis of ultrasmall gold particles almost reaching the Ångstrom (Ång) dimension. The antioxidant alpha-lipoic acid (LA) is used as a dispersant and stabilizer to coat Ångstrom-scale gold particles (AuÅPs). Alendronate (AL), an amino-bisphosphonate commonly used in drug therapy for osteoporosis, is conjugated through LA to the surface of AuÅPs, allowing targeted delivery to bone and enhancing antiresorptive therapeutic effects. In this study, alendronate-loaded Ångstrom-scale gold particles (AuÅPs-AL) were used for the first time to promote osteogenesis and alleviate bone loss through regulation of the WNT signaling pathway, as shown through in vitro tests. The in vivo therapeutic effects of AuÅPs-AL were demonstrated in an established osteoporosis mouse model. The results of Micro-computed Tomography, histology, and tartrate-resistant acid phosphatase staining indicated that AuÅPs-AL significantly improved bone density and prevented bone loss, with no evidence of nanoparticle-associated toxicity. These findings suggest the possible future application of AuÅPs-AL in osteoporosis therapy and point to the potential of developing new approaches for treating metabolic bone diseases using Ångstrom-scale gold particles.
Collapse
Affiliation(s)
- Weihang Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Jingyu Shi
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Hongbing Lan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanyuan Guo
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430077, China.
| | - Dehao Fu
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.
| |
Collapse
|
3
|
Freis B, Ramírez MDLÁ, Furgiuele S, Journe F, Cheignon C, Charbonnière LJ, Henoumont C, Kiefer C, Mertz D, Affolter-Zbaraszczuk C, Meyer F, Saussez S, Laurent S, Tasso M, Bégin-Colin S. Bioconjugation studies of an EGF-R targeting ligand on dendronized iron oxide nanoparticles to target head and neck cancer cells. Int J Pharm 2023; 635:122654. [PMID: 36720449 DOI: 10.1016/j.ijpharm.2023.122654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
A major challenge in nanomedicine is designing nanoplatforms (NPFs) to selectively target abnormal cells to ensure early diagnosis and targeted therapy. Among developed NPFs, iron oxide nanoparticles (IONPs) are good MRI contrast agents and can be used for therapy by hyperthermia and as radio-sensitizing agents. Active targeting is a promising method for selective IONPs accumulation in cancer tissues and is generally performed by using targeting ligands (TL). Here, a TL specific for the epidermal growth factor receptor (EGFR) is bound to the surface of dendronized IONPs to produce nanostructures able to specifically recognize EGFR-positive FaDu and 93-Vu head and neck cancer cell lines. Several parameters were optimized to ensure a high coupling yield and to adequately quantify the amount of TL per nanoparticle. Nanostructures with variable amounts of TL on the surface were produced and evaluated for their potential to specifically target and be thereafter internalized by cells. Compared to the bare NPs, the presence of the TL at the surface was shown to be effective to enhance their internalization and to play a role in the total amount of iron present per cell.
Collapse
Affiliation(s)
- Barbara Freis
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France; Laboratoire de NMR et d'imagerie moléculaire, Université de Mons, Avenue Maistriau 19, 7000 Mons, Belgium
| | - María De Los Ángeles Ramírez
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France
| | - Sonia Furgiuele
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, 7000 Mons, Belgium
| | - Fabrice Journe
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, 7000 Mons, Belgium
| | - Clémence Cheignon
- Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 25, rue Becquerel, 67087 Strasbourg, France
| | - Loïc J Charbonnière
- Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 25, rue Becquerel, 67087 Strasbourg, France
| | - Céline Henoumont
- Laboratoire de NMR et d'imagerie moléculaire, Université de Mons, Avenue Maistriau 19, 7000 Mons, Belgium
| | - Celine Kiefer
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France
| | - Damien Mertz
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France
| | - Christine Affolter-Zbaraszczuk
- Inserm U1121, Centre de recherche en biomédecine de Strasbourg, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
| | - Florent Meyer
- Inserm U1121, Centre de recherche en biomédecine de Strasbourg, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
| | - Sven Saussez
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, 7000 Mons, Belgium
| | - Sophie Laurent
- Laboratoire de NMR et d'imagerie moléculaire, Université de Mons, Avenue Maistriau 19, 7000 Mons, Belgium
| | - Mariana Tasso
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France; Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Diagonal 113 y 64, 1900 La Plata, Argentina
| | - Sylvie Bégin-Colin
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France.
