1
|
Tsvik L, Zhang S, O'Hare D, Haltrich D, Sützl L. More Than One Enzyme: Exploring Alternative FMN-Dependent L-Lactate Oxidases for Biosensor Development. ACS OMEGA 2024; 9:29442-29452. [PMID: 39005781 PMCID: PMC11238220 DOI: 10.1021/acsomega.4c01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
The α-hydroxy acid oxidoreductase (HAOx) family contains a diverse group of enzymes that can be applied in biosensors for L-lactate detection, most prominently lactate oxidase (LOx). The limited availability and a lack of diversity of L-lactate-oxidizing enzymes have currently hindered advancements in L-lactate biosensor development. Until now, the field has mostly relied on a single, commercially available enzyme, namely Aerococcus viridans L-lactate oxidase (AvLOx). In this study, we present newly discovered alternative L-lactate oxidases that exhibit a narrow substrate specificity and varied kinetic efficiencies toward L-lactate, making them suitable for integration into existing biosensor configurations. Some of these FMN-dependent L-lactate oxidases could be obtained in substantial amounts from routine E. coli expression, potentially facilitating commercial production. Using electrochemical characterization with a mediated biosensor setup, we present 7 enzymes that perform comparable or even better than commercial AvLOx. Finally, we show that their electrochemical performance is not directly correlating with their biochemical performance, making predictions of the suitability of enzymes for biosensor applications extremely difficult. Our research emphasizes the significance of expanding the enzyme toolbox of L-lactate oxidases for the development of improved L-lactate biosensors.
Collapse
Affiliation(s)
- Lidiia Tsvik
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Muthgasse 11, Wien, Vienna A-1190, Austria
- Doctoral Programme 'Biomolecular Technology of Proteins (BioToP)', University of Natural Resources and Life Sciences, Muthgasse 18, Wien, Vienna A-1190, Austria
| | - Shulin Zhang
- Department of Bioengineering, Imperial College London, London SW72AZ, U.K
| | - Danny O'Hare
- Department of Bioengineering, Imperial College London, London SW72AZ, U.K
| | - Dietmar Haltrich
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Muthgasse 11, Wien, Vienna A-1190, Austria
| | - Leander Sützl
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Muthgasse 11, Wien, Vienna A-1190, Austria
| |
Collapse
|
2
|
Damala P, Tiuftiakov NY, Bakker E. Avoiding Potential Pitfalls in Designing Wired Glucose Biosensors. ACS Sens 2024; 9:2-8. [PMID: 38146872 DOI: 10.1021/acssensors.3c01960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Glucose sensing has been studied for more than half a century, leading many to believe that further progress comes mainly from engineering efforts. Our society requires robust, reliable, compact, and easy-to-use sensing solutions for decentralized applications such as wearables, and engineering solutions are essential. However, true progress is only possible by understanding and improving the underlying working principles and fundamental limitations. This Perspective discusses the delicate relationship between the observed current and glucose concentration when using wired enzyme biosensors. Some of the potential pitfalls often encountered in the recent literature are discussed. These include the need to suppress the influence of enzyme turnover kinetics on the sensor signal and the undesired faradaic charging of the electron transfer mediator that gives a continuously decaying baseline signal. These fundamental issues must be carefully evaluated and resolved for the realization of continuously operating enzyme biosensor systems.
Collapse
Affiliation(s)
- Polyxeni Damala
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Nikolai Yu Tiuftiakov
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| |
Collapse
|
3
|
Govindaraj M, Srivastava A, Muthukumaran MK, Tsai PC, Lin YC, Raja BK, Rajendran J, Ponnusamy VK, Arockia Selvi J. Current advancements and prospects of enzymatic and non-enzymatic electrochemical glucose sensors. Int J Biol Macromol 2023; 253:126680. [PMID: 37673151 DOI: 10.1016/j.ijbiomac.2023.126680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
This review discusses the most current developments and future perspectives in enzymatic and non-enzymatic glucose sensors, which have notably evolved over the preceding quadrennial period. Furthermore, a thorough exploration encompassed the sensor's intricate fabrication processes, the diverse range of materials employed, the underlying principles of detection, and an in-depth assessment of the sensors' efficacy in detecting glucose levels within essential bodily fluids such as human blood serums, urine, saliva, and interstitial fluids. It is worth noting that the accurate quantification of glucose concentrations within human blood has been effectively achieved by utilizing classical enzymatic sensors harmoniously integrated with optical and electrochemical transduction mechanisms. Monitoring glucose levels in various mediums has attracted exceptional attention from industrial to academic researchers for diabetes management, food quality control, clinical medicine, and bioprocess inspection. There has been an enormous demand for the creation of novel glucose sensors over the past ten years. Research has primarily concentrated on succeeding biocompatible and enhanced sensing abilities related to the present technologies, offering innovative avenues for more effective glucose sensors. Recent developments in wearable optical and electrochemical sensors with low cost, high stability, point-of-care testing, and online tracking of glucose concentration levels in biological fluids can aid in managing and controlling diabetes globally. New nanomaterials and biomolecules that can be used in electrochemical sensor systems to identify glucose concentration levels are developed thanks to advances in nanoscience and nanotechnology. Both enzymatic and non-enzymatic glucose electrochemical sensors have garnered much interest recently and have made significant strides in detecting glucose levels. In this review, we summarise several categories of non-enzymatic glucose sensor materials, including composites, non-precious transition metals and their metal oxides, hydroxides, precious metals and their alloys, carbon-based materials, conducting polymers, metal-organic framework (MOF)-based electrocatalysts, and wearable device-based glucose sensors deeply.