| |
Collapse
|
4
|
Paesa M, Alejo T, Garcia-Alvarez F, Arruebo M, Mendoza G. New insights in osteoarthritis diagnosis and treatment: Nano-strategies for an improved disease management. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1844. [PMID: 35965293 DOI: 10.1002/wnan.1844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/02/2022] [Accepted: 07/12/2022] [Indexed: 11/07/2022]
Abstract
Osteoarthritis (OA) is a common chronic joint pathology that has become a predominant cause of disability worldwide. Even though the origin and evolution of OA rely on different factors that are not yet elucidated nor understood, the development of novel strategies to treat OA has emerged in the last years. Cartilage degradation is the main hallmark of the pathology though alterations in bone and synovial inflammation, among other comorbidities, are also involved during OA progression. From a molecular point of view, a vast amount of signaling pathways are implicated in the progression of the disease, opening up a wide plethora of targets to attenuate or even halt OA. The main purpose of this review is to shed light on the recent strategies published based on nanotechnology for the early diagnosis of the disease as well as the most promising nano-enabling therapeutic approaches validated in preclinical models. To address the clinical issue, the key pathways involved in OA initiation and progression are described as the main potential targets for OA prevention and early treatment. Furthermore, an overview of current therapeutic strategies is depicted. Finally, to solve the drawbacks of current treatments, nanobiomedicine has shown demonstrated benefits when using drug delivery systems compared with the administration of the equivalent doses of the free drugs and the potential of disease-modifying OA drugs when using nanosystems. We anticipate that the development of smart and specific bioresponsive and biocompatible nanosystems will provide a solid and promising basis for effective OA early diagnosis and treatment. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Monica Paesa
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Aragón Materials Science Institute, ICMA, Zaragoza, Spain
| | - Teresa Alejo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Aragón Materials Science Institute, ICMA, Zaragoza, Spain
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
| | - Felicito Garcia-Alvarez
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, Department of Orthopedic Surgery & Traumatology, University of Zaragoza, Zaragoza, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Aragón Materials Science Institute, ICMA, Zaragoza, Spain
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| | - Gracia Mendoza
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| |
Collapse
|
5
|
Zheng K, Bai J, Yang H, Xu Y, Pan G, Wang H, Geng D. Nanomaterial-assisted theranosis of bone diseases. Bioact Mater 2022; 24:263-312. [PMID: 36632509 PMCID: PMC9813540 DOI: 10.1016/j.bioactmat.2022.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/27/2022] Open
Abstract
Bone-related diseases refer to a group of skeletal disorders that are characterized by bone and cartilage destruction. Conventional approaches can regulate bone homeostasis to a certain extent. However, these therapies are still associated with some undesirable problems. Fortunately, recent advances in nanomaterials have provided unprecedented opportunities for diagnosis and therapy of bone-related diseases. This review provides a comprehensive and up-to-date overview of current advanced theranostic nanomaterials in bone-related diseases. First, the potential utility of nanomaterials for biological imaging and biomarker detection is illustrated. Second, nanomaterials serve as therapeutic delivery platforms with special functions for bone homeostasis regulation and cellular modulation are highlighted. Finally, perspectives in this field are offered, including current key bottlenecks and future directions, which may be helpful for exploiting nanomaterials with novel properties and unique functions. This review will provide scientific guidance to enhance the development of advanced nanomaterials for the diagnosis and therapy of bone-related diseases.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China,Corresponding author.Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China,Corresponding author.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China,Corresponding author. Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
6
|
Sadegha S, Varshochian R, Dadras P, Hosseinzadeh H, Sakhtianchi R, Mirzaie ZH, Shafiee A, Atyabi F, Dinarvand R. Mesoporous silica coated SPIONs containing curcumin and silymarin intended for breast cancer therapy. Daru 2022; 30:331-341. [PMID: 36197594 PMCID: PMC9715905 DOI: 10.1007/s40199-022-00453-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Super-paramagnetic iron oxide nanoparticles (SPIONs) are known as promising theranostic nano-drug carriers with magnetic resonance imaging (MRI) properties. Applying the herbaceous components with cytotoxic effects as cargos can suggest a new approach in the field of cancer-therapy. In this study mesoporous silica coated SPIONs (mSiO2@SPIONs) containing curcumin (CUR) and silymarin (SIL) were prepared and evaluated on breast cancer cell line, MCF-7. METHODS Nanoparticles (NPs) were formulated by reverse microemulsion method and characterized by DLS, SEM and VSM. The in vitro drug release, cellular cytotoxicity, and MRI properties of NPs were determined as well. The cellular uptake of NPs by MCF-7 cells was investigated through LysoTracker Red staining using confocal microscopy. RESULTS The MTT results showed that the IC50 of CUR + SIL loaded mSiO2@SPIONs was reduced about 50% in comparison with that of the free drug mixture. The NPs indicated proper MRI features and cellular uptake through endocytosis. CONCLUSION In conclusion the prepared formulation may offer a novel theranostic system for breast cancer researches.