Collapse
Affiliation(s)
- Muthukumar Govindaraj
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Magesh Kumar Muthukumaran
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| | - Bharathi Kannan Raja
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Jerome Rajendran
- Department of Electrical Engineering and Computer Science, The University of California, Irvine, CA 92697, United States
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan.
| | - J Arockia Selvi
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
4
|
Boonprasert K, Tharavanij T, Pechyen C, Ponsanti K, Tangnorawich B, Viyanant V, Na-Bangchang K. Validation of an electrochemical sensor based on gold nanoparticles as a point-of-care test for quantitative determination of glycated hemoglobin. PLoS One 2023; 18:e0276949. [PMID: 37384652 PMCID: PMC10309628 DOI: 10.1371/journal.pone.0276949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Monitoring the level of glycated hemoglobin (HbA1c) has become the gold standard measure for diabetes mellitus (DM) diagnosis and control, used in conjunction with fasting blood glucose (FBG) and oral glucose tolerance test. This study aimed to investigate the applicability of a newly developed nanoparticle-based electrochemical sensor-multiwalled nanotubes incorporated with gold nanoparticles (POCT-HbA1cMWCNTs/AuNPs)-used as a routine point-of-care test (POCT) for detection of HbA1c for the diagnosis of DM. Finger-prick and venous blood samples were collected from 108 DM and 98 non-DM subjects to determine HbA1c and total hemoglobin by POCT-HbA1cMWCNTs/AuNPs compared with the standard HPLC method. The performance of the POCT-HbA1cMWCNTs/AuNPs was evaluated using the standard cut-off HbA1c level of >6.5%. The test's sensitivity, specificity, positive predictive value, and negative predictive value were 100.00%, 90.32%, 87.23%, and 100.00%, respectively. The probability of DM diagnosis in a subject with HbA1c >6.5% (positive predictive value) was 87.23% (82/94). The accuracy of the POCT-HbA1cMWCNTs/AuNPs was 94.18%, with a %DMV (deviation from the mean value) of 0.25%. The results indicate satisfactory assay performance and applicability of the POCT-HbA1cMWCNTs/AuNPs for diagnosis of DM using the cut-off criteria of HbA1c >6.5.
Collapse
Affiliation(s)
- Kanyarat Boonprasert
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Thipaporn Tharavanij
- Department of Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Chiravoot Pechyen
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand
| | - Khanittha Ponsanti
- Department of Physics, Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand
| | - Benchamaporn Tangnorawich
- Department of Physics, Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand
| | - Vithoon Viyanant
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
5
|
Qin J, Dong B, Wang W, Cao L. Self-regulating bioinspired supramolecular photonic hydrogels based on chemical reaction networks for monitoring activities of enzymes and biofuels. J Colloid Interface Sci 2023; 649:344-354. [PMID: 37352565 DOI: 10.1016/j.jcis.2023.06.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
Inspired by the way many living organisms utilize chemical/biological reactions to regulate their skin and respond to stimuli in the external environment, we have developed a self-regulating hydrogel design by incorporating chemical reaction networks (CRNs) into biomimetic photonic crystal hydrogels. In this hydrogel system, we used host-guest supramolecular non-covalent bonds between beta-cyclodextrin (β-CD) and ferrocene (Fc) as partial crosslinkers and designed a CRN involving enzyme-fuel couples of horseradish peroxidase (HRP)/H2O2 and glucose oxidase (GOD)/d-glucose, by which the responsive hydrogel was transformed into a glucose-driven self-regulating hydrogel. Due to the biomimetic structural color in the hydrogel, the progress of the chemical reaction was accompanied by a change in the color of the hydrogel. Based on this principle, the designed supramolecular photonic hydrogel (SPH) can not only achieve naked-eye detection of H2O2 and glucose concentrations with the assistance of a smartphone but also monitor the reactions of HRP and GOD enzymes and determine their activity parameters. The sensitivity and stability of the sensor have been proven. In addition, due to the reversibility of the chemical reaction network, the sensor can be reused, thus having the potential to serve as a low-cost point-of-care sensor. The SPH was ultimately used to detect glucose in human plasma and H2O2 in liver tumor tissue. The results are comparable with commercial assay kits. By redesigning the chemical reaction network in the hydrogel, it is expected to be used for detecting other enzymes or fuels.
Collapse
Affiliation(s)
- Junjie Qin
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Bohua Dong
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Wei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China; Aramco Research Center-Boston, Aramco Services Company, Cambridge, MA 02139, United States
| | - Lixin Cao
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China.
| |
Collapse
|
6
|
Radomski J, Vieira L, Sieber V. Bioelectrochemical synthesis of gluconate by glucose oxidase immobilized in a ferrocene based redox hydrogel. Bioelectrochemistry 2023; 151:108398. [PMID: 36805205 DOI: 10.1016/j.bioelechem.2023.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
The integration of redox enzymes on electrode surfaces enables the use of renewable energy for highly specific bioelectrochemical synthesis. Herein, we investigate the oxidation of glucose to gluconic acid on a bioanode, combining electrochemical and enzymatic components. Gluconic acid is a valuable chemical widely used in the industry. The bioanode consists of a redox hydrogel film of polyethylenimine (PEI) containing ferrocene (Fc) as a mediator, glycerol diglycidyl ether (GDGE) as a cross-linker, and the enzyme glucose oxidase (GOx). Optimization of the enzyme and cross-linker loading in the redox film led to faradaic efficiencies up to 96 ± 5 % for gluconate. The oxygen-free setup was highly stable for quantitative electrosynthesis, yielding gluconate concentrations of 6.4 ± 0.25 mmol L-1. Moreover, this catalase-free anaerobic system showed no production of H2O2 within 24 h, thereby eliminating the deactivation of the GOx caused by H2O2 and a high enzyme performance, with a turnover frequency (TOF) of 5 x10-3 s-1. This is the first quantitative bioelectrosynthesis of gluconate in an entirely anaerobic environment with electrode stability of at least 8 h.
Collapse
Affiliation(s)
- Johanna Radomski
- Chair of Chemistry for Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Luciana Vieira
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Bio, Electro and Chemocatalysis BioCat, Straubing branch, Schulgasse 11a, 94315 Straubing, Germany
| | - Volker Sieber
- Chair of Chemistry for Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany; Fraunhofer Institute for Interfacial Engineering and Biotechnology, Bio, Electro and Chemocatalysis BioCat, Straubing branch, Schulgasse 11a, 94315 Straubing, Germany.
| |
Collapse
|
7
|
Yang J, Gong X, Chen S, Zheng Y, Peng L, Liu B, Chen Z, Xie X, Yi C, Jiang L. Development of Smartphone-Controlled and Microneedle-Based Wearable Continuous Glucose Monitoring System for Home-Care Diabetes Management. ACS Sens 2023; 8:1241-1251. [PMID: 36821704 DOI: 10.1021/acssensors.2c02635] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Continuous glucose monitoring (CGM) can mini-invasively track blood glucose fluctuation and reduce the risk of hyperglycemia and hypoglycemia, and this is is in great demand for diabetes management. However, cost-effective manufacture of CGM systems with continuously improved convenience and performance is still the persistent goal. Herein, we developed a smartphone-controlled and microneedle (MN)-based wearable CGM system for long-term glucose monitoring. The CGM system modified with a sandwich-type enzyme immobilization strategy can satisfy the clinical requirement of interstitial fluid (ISF) glucose monitoring for 14 days with a mean absolute relative difference of 10.2% and a cost of less than $15, which correlated well with the commercial glucometer and FDA-approved CGM system FreeStyle Libre (Abbott Inc., Illinois, USA). The self-developed CGM system is demonstrated to accurately monitor glucose fluctuations and provide abundant clinical information. It is better to find the cause of individual blood glucose changes and beneficial for the guide of precise glucose control. On the whole, the intelligently wearable CGM system may provide an alternative solution for home-care diabetes management.