Collapse
Affiliation(s)
- Soosan Sadegha
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Varshochian
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Dadras
- Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, Zanjan, Iran
| | - Hosniyeh Hosseinzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Sakhtianchi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Hadavand Mirzaie
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Shafiee
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Zheng L, Zhuang Z, Li Y, Shi T, Fu K, Yan W, Zhang L, Wang P, Li L, Jiang Q. Bone targeting antioxidative nano-iron oxide for treating postmenopausal osteoporosis. Bioact Mater 2022; 14:250-261. [PMID: 35310348 PMCID: PMC8897644 DOI: 10.1016/j.bioactmat.2021.11.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/07/2021] [Accepted: 11/07/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Liming Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Zaikai Zhuang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Yixuan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Tianshu Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Kai Fu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Wenjin Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Lei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, 210008, PR China
- Corresponding author. State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| | - Lan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, 210008, PR China
- Corresponding author. State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, 210008, PR China
- Corresponding author. State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| |
Collapse
|
8
|
Rahman MA, Ochiai B. A facile aqueous production of bisphosphonated-polyelectrolyte functionalized magnetite nanoparticles for pH-specific targeting of acidic-bone cells. RSC Adv 2022; 12:8043-8058. [PMID: 35424742 PMCID: PMC8982438 DOI: 10.1039/d1ra09445a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/04/2022] [Indexed: 11/28/2022] Open
Abstract
Bone malignancy treatment is being hindered due to the insufficient selectivity of therapeutic nanoparticles towards malignant bone sites. Polyelectrolyte functionalized magnetic nanoparticles having dually specific pH-sensing ability and bisphosphonate moieties, can be an effective solution for selective targeting of bone malignancies. First, polyelectrolyte was prepared via N-carboxycitraconyzation of chitosan (NCCS) followed by successive functionalization with alendronic acid (AL) and fluorescein isothiocyanate (FITC). Then, Fe3O4-NCCS-FITC-AL nanoparticles were synthesized by a facile one-step microwave-assisted aqueous method via in situ surface functionalization. The formation, crystal structure, and surface conjugation of Fe3O4 nanoparticles with polyelectrolytic stabilizer were confirmed by Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analyses. Synthesized Fe3O4-NCCS-FITC-AL nanoparticles were superparamagnetic, colloidally stable and highly hemocompatible under physiological conditions. Moreover, at pH 5.0, Fe3O4-NCCS-FITC-AL nanoparticles formed a precipitate due to inversion of their surface charge. This pH-dependent charge-inversion drastically changed the interactions with erythrocytes and bones. Selective membranolysis of erythrocytes occurred at pH 5.0. The designed nanoparticles showed enough potential for selective targeting of pathological bone sites in early-stage magnetofluorescent imaging and as a therapeutics carrier to treat malignant bone diseases.
Collapse
Affiliation(s)
- Md Abdur Rahman
- Department of Chemistry and Chemical Engineering, Graduate School of Science and Engineering, Yamagata University 4-3-16, Jonan Yonezawa Yamagata 992-8510 Japan
- Polymer Colloids and Nanomaterials Lab, Department of Chemistry, Faculty of Science, Rajshahi University Rajshahi 6205 Bangladesh
| | - Bungo Ochiai
- Department of Chemistry and Chemical Engineering, Graduate School of Science and Engineering, Yamagata University 4-3-16, Jonan Yonezawa Yamagata 992-8510 Japan
| |
Collapse
|
9
|
Pucci C, Degl'Innocenti A, Belenli Gümüş M, Ciofani G. Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: Recent advancements, molecular effects, and future directions in the omics era. Biomater Sci 2022; 10:2103-2121. [DOI: 10.1039/d1bm01963e] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Superparamagnetic iron oxide nanoparticles have attracted attention in the biomedical field thanks to their ability to prompt hyperthermia in response to an alternated magnetic field. Hyperthermia is well-known for inducing...
Collapse
|
10
|
Ackun-Farmmer MA, Overby CT, Haws BE, Choe R, Benoit DSW. Biomaterials for Orthopaedic Diagnostics and Theranostics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 19. [PMID: 34458652 DOI: 10.1016/j.cobme.2021.100308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite widespread use of conventional diagnostic methods in orthopaedic applications, limitations still exist in detection and diagnosing many pathologies especially at early stages when intervention is most critical. The use of biomaterials to develop diagnostics and theranostics, including nanoparticles and scaffolds for systemic or local applications, has significant promise to address these shortcomings and enable successful clinical translation. These developments in both modular and holistic design of diagnostic and theranostic biomaterials may improve patient treatments for myriad orthopaedic applications ranging from cancer to fractures to infection.