Collapse
Affiliation(s)
- Jian Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P. R. China
| | - Xia Gong
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P. R. China
| | - Shuijin Chen
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P. R. China
| | - Ying Zheng
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P. R. China
| | - Lelun Peng
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P. R. China
| | - Bin Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P. R. China
| | - Zhipeng Chen
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P. R. China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Changqing Yi
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P. R. China
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen 518057, P. R. China
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P. R. China
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen 518057, P. R. China
| |
Collapse
|
8
|
Estrada-Osorio D, Escalona-Villalpando RA, Gutiérrez A, Arriaga L, Ledesma-García J. Poly-L-lysine-modified with ferrocene to obtain a redox polymer for mediated glucose biosensor application. Bioelectrochemistry 2022; 146:108147. [DOI: 10.1016/j.bioelechem.2022.108147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 12/26/2022]
|
9
|
Kumar AS, Mageswari GV, Nisha S, Nellepalli P, Vijayakrishna K. Molecular orientation and dynamics of ferricyanide ion-bearing copoly(ionic liquid) modified glassy carbon electrode towards selective mediated oxidation reaction of cysteine versus ascorbic acid: A biomimicking enzyme functionality. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Biomimetic magnetite/polydopamine/β-cyclodextrins nanocomposite for long-term glucose measurements. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108127] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Yildirimkaraman O, Özenler S, Gunay US, Durmaz H, Yıldız ÜH. Electroactive Nanogel Formation by Reactive Layer-by-Layer Assembly of Polyester and Branched Polyethylenimine via Aza-Michael Addition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10902-10913. [PMID: 34477388 DOI: 10.1021/acs.langmuir.1c01070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We here demonstrate the utilization of reactive layer-by-layer (rLBL) assembly to form a nanogel coating made of branched polyethylenimine (BPEI) and alkyne containing polyester (PE) on a gold surface. The rLBL is generated by the rapid aza-Michael addition reaction of the alkyne group of PE and the -NH2 groups of BPEI by yielding a homogeneous gel coating on the gold substrate. The thickness profile of the nanogel revealed that a 400 nm thick coating is formed by six multilayers of rLBL, and it exhibits 50 nm roughness over 8 μm distance. The LBL characteristics were determined via depth profiling analysis by X-ray photoelectron spectroscopy, and it has been shown that a 70-100 nm periodic increase in gel thickness is a consequence of consecutive cycles of rLBL. A detailed XPS analysis was performed to determine the yield of the rLBL reaction: the average yield was deduced as 86.4% by the ratio of the binding energies at 286.26 eV, (C═CN-C bond) and 283.33 eV, (C≡C triple bond). The electrochemical characterization of the nanogels ascertains that up to the six-multilayered rLBL of BPEI-PE is electroactive, and the nanogel permeability had led to drive mass and charge transfer effectively. These results promise that nanogel formation by rLBL films may be a straightforward modification of electrodes approach, and it exhibits potential for the application of soft biointerfaces.
Collapse
Affiliation(s)
| | - Sezer Özenler
- Department of Chemistry, Izmir Institute of Technology, Izmir, 35430, Turkey
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstraße 3, Erlangen, D-91058, Germany
| | - Ufuk Saim Gunay
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Hakan Durmaz
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Ümit Hakan Yıldız
- Department of Chemistry, Izmir Institute of Technology, Izmir, 35430, Turkey
- Department of Polymer Science and Engineering, Izmir Institute of Technology, Izmir, 35430, Turkey
| |
Collapse
|
12
|
Chicken feet yellow membrane/over-oxidized carbon paste electrodes: A novel electrochemical platform for determination of vitamin C. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Nashruddin SNA, Abdullah J, Mohammad Haniff MAS, Mat Zaid MH, Choon OP, Mohd Razip Wee MF. Label Free Glucose Electrochemical Biosensor Based on Poly(3,4-ethylenedioxy thiophene):Polystyrene Sulfonate/Titanium Carbide/Graphene Quantum Dots. BIOSENSORS 2021; 11:bios11080267. [PMID: 34436069 PMCID: PMC8393679 DOI: 10.3390/bios11080267] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 06/23/2021] [Indexed: 05/24/2023]
Abstract
The electrochemical biosensor devices based on enzymes for monitoring biochemical substances are still considered attractive. We investigated the immobilization of glucose oxidase (GOx) on a new composite nanomaterial poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS)/titanium carbide,(Ti3C2)/graphene quantum dots(GQD) modified screen-printed carbon electrode (SPCE) for glucose sensing. The characterization and electrochemical behavior of PEDOT:PSS/Ti3C2/GQD towards the electrocatalytic oxidation of GOx was analyzed by FTIR, XPS, SEM, cyclic voltammetry (CV), and differential pulse voltammetry (DPV). This composite nanomaterial was found to tend to increase the electrochemical behavior and led to a higher peak current of 100.17 µA compared to 82.01 µA and 95.04 µA for PEDOT:PSS and PEDOT:PSS/Ti3C2 alone. Moreover, the detection results demonstrated that the fabricated biosensor had a linear voltammetry response in the glucose concentration range 0-500 µM with a relatively sensitivity of 21.64 µAmM-1cm-2 and a detection limit of 65 µM (S/N = 3), with good stability and selectivity. This finding could be useful as applicable guidance for the modification screen printed carbon (SPCE) electrodes focused on composite PEDOT:PSS/Ti3C2/GQD for efficient detection using an enzyme-based biosensor.