Collapse
Affiliation(s)
- Marian A Ackun-Farmmer
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.,Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA
| | - Clyde T Overby
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.,Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA
| | - Brittany E Haws
- Department of Orthopaedics, University of Rochester, Rochester, NY, USA
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.,Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.,Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA.,Department of Orthopaedics, University of Rochester, Rochester, NY, USA.,Materials Science Program, University of Rochester, Rochester, NY, USA.,Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
11
|
Dalili D, Isaac A, Cazzato RL, Åström G, Bergh J, Mansour R, Weber MA, Garnon J, Gangi A. Interventional Techniques for Bone and Musculoskeletal Soft Tissue Tumors: Current Practices and Future Directions - Part II. Stabilization. Semin Musculoskelet Radiol 2020; 24:710-725. [PMID: 33307586 DOI: 10.1055/s-0040-1719104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Percutaneous image-guided oncologic interventions have rapidly evolved over the last two decades as an independent strategy or used within a first-, second-, or even third-line strategy in the treatment of musculoskeletal (MSK) tumors. Abundant mostly nonrandomized publications have described the safety, efficacy, and reproducibility of implementing percutaneous therapies both with curative and palliative intent. In this article, we continue to share our experience in bone and MSK soft tissue interventions focusing on stabilization and combined ablation and stabilization. We propose a pathway and explore future directions of image-guided interventional oncology related to skeletal disease. We reflect on the advantages and limitations of each technique and offer guidance and pearls to improve outcomes. Representing patterns from our practices, we demonstrate the role of collaborative working within a multidisciplinary team, ideally within a dedicated tumor treatment center, to deliver patient-specific therapy plans that are value based and favored by patients when given the choice.
Collapse
Affiliation(s)
- Danoob Dalili
- Department of Radiology, Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,School of Biomedical Engineering and Imaging Sciences, Kings College London, London, United Kingdom
| | - Amanda Isaac
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, United Kingdom
| | - Roberto Luigi Cazzato
- Imagerie Interventionnelle, Hôpitaux Universitaires de Strasbourg, Strasbourg Cedex, France
| | - Gunnar Åström
- Department of Immunology, Genetics and Pathology (Oncology) and Department of Surgical Sciences (Radiology), Uppsala University, Uppsala, Sweden
| | - Jonas Bergh
- Department of Oncology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ramy Mansour
- Department of Radiology, Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Marc-André Weber
- Institute of Diagnostic and Interventional Radiology, Paediatric Radiology and Neuroradiology, University Medical Centre Rostock, Rostock, Germany
| | - Julien Garnon
- Imagerie Interventionnelle, Hôpitaux Universitaires de Strasbourg, Strasbourg Cedex, France
| | - Afshin Gangi
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, United Kingdom.,Imagerie Interventionnelle, Hôpitaux Universitaires de Strasbourg, Strasbourg Cedex, France
| |
Collapse
|
12
|
J Hill M, Qi B, Bayaniahangar R, Araban V, Bakhtiary Z, Doschak M, Goh B, Shokouhimehr M, Vali H, Presley J, Zadpoor A, Harris M, Abadi P, Mahmoudi M. Nanomaterials for bone tissue regeneration: updates and future perspectives. Nanomedicine (Lond) 2019; 14:2987-3006. [DOI: 10.2217/nnm-2018-0445] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Joint replacement and bone reconstructive surgeries are on the rise globally. Current strategies for implants and bone regeneration are associated with poor integration and healing resulting in repeated surgeries. A multidisciplinary approach involving basic biological sciences, tissue engineering, regenerative medicine and clinical research is required to overcome this problem. Considering the nanostructured nature of bone, expertise and resources available through recent advancements in nanobiotechnology enable researchers to design and fabricate devices and drug delivery systems at the nanoscale to be more compatible with the bone tissue environment. The focus of this review is to present the recent progress made in the rationale and design of nanomaterials for tissue engineering and drug delivery relevant to bone regeneration.
Collapse
Affiliation(s)
- Michael J Hill
- Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | - Baowen Qi
- Center for Nanomedicine & Department of Anesthesiology, Brigham & Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - Rasoul Bayaniahangar
- Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | - Vida Araban
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Zahra Bakhtiary
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Doschak
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Brian C Goh
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mohammadreza Shokouhimehr
- Department of Materials Science & Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hojatollah Vali
- Department of Anatomy & Cell Biology & Facility for Electron Microscopy Research, McGill University, Montreal, QC H3A 0G4, Canada
| | - John F Presley
- Department of Anatomy & Cell Biology & Facility for Electron Microscopy Research, McGill University, Montreal, QC H3A 0G4, Canada
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands
| | - Mitchel B Harris
- Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Parisa PSS Abadi
- Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | - Morteza Mahmoudi
- Precision Health Program & Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
Functionalizing NaGdF4:Yb,Er Upconverting Nanoparticles with Bone-Targeting Phosphonate Ligands: Imaging and In Vivo Biodistribution. INORGANICS 2019. [DOI: 10.3390/inorganics7050060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lanthanide-doped upconverting nanoparticles (UCNPs) transform near infrared light (NIR) into higher-energy UV and visible light by multiphotonic processes. Owing to such unique feature, UCNPs have found application in optical imaging and have been investigated for the NIR light activation of prodrugs, including transition metal complexes of interest in photochemotherapy. Besides, UCNPs also function as magnetic resonance imaging (MRI) contrast agents and positron emission tomography (PET) probes when labelled with radionuclides such as 18F. In this contribution, we report on a new series of phosphonate-functionalized NaGdF4:Yb,Er UCNPs that show affinity for hydroxyapatite (inorganic constituent of bones), and we discuss their potential as bone targeting multimodal (MRI/PET) imaging agents. In vivo biodistribution studies of 18F-labelled NaGdF4:Yb,Er UCNPs in rats indicate that surface functionalization with phosphonates favours the accumulation of nanoparticles in bones over time. PET results reveal leakage of 18F− for phosphonate-functionalized NaGdF4:Yb,Er and control nanomaterials. However, Gd was detected in the femur for phosphonate-capped UCNPs by ex vivo analysis using ICP-MS, corresponding to 6–7% of the injected dose.
Collapse
|
14
|
Hatami E, Bhusetty Nagesh PK, Chowdhury P, Elliot S, Shields D, Chand Chauhan S, Jaggi M, Yallapu MM. Development of Zoledronic Acid-Based Nanoassemblies for Bone-Targeted Anticancer Therapy. ACS Biomater Sci Eng 2019; 5:2343-2354. [PMID: 33405784 DOI: 10.1021/acsbiomaterials.9b00362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bone metastasis occurs in the majority of cancer patients, which hampers quality of life and significantly decreases survival. Aggressive chemotherapy is a traditional treatment regimen that induces severe systemic toxicities. Therefore, bone-directed therapies are highly warranted. We report a novel nanoparticle formulation that is composed of poly(vinylpyrrolidone) and tannic acid core nanoparticles (PVT NPs) that forms self-assembly with zoledronic acid (ZA@PVT NPs). The construction of ZA@PVT NPs was confirmed by particle size, zeta potential, transmission electron microscopy, and spectral analyses. An optimized bone-targeted ZA@PVT NPs formulation showed greater binding and internalization in in vitro with metastasis prostate and breast cancer cells. ZA@PVT NPs were able to deliver ZA more efficiently to tumor cells, which inhibited proliferation of human prostate and breast cancer cells. In addition, ZA@PVT NPs were capable of targeting mouse bones and prostate tumor microarray tissues (ex vivo) while sparing all other vital organs. More importantly, ZA@PVT NPs induce chemo sensitization to docetaxel treatment in cancer cells. Overall, the study results confirm that ZA-based, bone-targeted NPs have great potential for the treatment of bone metastasis in the near future.
Collapse
Affiliation(s)
- Elham Hatami
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Prashanth Kumar Bhusetty Nagesh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Stacie Elliot
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Deanna Shields
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Subhash Chand Chauhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Murali Mohan Yallapu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| |
Collapse
|
15
|
Li A, Xie J, Li J. Recent advances in functional nanostructured materials for bone-related diseases. J Mater Chem B 2019; 7:509-527. [PMID: 32254786 DOI: 10.1039/c8tb02812e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bone-related diseases seriously threaten people's health and research studies have been dedicated towards searching for new and effective treatment methods. Nanotechnologies have opened up a new field in recent decades and nanostructured materials, which exist in a variety of forms, are considered to be promising materials in this field. This article reviews the most recent progress in the development of nanostructured materials for bone-related diseases, including osteoporosis, osteoarthritis, bone metastasis, osteomyelitis, myeloma, and bone defects. We highlight the advantages and functions of nanostructured materials, including sustained release, bone targeting, scaffolding in bone tissue engineering, etc., in bone-related diseases. We also include the remaining challenges of these emerging materials.