Collapse
Affiliation(s)
- Siti Nur AshakirinMohd Nashruddin
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.N.A.N.); (M.A.S.M.H.); (O.P.C.)
| | - Jaafar Abdullah
- Department of Chemistry, Faculty of Science, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Muhammad Aniq Shazni Mohammad Haniff
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.N.A.N.); (M.A.S.M.H.); (O.P.C.)
| | - Mohd Hazani Mat Zaid
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.N.A.N.); (M.A.S.M.H.); (O.P.C.)
| | - Ooi Poh Choon
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.N.A.N.); (M.A.S.M.H.); (O.P.C.)
| | - Mohd Farhanulhakim Mohd Razip Wee
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.N.A.N.); (M.A.S.M.H.); (O.P.C.)
| |
Collapse
|
14
|
Qu L, Ren X, Fan D, Kuang X, Sun X, Wang B, Wei Q, Ju H. Split-Type Electrochemical Immunoassay System Triggering Ascorbic Acid-Mediated Signal Magnification Based on a Controlled-Release Strategy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29179-29186. [PMID: 34101420 DOI: 10.1021/acsami.1c07780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This research put forward a novel split-type electrochemical (EC) immunosensor which integrated the controlled-release strategy with EC detection for application in the field of biosensing. Concretely, ascorbic acid (AA) was packaged in a cadmium sulfide (CdS)-capped spherical mesoporous bioactive glass (SBG) nanocarrier (SBGCdS) on account of encapsulation technology. To reduce the complexity of the bioanalysis, the detection antibody-labeled SBGCdS-AA bioconjugate was applied in a 96-well microplate for the immunoreaction process, which is independent of the EC determination procedure. Thus, the immune interference and steric hindrance caused by the accumulation of nanomaterials on the electrode could be minimized. Subsequently, AA was released efficiently via the destruction effect of dithiothreitol on the disulfide bond. In addition, for the as-prepared FcAI/l-Cys/gold nanoparticles (GNPs)/porous BiVO4 (p-BVO)/ITO EC sensing platform in the detection solution, the synergetic catalysis of Fc and GNPs/p-BVO toward the oxidation of the released AA could be realized, which triggered AA-mediated significant signal magnification throughout this study. In particular, p-BVO with an ordered nanoarray structure could accelerate the electron transfer to assist in sensitivity improvement of this system. This novel biosensor was capable of assaying the neuron-specific enolase (NSE) biomarker sensitively, from which a linear range of 0.001-100 ng/mL was derived along with a low detection limit of 1.08 pg/mL. An innovative way could be paved in the bioanalysis of NSE and other biomarkers.
Collapse
Affiliation(s)
- Liu Qu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 Shandong, China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 Shandong, China
| | - Dawei Fan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 Shandong, China
| | - Xuan Kuang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 Shandong, China
| | - Xu Sun
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 Shandong, China
| | - Bin Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 Shandong, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 Shandong, China
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 Shandong, China
| |
Collapse
|
15
|
Coria-Oriundo LL, Cortez ML, Azzaroni O, Battaglini F. Enzymes hosted in redox-active ionically cross-linked polyelectrolyte networks enable more efficient biofuel cells. SOFT MATTER 2021; 17:5240-5247. [PMID: 33949590 DOI: 10.1039/d1sm00221j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Redox mediators are pivotal players in the electron transfer process between enzymes and electrodes. We present an alternative approach for redox mediation based on branched polyethyleneimine (BPEI) modified with an osmium complex. This redox polyelectrolyte is crosslinked with phosphate to produce colloidal particles with a diameter of ca. 1 μm, which, combined with glucose oxidase (GOx), can form electroactive assemblies through either layer by layer assembly (LbL) or one-pot drop-casting (OPDC). The addition of NaCl to these colloidal systems induces the formation of films that otherwise poorly grow, presenting an outstanding catalytic current. The system was tested as a bioanode delivering a power output of 148 μW per nmol of mediator. These results are explained in terms of the interactions of the ions with the polyelectrolyte and represent a new route for the development of bioelectrochemical devices involving redox mediators and enzymes.
Collapse
Affiliation(s)
- Lucy L Coria-Oriundo
- INQUIMAE (CONICET), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina. and Facultad de Ciencias, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima 25, Peru
| | - M Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Fernando Battaglini
- INQUIMAE (CONICET), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
16
|
Benjamin M, Manoj D, Karnan M, Saravanakumar D, Thenmozhi K, Ariga K, Sathish M, Senthilkumar S. Switching the solubility of electroactive ionic liquids for designing high energy supercapacitor and low potential biosensor. J Colloid Interface Sci 2021; 588:221-231. [PMID: 33418440 DOI: 10.1016/j.jcis.2020.12.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
Ionic liquids are regarded as one of the most prodigious materials for sustainable technological developments with superior performance and versatility. Hence, in this study, we have reported the design and synthesis of electroactive disubstituted ferrocenyl ionic liquids (Fc-ILs) with two different counter anions and demonstrated the significance of their anion tuneable physicochemical characteristics towards multifunctional electrochemical applications. The Fc-IL synthesized with chloride counter anion (Fc-Cl-IL) displays water-solubility and can be used as a redox additive in the fabrication of supercapacitor. Supercapacitor device with Fc-Cl-IL based redox electrolyte exhibits outstanding energy and power densities of 91 Wh kg-1 and 20.3 kW kg-1, respectively. Meanwhile, ferrocenyl IL synthesized with perchlorate anion (Fc-ClO4-IL) exhibits water-insolubility and can serve as a redox mediator towards construction of a glucose biosensor. The biosensor comprising Fc-ClO4-IL is able to detect glucose at an exceptionally lower potential of 0.2 V, with remarkable sensitivity and selectivity. This study implies that the introduction of electroactive ILs could afford supercapacitor devices with high energy and power densities and biosensors with less detection potential.
Collapse
Affiliation(s)
- Michael Benjamin
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Devaraj Manoj
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Manickavasakam Karnan
- Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, India
| | - Duraisamy Saravanakumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Kathavarayan Thenmozhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan; Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan.
| | - Marappan Sathish
- Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, India; WPI-MANA, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan.
| | - Sellappan Senthilkumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India.
| |
Collapse
|
17
|
Chen GC, Liu CH, Wu WC. Electrochemical immunosensor for serum parathyroid hormone using voltammetric techniques and a portable simulator. Anal Chim Acta 2021; 1143:84-92. [DOI: 10.1016/j.aca.2020.11.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 01/10/2023]
|
18
|
Teymourian H, Barfidokht A, Wang J. Electrochemical glucose sensors in diabetes management: an updated review (2010-2020). Chem Soc Rev 2020; 49:7671-7709. [PMID: 33020790 DOI: 10.1039/d0cs00304b] [Citation(s) in RCA: 308] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While over half a century has passed since the introduction of enzyme glucose biosensors by Clark and Lyons, this important field has continued to be the focus of immense research activity. Extensive efforts during the past decade have led to major scientific and technological innovations towards tight monitoring of diabetes. Such continued progress toward advanced continuous glucose monitoring platforms, either minimal- or non-invasive, holds considerable promise for addressing the limitations of finger-prick blood testing toward tracking glucose trends over time, optimal therapeutic interventions, and improving the life of diabetes patients. However, despite these major developments, the field of glucose biosensors is still facing major challenges. The scope of this review is to present the key scientific and technological advances in electrochemical glucose biosensing over the past decade (2010-present), along with current obstacles and prospects towards the ultimate goal of highly stable and reliable real-time minimally-invasive or non-invasive glucose monitoring. After an introduction to electrochemical glucose biosensors, we highlight recent progress based on using advanced nanomaterials at the electrode-enzyme interface of three generations of glucose sensors. Subsequently, we cover recent activity and challenges towards next-generation wearable non-invasive glucose monitoring devices based on innovative sensing principles, alternative body fluids, advanced flexible materials, and novel platforms. This is followed by highlighting the latest progress in the field of minimally-invasive continuous glucose monitoring (CGM) which offers real-time information about interstitial glucose levels, by focusing on the challenges toward developing biocompatible membrane coatings to protect electrochemical glucose sensors against surface biofouling. Subsequent sections cover new analytical concepts of self-powered glucose sensors, paper-based glucose sensing and multiplexed detection of diabetes-related biomarkers. Finally, we will cover the latest advances in commercially available devices along with the upcoming future technologies.
Collapse
Affiliation(s)
- Hazhir Teymourian
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
19
|
Electrochemical Preparation of Polyaniline- Supported Cu-CuO Core-Shell on 316L Stainless Steel Electrodes for Nonenzymatic Glucose Sensor. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/6056919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this article, we reported the elaboration of a nonenzymatic glucose sensor based on the polyaniline-supported Cu-CuO core-shell structure prepared on the 316L stainless steel electrode by electrochemical methods. In the first step, polyaniline (PANI) film was electrodeposited on the 316L substrate from a solution of 0.1 M aniline and 0.5 M sulfuric acid in absolute ethanol by the cyclic voltammetry (CV) method. In the second step, the copper particles were electrodeposited on the PANI film from CuCl2·2H2O 0.01 M precursor prepared in a KCl 0.1 M solution by the CV method. In the third step, Cu particles were partially oxidized to CuO by the CV method in a NaOH 0.1 M electrolyte to form a Cu-CuO core-shell structure supported on the PANI film. The as-prepared electrode (Cu-CuO/PANI/316L) was used to detect glucose in a NaOH 0.1 M solution. The Cu-CuO/PANI/316L sensor exhibited a linear range of 0.1–5 mM (R2 = 0.995) with a detection limit of 0.1 mM (S/N = 3) and high sensitivity of (25.71 mA·mM−1·cm−2). In addition, no significant interference was observed from sucrose, maltose, lactose, and ascorbic acid. The results showed that the polyaniline-supported Cu-CuO core-shell structure has the potential to be applied as an electrode material for the nonenzymatic glucose sensor.
Collapse
|
20
|
Kim SK, Jeon C, Lee GH, Koo J, Cho SH, Han S, Shin MH, Sim JY, Hahn SK. Hyaluronate-Gold Nanoparticle/Glucose Oxidase Complex for Highly Sensitive Wireless Noninvasive Glucose Sensors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37347-37356. [PMID: 31502433 DOI: 10.1021/acsami.9b13874] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Noninvasive real-time biosensors to measure glucose levels in the body fluids have been widely investigated for continuous glucose monitoring of diabetic patients. However, they suffered from low sensitivity and reproducibility due to the instability of nanomaterials used for glucose biosensors. Here, we developed a hyaluronate-gold nanoparticle/glucose oxidase (HA-AuNP/GOx) complex and an ultralow-power application-specific integrated circuit chip for noninvasive and robust wireless patch-type glucose sensors. The HA-AuNP/GOx complex was prepared by the facile conjugation of thiolated HA to AuNPs and the following physical binding of GOx. The wireless glucose sensor exhibited slow water evaporation (0.11 μL/min), fast response (5 s), high sensitivity (12.37 μA·dL/mg·cm2) and selectivity, a low detection limit (0.5 mg/dL), and highly stable enzymatic activity (∼14 days). We successfully demonstrated the strong correlation between glucose concentrations measured by a commercially available blood glucometer and the wireless patch-type glucose sensor. Taken together, we could confirm the feasibility of the wireless patch-type robust glucose sensor for noninvasive and continuous diabetic diagnosis.