Collapse
Affiliation(s)
- Anqi Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | | | | |
Collapse
|
16
|
Shimoda K, Mitsuoka T, Ueda K, Suemune H, Hirai G, Aso M. Synthesis of dendritic bisphosphonates as bone targeting ligands. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Dadras P, Atyabi F, Irani S, Ma'mani L, Foroumadi A, Mirzaie ZH, Ebrahimi M, Dinarvand R. Formulation and evaluation of targeted nanoparticles for breast cancer theranostic system. Eur J Pharm Sci 2017; 97:47-54. [DOI: 10.1016/j.ejps.2016.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/11/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
|
18
|
Li N, Song J, Zhu G, Shi X, Wang Y. Alendronate conjugated nanoparticles for calcification targeting. Colloids Surf B Biointerfaces 2016; 142:344-350. [DOI: 10.1016/j.colsurfb.2016.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 11/28/2022]
|
19
|
Azhdarzadeh M, Atyabi F, Saei AA, Varnamkhasti BS, Omidi Y, Fateh M, Ghavami M, Shanehsazzadeh S, Dinarvand R. Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloids Surf B Biointerfaces 2016; 143:224-232. [PMID: 27015647 DOI: 10.1016/j.colsurfb.2016.02.058] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/06/2016] [Accepted: 02/25/2016] [Indexed: 01/24/2023]
Abstract
Favorable physiochemical properties and the capability to accommodate targeting moieties make superparamegnetic iron oxide nanoparticles (SPIONs) popular theranostic agents. In this study, we engineered SPIONs for magnetic resonance imaging (MRI) and photothermal therapy of colon cancer cells. SPIONs were synthesized by microemulsion method and were then coated with gold to reduce their cytotoxicity and to confer photothermal capabilities. Subsequently, the NPs were conjugated with thiol modified MUC-1 aptamers. The resulting NPs were spherical, monodisperse and about 19nm in size, as shown by differential light scattering (DLS) and transmission electron microscopy (TEM). UV and X-ray photoelectron spectroscopy (XPS) confirmed the successful gold coating. MTT results showed that Au@SPIONs have insignificant cytotoxicity at the concentration range of 10-100μg/ml (P>0.05) and that NPs covered with protein corona exerted lower cytotoxicity than bare NPs. Furthermore, confocal microscopy confirmed the higher uptake of aptamer-Au@SPIONs in comparison with non-targeted SPIONs. MR imaging revealed that SPIONs produced significant contrast enhancement in vitro and they could be exploited as contrast agents. Finally, cells treated with aptamer-Au@SPIONs exhibited a higher death rate compared to control cells upon exposure to near infrared light (NIR). In conclusion, MUC1-aptamer targeted Au@SPIONs could serve as promising theranostic agents for simultaneous MR imaging and photothermal therapy of cancer cells.
Collapse
Affiliation(s)
- Morteza Azhdarzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Behrang Shiri Varnamkhasti
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Fateh
- Medical Laser Research Center, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Mahdi Ghavami
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Health Science Faculty, Blegdamsvej 3c, 2200 Copenhagen N, Denmark
| | | | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
| |
Collapse
|
20
|
Mahdavi M, Lijan H, Bahadorikhalili S, Ma’mani L, Rashidi Ranjbar P, Shafiee A. Copper supported β-cyclodextrin grafted magnetic nanoparticles as an efficient recyclable catalyst for one-pot synthesis of 1-benzyl-1H-1,2,3-triazoldibenzodiazepinone derivatives via click reaction. RSC Adv 2016. [DOI: 10.1039/c5ra27275k] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cu immobilized into β-cyclodextrin covalently attached to magnetic nanoparticles (denoted as [Cu@β-CD@SPIONs]) is reported as an efficient and recoverable catalyst for “click” and multicomponent reactions.
Collapse
Affiliation(s)
- Mohammad Mahdavi
- Drug design and development research center
- Tehran University of Medical Science
- Tehran
- Iran
| | - Hosein Lijan
- School of Chemistry
- College of Science
- University of Tehran
- Tehran
- Iran
| | | | - Leila Ma’mani
- Department of Nanotechnology
- Agricultural Biotechnology Research Institute of Iran (ABRII)
- Agricultural Research, Education and Extension Organization (AREEO)
- Karaj
- Iran
| | | | - Abbas Shafiee
- Department of Medical Chemistry
- Faculty of Pharmacy and Pharmaceutical Science Research Center
- Tehran University of Medical Sciences
- Tehran
- Iran
| |
Collapse
|
21
|
Hasani-Sadrabadi MM, Dashtimoghadam E, Bahlakeh G, Majedi FS, Keshvari H, Van Dersarl JJ, Bertsch A, Panahifar A, Renaud P, Tayebi L, Mahmoudi M, Jacob KI. On-chip synthesis of fine-tuned bone-seeking hybrid nanoparticles. Nanomedicine (Lond) 2015; 10:3431-49. [DOI: 10.2217/nnm.15.162] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aims: Here we report a one-step approach for reproducible synthesis of finely tuned targeting multifunctional hybrid nanoparticles (HNPs). Materials & methods: A microfluidic-assisted method was employed for controlled nanoprecipitation of bisphosphonate-conjugated poly(D,L-lactide-co-glycolide) chains, while coencapsulating superparamagnetic iron oxide nanoparticles and the anticancer drug Paclitaxel. Results: Smaller and more compact HNPs with narrower size distribution and higher drug loading were obtained at microfluidic rapid mixing regimen compared with the conventional bulk method. The HNPs were shown to have a strong affinity for hydroxyapatite, as demonstrated in vitro bone-binding assay, which was further supported by molecular dynamics simulation results. In vivo proof of concept study verified the prolonged circulation of targeted microfluidic HNPs. Biodistribution as well as noninvasive bioimaging experiments showed high tumor localization and suppression of targeted HNPs to the bone metastatic tumor. Conclusion: The hybrid bone-targeting nanoparticles with adjustable characteristics can be considered as promising nanoplatforms for various theragnostic applications.