Collapse
Affiliation(s)
- Su-Kyoung Kim
- Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu , Pohang 790-784 , Gyeongbuk , Korea
| | - Cheonhoo Jeon
- Department of Electrical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu , Pohang 37673 , Gyeongbuk , Korea
| | - Geon-Hui Lee
- Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu , Pohang 790-784 , Gyeongbuk , Korea
| | - Jahyun Koo
- Department of Electrical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu , Pohang 37673 , Gyeongbuk , Korea
| | - Seong Hwi Cho
- Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu , Pohang 790-784 , Gyeongbuk , Korea
| | - Seulgi Han
- Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu , Pohang 790-784 , Gyeongbuk , Korea
| | - Myeong-Hwan Shin
- Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu , Pohang 790-784 , Gyeongbuk , Korea
| | - Jae-Yoon Sim
- Department of Electrical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu , Pohang 37673 , Gyeongbuk , Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu , Pohang 790-784 , Gyeongbuk , Korea
- PHI BIOMED Co. , #613, 12 Gangnam-daero 65-gil, Seocho-gu , Seoul 06612 , Korea
| |
Collapse
|
21
|
Celik Kazici H, Yayla M. An electrocatalyst for detection of glucose in human blood: synergy in Pd–AuNPs/GOx/C surfaces. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1576645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hilal Celik Kazici
- Faculty of Engineering Department of Chemical Engineering, Van Yüzüncü Yıl University, Van, Turkey
| | - Muge Yayla
- Van Yüzüncü Yıl University Institute of Science, Van, Turkey
| |
Collapse
|
22
|
Ozkan BC, Soganci T, Turhan H, Ak M. Investigation of rGO and chitosan effects on optical and electrical properties of the conductive polymers for advanced applications. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Anantha-Iyengar G, Shanmugasundaram K, Nallal M, Lee KP, Whitcombe MJ, Lakshmi D, Sai-Anand G. Functionalized conjugated polymers for sensing and molecular imprinting applications. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2018.08.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Jirimali HD, Saravanakumar D, Shin W. Chitosan-Cu-salen/Carbon Nano-Composite Based Electrode for the Enzyme-less Electrochemical Sensing of Hydrogen Peroxide. J ELECTROCHEM SCI TE 2018. [DOI: 10.33961/jecst.2018.9.3.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Xu J, Qiao X, Arsalan M, Cheng N, Cao W, Yue T, Sheng Q, Zheng J. Preparation of one dimensional silver nanowire/nickel-cobalt layered double hydroxide and its electrocatalysis of glucose. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.06.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Deng M, Bo X, Guo L. Encapsulation of platinum nanoparticles into a series of zirconium-based metal-organic frameworks: Effect of the carrier structures on electrocatalytic performances of composites. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Pappa AM, Parlak O, Scheiblin G, Mailley P, Salleo A, Owens RM. Organic Electronics for Point-of-Care Metabolite Monitoring. Trends Biotechnol 2017; 36:45-59. [PMID: 29196057 DOI: 10.1016/j.tibtech.2017.10.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/26/2017] [Accepted: 10/31/2017] [Indexed: 01/14/2023]
Abstract
In this review we focus on demonstrating how organic electronic materials can solve key problems in biosensing thanks to their unique material properties and implementation in innovative device configurations. We highlight specific examples where these materials solve multiple issues related to complex sensing environments, and we benchmark these examples by comparing them to state-of-the-art commercially available sensing using alternative technologies. We have categorized our examples by sample type, focusing on sensing from body fluids in vitro and on wearable sensors, which have attracted significant interest owing to their integration with everyday life activities. We finish by describing a future trend for in vivo, implantable sensors, which aims to build on current progress from sensing in biological fluids ex vivo.
Collapse
Affiliation(s)
- Anna-Maria Pappa
- Department of Bioelectronics, École Nationale Supérieure des Mines, Centre Microélectronique de Provence (CMP)-École Nationale Supérieure des Mines de Saint-Étienne (EMSE), Microélectronique et Objets Communicants (MOC), 13541 Gardanne, France; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 OAS, UK; Equal contributions
| | - Onur Parlak
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA; Equal contributions
| | - Gaetan Scheiblin
- Commissariat à l'Energie Atomique (CEA), Laboratoire d'Électronique des Technologies de l'Information (LETI), MINATEC Campus, 38054 Grenoble, France; Equal contributions
| | - Pascal Mailley
- Commissariat à l'Energie Atomique (CEA), Laboratoire d'Électronique des Technologies de l'Information (LETI), MINATEC Campus, 38054 Grenoble, France
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Roisin M Owens
- Department of Bioelectronics, École Nationale Supérieure des Mines, Centre Microélectronique de Provence (CMP)-École Nationale Supérieure des Mines de Saint-Étienne (EMSE), Microélectronique et Objets Communicants (MOC), 13541 Gardanne, France; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 OAS, UK.
| |
Collapse
|
28
|
Bahar T, Yazici MS. Immobilized glucose oxidase biofuel cell anode by MWCNTs, ferrocene, and polyethylenimine: Electrochemical performance. ASIA-PAC J CHEM ENG 2017. [DOI: 10.1002/apj.2149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Tahsin Bahar
- TUBITAK Marmara Research Center, Energy Institute; Gebze Kocaeli 41470 Turkey
| | - M. Suha Yazici
- TUBITAK Marmara Research Center, Energy Institute; Gebze Kocaeli 41470 Turkey
| |
Collapse
|
29
|
Duc C, Vlandas A, Malliaras GG, Senez V. Electrowetting on Immersed Conducting Hydrogel. J Phys Chem B 2017; 121:9947-9956. [PMID: 28930452 DOI: 10.1021/acs.jpcb.7b07971] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conducting polymers demonstrate an interesting ability to change their wettability at ultralow voltage (<1 V). While the conducting hydrogel poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) is increasingly used as an interface with biology partly thanks to its mechanical properties, little is known about the electrical control of its wettability. We rely on the captive bubble technique to study this hydrogel property under relevant conditions (fully immerged). We here report that the wettability variations of PEDOT:PSS are driven by an electrowetting phenomenon in contrast to other conducting polymers which are thought to undergo wettability changes due to oxido-reduction reactions. In addition, we propose a modified electrowetting model to describe the wettability variations of PEDOT:PSS in aqueous solution under ultralow voltage and we show how these variations can be tuned in different ranges of contact angles (above or under 90°) by coating the PEDOT:PSS surface.
Collapse
Affiliation(s)
- Caroline Duc
- BioMEMS, Univ. Lille, CNRS, ISEN, UMR 8520 - IEMN , F-59000 Lille, France
| | - Alexis Vlandas
- BioMEMS, Univ. Lille, CNRS, ISEN, UMR 8520 - IEMN , F-59000 Lille, France
| | - George G Malliaras
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines CMP-EMSE, MOC , 13541 Gardanne, France
| | - Vincent Senez
- BioMEMS, Univ. Lille, CNRS, ISEN, UMR 8520 - IEMN , F-59000 Lille, France
| |
Collapse
|
30
|
Muñoz J, Baeza M. Customized Bio-functionalization of Nanocomposite Carbon Paste Electrodes for Electrochemical Sensing: A Mini Review. ELECTROANAL 2017. [DOI: 10.1002/elan.201700087] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jose Muñoz
- Molecular Nanoscience and Organic Materials Group, Institut de Ciència de; Materials de Barcelona (ICMAB-CSIC) Carrer dels Til⋅lers; 08193 Bellaterra (Cerdanyola del Vallès), Barcelona Spain
| | - Mireia Baeza
- Departament de Química, Facultat de Ciències; Universitat Autònoma de Barcelona, Carrer dels Til⋅lers, Edifici C-Entrada Nord; 08193 Bellaterra (Cerdanyola del Vallès), Barcelona Spain
| |
Collapse
|
31
|
Zhu X, Li J, Lv H, He H, Liu H, Zhang X, Wang S. Synthesis and characterization of a bifunctional nanoprobe for CGG trinucleotide repeat detection. RSC Adv 2017. [DOI: 10.1039/c7ra05268e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel bifunctional nanoprobe was designed and used in an electrochemical sensor to rapidly detect CGG trinucleotide repeats.
Collapse
Affiliation(s)
- Xiaoqian Zhu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan
- PR China
| | - Jiao Li
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan
- PR China
| | - Hehong Lv
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan
- PR China
| | - Hanping He
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan
- PR China
| | - Heng Liu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan
- PR China
| | - Xiuhua Zhang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan
- PR China
| | - Shengfu Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan
- PR China
| |
Collapse
|
32
|
Chandran GT, Li X, Ogata A, Penner RM. Electrically Transduced Sensors Based on Nanomaterials (2012-2016). Anal Chem 2016; 89:249-275. [PMID: 27936611 DOI: 10.1021/acs.analchem.6b04687] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Girija Thesma Chandran
- Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States
| | - Xiaowei Li
- Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States
| | - Alana Ogata
- Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States
| | - Reginald M Penner
- Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States
| |
Collapse
|
33
|
Larik FA, Saeed A, Fattah TA, Muqadar U, Channar PA. Recent advances in the synthesis, biological activities and various applications of ferrocene derivatives. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3664] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fayaz Ali Larik
- Department of Chemistry; Quaid-i-Azam University; 45320 Islamabad Pakistan
| | - Aamer Saeed
- Department of Chemistry; Quaid-i-Azam University; 45320 Islamabad Pakistan
| | | | - Urooj Muqadar
- Department of Chemistry; Quaid-i-Azam University; 45320 Islamabad Pakistan
| | | |
Collapse
|
34
|
Rębiś T, Sobkowiak M, Milczarek G. Electrocatalytic oxidation and detection of hydrazine at conducting polymer/lignosulfonate composite modified electrodes. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.09.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
A novel electrochemical immunosensor based on nonenzymatic Ag@Au-Fe3O4 nanoelectrocatalyst for protein biomarker detection. Biosens Bioelectron 2016; 85:343-350. [DOI: 10.1016/j.bios.2016.04.100] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022]
|
36
|
Huang H, Zhu W, Gao X, Liu X, Ma H. Synthesis of a novel electrode material containing phytic acid-polyaniline nanofibers for simultaneous determination of cadmium and lead ions. Anal Chim Acta 2016; 947:32-41. [PMID: 27846987 DOI: 10.1016/j.aca.2016.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 11/17/2022]
Abstract
The development of nanostructured conducting polymers based materials for electrochemical applications has attracted intense attention due to their environmental stability, unique reversible redox properties, abundant electron active sites, rapid electron transfer and tunable conductivity. Here, a phytic acid doped polyaniline nanofibers based nanocomposite was synthesized using a simple and green method, the properties of the resulting nanomaterial was characterized by electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). A glassy carbon electrode modified by the nanocomposite was evaluated as a new platform for the simultaneous detection of trace amounts of Cd2+ and Pb2+ using differential pulse anodic stripping voltammetry (DPASV). The synergistic contribution from PANI nanofibers and phytic acid enhances the accumulation efficiency and the charge transfer rate of metal ions during the DPASV analysis. Under the optimal conditions, good linear relationships were obtained for Cd2+ in a range of 0.05-60 μg L-1, with the detection limit (S/N = 3) of 0.02 μg L-1, and for Pb2+ in a range of 0.1-60 μg L-1, with the detection limit (S/N = 3) of 0.05 μg L-1. The new electrode was successfully applied to real water samples for simultaneous detection of Cd2+ and Pb2+ with good recovery rates. Therefore, the new electrode material may be a capable candidate for the detection of trace levels of heavy metal ions.
Collapse
Affiliation(s)
- Hui Huang
- Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Wencai Zhu
- Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xiaochun Gao
- Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xiuyu Liu
- Shandong Academy of Sciences, Jinan, 250114, China
| | - Houyi Ma
- Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| |
Collapse
|
37
|
Bahar T. Preparation of a ferrocene mediated bioanode for biofuel cells by MWCNTs, polyethylenimine and glutaraldehyde: glucose oxidase immobilization and characterization. ASIA-PAC J CHEM ENG 2016. [DOI: 10.1002/apj.2032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tahsin Bahar
- TUBITAK Marmara Research Center; Energy Institute; 41470 Gebze Kocaeli Turkey
| |
Collapse
|
38
|
Novel Nanocomposite of Chitosan-protected Platinum Nanoparticles Immobilized on Nickel Hydroxide: Facile Synthesis and Application as Glucose Electrochemical Sensor. J CHEM SCI 2016. [DOI: 10.1007/s12039-016-1146-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Dilusha Cooray MC, Sandanayake S, Li F, Langford SJ, Bond AM, Zhang J. Efficient Enzymatic Oxidation of Glucose Mediated by Ferrocene Covalently Attached to Polyethylenimine Stabilized Gold Nanoparticles. ELECTROANAL 2016. [DOI: 10.1002/elan.201600201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Saman Sandanayake
- School of Chemistry Monash University Clayton, Victoria 3800 Australia
| | - Fengwang Li
- School of Chemistry Monash University Clayton, Victoria 3800 Australia
| | | | - Alan M. Bond
- School of Chemistry Monash University Clayton, Victoria 3800 Australia
| | - Jie Zhang
- School of Chemistry Monash University Clayton, Victoria 3800 Australia
| |
Collapse
|
40
|
Park CS, Lee C, Kwon OS. Conducting Polymer Based Nanobiosensors. Polymers (Basel) 2016; 8:E249. [PMID: 30974524 PMCID: PMC6432403 DOI: 10.3390/polym8070249] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 11/17/2022] Open
Abstract
In recent years, conducting polymer (CP) nanomaterials have been used in a variety of fields, such as in energy, environmental, and biomedical applications, owing to their outstanding chemical and physical properties compared to conventional metal materials. In particular, nanobiosensors based on CP nanomaterials exhibit excellent performance sensing target molecules. The performance of CP nanobiosensors varies based on their size, shape, conductivity, and morphology, among other characteristics. Therefore, in this review, we provide an overview of the techniques commonly used to fabricate novel CP nanomaterials and their biosensor applications, including aptasensors, field-effect transistor (FET) biosensors, human sense mimicking biosensors, and immunoassays. We also discuss prospects for state-of-the-art nanobiosensors using CP nanomaterials by focusing on strategies to overcome the current limitations.