Collapse
Affiliation(s)
- Mohammad Mahdi Hasani-Sadrabadi
- Parker H Petit Institute for Bioengineering & Bioscience, GW Woodruff School of Mechanical Engineering & School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0295, USA
- Laboratoire de Microsystemes (LMIS4), Institute of Microengineering & Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Erfan Dashtimoghadam
- Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53201, USA
| | - Ghasem Bahlakeh
- Department of Engineering & Technology, Golestan University, AliabadKatool, Iran
| | - Fatemeh S Majedi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA 951600, USA
| | - Hamid Keshvari
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Jules J Van Dersarl
- Laboratoire de Microsystemes (LMIS4), Institute of Microengineering & Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Arnaud Bertsch
- Laboratoire de Microsystemes (LMIS4), Institute of Microengineering & Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Arash Panahifar
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Philippe Renaud
- Laboratoire de Microsystemes (LMIS4), Institute of Microengineering & Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lobat Tayebi
- Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53201, USA
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Morteza Mahmoudi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Karl I Jacob
- Parker H Petit Institute for Bioengineering & Bioscience, GW Woodruff School of Mechanical Engineering & School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0295, USA
| |
Collapse
|
22
|
Schulze F, Gramoun A, Crowe LA, Dienelt A, Akcan T, Hofmann H, Vallée JP, Duda GN, Ode A. Accumulation of amino-polyvinyl alcohol-coated superparamagnetic iron oxide nanoparticles in bone marrow: implications for local stromal cells. Nanomedicine (Lond) 2015. [DOI: 10.2217/nnm.15.62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aims: First, it will be investigated if amino-polyvinyl alcohol-coated superparamagnetic iron oxide nanoparticles (A-PVA-SPIONs) are suitable for MRI contrast enhancement in bone marrow. Second, the impact of A-PVA-SPION exposure in vivo on the viability and key functions of local bone marrow stromal cells (BMSCs) will be investigated. Material & methods: Animals were systemically injected with A-PVA-SPIONs, followed by a 7-day survival time. Accumulation of A-PVA-SPIONs was confirmed by MRI, histology and inductively coupled plasma optical emission spectrometry. BMSCs were isolated from bone marrow for in vitro assessment of their viability and regenerative key functions. Results: In this study, A-PVA-SPIONs were found to accumulate in bone marrow and increase the BMSCs’ metabolic activity and migration rate. Conclusion: A-PVA-SPIONs appear suitable for contrast enhancement in bone marrow while our data suggest an influence on the BMSCs biology that necessitates future research.
Collapse
Affiliation(s)
- Frank Schulze
- Julius Wolff Institute, Charité – Universitätsmedizin Berlin, 13353 Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité – Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Azza Gramoun
- Department of Radiology, Geneva University Hospitals & University of Geneva, 1205 Geneva, Switzerland
- Department of Oral Biology, Faculty of Oral & Dental Medicine, Cairo University, Cairo, Egypt
| | - Lindsey A Crowe
- Department of Radiology, Geneva University Hospitals & University of Geneva, 1205 Geneva, Switzerland
| | - Anke Dienelt
- Julius Wolff Institute, Charité – Universitätsmedizin Berlin, 13353 Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Tugba Akcan
- Julius Wolff Institute, Charité – Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Heinrich Hofmann
- Laboratory of Powder Technology, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jean-Paul Vallée
- Department of Radiology, Geneva University Hospitals & University of Geneva, 1205 Geneva, Switzerland
| | - Georg N Duda
- Julius Wolff Institute, Charité – Universitätsmedizin Berlin, 13353 Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Andrea Ode
- Julius Wolff Institute, Charité – Universitätsmedizin Berlin, 13353 Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
23
|
Chiu YC, Chen PA, Chang PY, Hsu CY, Tao CW, Huang CC, Chiang HK. Enhanced Raman sensitivity and magnetic separation for urolithiasis detection using phosphonic acid-terminated Fe 3O 4 nanoclusters. J Mater Chem B 2015; 3:4282-4290. [PMID: 32262305 DOI: 10.1039/c5tb00419e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Surface-functionalized Fe3O4 nanoparticles are emerging as promising agents for the selective and magnetic separation of various biological molecules. In principle, by engineering the surface of Fe3O4 nanoparticles, they can be applied as tracers to seek and recognize metabolites and secretions of specific diseases. In this report, we developed Fe3O4 nanoclusters with high magnetization and an amino-functionalized surface via the reaction between FeCl2, a hydrazine reductant, and a gelatin polymer to demonstrate magnetically separated prevalent urinary crystals. The surface of the gelatin-coated Fe3O4 nanoclusters was modified by using aminopropylphosphonic acid by amine coupling using EDC and NHS, which led to the exposure of their phosphonic acid groups and improved their affinity for fine Ca-based urinary crystals in the patient's urine. By subjecting the Fe3O4 nanoclusters that were bound to urinary crystals to Raman spectroscopy analysis, the crystalline types of the pre-concentrated urinary components were easily identified. The assignment of the vibration peaks of the crystals is promising for eliminating the false positives that occur when using a microscopic analysis method for urine crystal diagnosis. Sample preparation and identification required less than 10 min. Finally, we demonstrated that this non-invasive analytic platform exhibits a rapid and efficient detection rate of single- and multi-component urinary crystals from urine metabolites. A good correlation (86%) was observed between this non-invasive analytic platform and the diagnostic reports from 35 urolithiasis patients. We expect that this Fe3O4 nanocluster integrated Raman spectrum method will provide crystal information that could help early management for urolithiasis patients.