Collapse
Affiliation(s)
- Chul Soon Park
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
| | - Changsoo Lee
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
- Nanobiotechnology and Bioinformatics, University of Science & Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34144, Korea.
| | - Oh Seok Kwon
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
| |
Collapse
|
41
|
Xiao F, Wang L, Duan H. Nanomaterial based electrochemical sensors for in vitro detection of small molecule metabolites. Biotechnol Adv 2016; 34:234-49. [DOI: 10.1016/j.biotechadv.2016.01.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/24/2016] [Accepted: 01/28/2016] [Indexed: 12/25/2022]
|
42
|
Hydrophobic interface controlled electrochemical sensing of nitrite based on one step synthesis of polyhedral oligomeric silsesquioxane/reduced graphene oxide nanocomposite. Talanta 2016; 150:302-9. [DOI: 10.1016/j.talanta.2015.12.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/06/2015] [Accepted: 12/10/2015] [Indexed: 11/23/2022]
|
43
|
Strano V, Mirabella S. Hierarchical ZnO nanorods/Ni(OH)2 nanoflakes for room-temperature, cheap fabrication of non-enzymatic glucose sensors. RSC Adv 2016. [DOI: 10.1039/c6ra22062b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Optimization of hierarchical nanostructures composed of Ni(OH)2 nanoflakes on ZnO nanorods (NRs) for inexpensive amperometric glucose sensing applications.
Collapse
Affiliation(s)
- V. Strano
- IMM-CNR Matis
- Dipartimento di Fisica e Astronomia
- Università di Catania
- 95123 Catania
- Italy
| | - S. Mirabella
- IMM-CNR Matis
- Dipartimento di Fisica e Astronomia
- Università di Catania
- 95123 Catania
- Italy
| |
Collapse
|
44
|
|
45
|
Saleem M, Yu H, Wang L, Zain-ul-Abdin, Khalid H, Akram M, Abbasi NM, Huang J. Review on synthesis of ferrocene-based redox polymers and derivatives and their application in glucose sensing. Anal Chim Acta 2015; 876:9-25. [DOI: 10.1016/j.aca.2015.01.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
|
46
|
Zhang Y, Liu S, Li Y, Deng D, Si X, Ding Y, He H, Luo L, Wang Z. Electrospun graphene decorated MnCo2O4 composite nanofibers for glucose biosensing. Biosens Bioelectron 2015; 66:308-15. [DOI: 10.1016/j.bios.2014.11.040] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 11/10/2014] [Accepted: 11/20/2014] [Indexed: 11/17/2022]
|
47
|
Shen WJ, Zhuo Y, Chai YQ, Yang ZH, Han J, Yuan R. Enzyme-free electrochemical immunosensor based on host-guest nanonets catalyzing amplification for procalcitonin detection. ACS APPLIED MATERIALS & INTERFACES 2015; 7:4127-4134. [PMID: 25629216 DOI: 10.1021/am508137t] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An enzyme-free electrochemical immunosensor based on the host-guest nanonets of N,N-bis(ferrocenoyl)-diaminoethane/β-cyclodextrins/poly(amidoamine) dendrimer-encapsulated Au nanoparticles (Fc-Fc/β-CD/PAMAM-Au) for procalcitonin (PCT) detection has been developed in this study. The signal probe was constructed as follows: amine-terminated β-CD was adsorbed to PAMAM-Au first, and then the prepared Fc-Fc was recognized by the β-CD to form stable host-guest nanonets. Next, secondary antibodies (Ab2) were attached into the formed netlike nanostructure of Fc-Fc/β-CD/PAMAM-Au by chemical absorption between PAMAM-Au and -NH2 of β-CD. Herein, the PAMAM-Au act not only as nanocarriers for anchoring large amounts of the β-CD and Ab2 but also as nanocatalysts to catalyze the oxidation of ascorbic acid (AA) for signal amplification. Moreover, the Fc-Fc could be stably immobilized by the hydrophobic inner cavity of β-CD as well as improving solubility by the hydrophilic exterior of β-CD. With the unique structure of two ferrocene units, Fc-Fc not only affords more electroactive groups to make the electrochemical response more sensitive but also plays a role of combining dispersive β-CD-functionalized PAMAM-Au to form the netlike nanostructure. Furthermore, Fc-Fc exhibits good catalytic activity for AA oxidation. When the detection solution contained AA, the synergetic catalysis of PAMAM-Au and Fc-Fc to AA oxidation could be obtained, realizing enzyme-free signal amplification. The proposed immunosensor provided a linear range from 1.80 pg/mL to 500 ng/mL for PCT detection and a detection limit of 0.36 pg/mL under optimal experimental conditions. Moreover, the immunosensor has shown potential application in clinical detection of PCT.
Collapse
Affiliation(s)
- Wen-Jun Shen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China
| | | | | | | | | | | |
Collapse
|
48
|
Zhang B, Liu B, Chen G, Tang D. Redox and catalysis ‘all-in-one’ infinite coordination polymer for electrochemical immunosensor of tumor markers. Biosens Bioelectron 2015; 64:6-12. [DOI: 10.1016/j.bios.2014.08.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/13/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
|
49
|
Using poly(3-aminophenylboronic acid) thin film with binding-induced ion flux blocking for amperometric detection of hemoglobin A1c. Biosens Bioelectron 2015; 63:317-324. [DOI: 10.1016/j.bios.2014.07.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 11/22/2022]
|
50
|
Wang Z, Luo X, Wan Q, Wu K, Yang N. Versatile matrix for constructing enzyme-based biosensors. ACS APPLIED MATERIALS & INTERFACES 2014; 6:17296-17305. [PMID: 25208242 DOI: 10.1021/am505469n] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A versatile matrix was fabricated and utilized as a universal interface for the construction of enzyme-based biosensors. This matrix was formed on the gold electrode via combining self-assembled monolayer of 2,3-dimercaptosuccinic acid with gold nanoparticles. Gold nanoparticles were electrochemically deposited. Electrochemistry of three redox enzymes (catalase, glucose oxidase, and horseradish peroxidase) was investigated on such a matrix. The electrocatalytic monitoring of hydrogen peroxide and glucose was conducted on this matrix after being coated with those enzymes. On them the monitoring of hydrogen peroxide and glucose shows rapid response times, wide linear working ranges, low detection limits, and high enzymatic affinities. This matrix is thus a versatile and suitable platform to develop highly sensitive enzyme-based biosensors.
Collapse
Affiliation(s)
- Zhaohao Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology , Wuhan 430073, China
| | | | | | | | | |
Collapse
|