Collapse
Affiliation(s)
- Yi-Chun Chiu
- Division of Urology, Department of Surgery, Zhong Xiao Branch, Taipei City Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
24
|
Uskoković V. Nanostructured platforms for the sustained and local delivery of antibiotics in the treatment of osteomyelitis. Crit Rev Ther Drug Carrier Syst 2015; 32:1-59. [PMID: 25746204 PMCID: PMC4406243 DOI: 10.1615/critrevtherdrugcarriersyst.2014010920] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This article provides a critical view of the current state of the development of nanoparticulate and other solid-state carriers for the local delivery of antibiotics in the treatment of osteomyelitis. Mentioned are the downsides of traditional means for treating bone infection, which involve systemic administration of antibiotics and surgical debridement, along with the rather imperfect local delivery options currently available in the clinic. Envisaged are more sophisticated carriers for the local and sustained delivery of antimicrobials, including bioresorbable polymeric, collagenous, liquid crystalline, and bioglass- and nanotube-based carriers, as well as those composed of calcium phosphate, the mineral component of bone and teeth. A special emphasis is placed on composite multifunctional antibiotic carriers of a nanoparticulate nature and on their ability to induce osteogenesis of hard tissues demineralized due to disease. An ideal carrier of this type would prevent the long-term, repetitive, and systemic administration of antibiotics and either minimize or completely eliminate the need for surgical debridement of necrotic tissue. Potential problems faced by even hypothetically "perfect" antibiotic delivery vehicles are mentioned too, including (i) intracellular bacterial colonies involved in recurrent, chronic osteomyelitis; (ii) the need for mechanical and release properties to be adjusted to the area of surgical placement; (iii) different environments in which in vitro and in vivo testings are carried out; (iv) unpredictable synergies between drug delivery system components; and (v) experimental sensitivity issues entailing the increasing subtlety of the design of nanoplatforms for the controlled delivery of therapeutics.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Richard and Loan Hill Department of Bioengineering, College of Medicine, University of Illinois at Chicago, 851 South Morgan St, #205 Chicago, Illinois, 60607-7052
| |
Collapse
|
25
|
David T, Procházková S, Kotek J, Kubíček V, Hermann P, Lukeš I. Aminoalkyl-1,1-bis(phosphinic acids): Stability, Acid-Base, and Coordination Properties. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
26
|
Ong C, Yung LYL, Cai Y, Bay BH, Baeg GH. Drosophila melanogaster as a model organism to study nanotoxicity. Nanotoxicology 2014; 9:396-403. [DOI: 10.3109/17435390.2014.940405] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Cynthia Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,
| | - Lin-Yue Lanry Yung
- Department of Chemical & Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore, and
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,
| | - Gyeong-Hun Baeg
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,
| |
Collapse
|
27
|
Lan SM, Wu YN, Wu PC, Sun CK, Shieh DB, Lin RM. Advances in noninvasive functional imaging of bone. Acad Radiol 2014; 21:281-301. [PMID: 24439341 DOI: 10.1016/j.acra.2013.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/20/2013] [Accepted: 11/26/2013] [Indexed: 02/03/2023]
Abstract
The demand for functional imaging in clinical medicine is comprehensive. Although the gold standard for the functional imaging of human bones in clinical settings is still radionuclide-based imaging modalities, nonionizing noninvasive imaging technology in small animals has greatly advanced in recent decades, especially the diffuse optical imaging to which Britton Chance made tremendous contributions. The evolution of imaging probes, instruments, and computation has facilitated exploration in the complicated biomedical research field by allowing longitudinal observation of molecular events in live cells and animals. These research-imaging tools are being used for clinical applications in various specialties, such as oncology, neuroscience, and dermatology. The Bone, a deeply located mineralized tissue, presents a challenge for noninvasive functional imaging in humans. Using nanoparticles (NP) with multiple favorable properties as bioimaging probes has provided orthopedics an opportunity to benefit from these noninvasive bone-imaging techniques. This review highlights the historical evolution of radionuclide-based imaging, computed tomography, positron emission tomography, and magnetic resonance imaging, diffuse optics-enabled in vivo technologies, vibrational spectroscopic imaging, and a greater potential for using NPs for biomedical imaging.
Collapse
|