1
|
Sedans KA, Stiegler Jurkevicz C, Silva BCC, Blener Lopes V, Lopes GFM, Schmitt EFP, Portes DB, Fronza M, Endringer DC, Tischer CA, Cabeça LF, Ferreira JMS, Ribeiro-Viana RM. Development of a cationic bacterial cellulose film loaded with anionic liposomes for prolonged release of oxacillin in wound dressing applications. Int J Pharm 2024; 665:124649. [PMID: 39236774 DOI: 10.1016/j.ijpharm.2024.124649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Dressings should protect wounds, promote healing, absorb fluids, and maintain moisture. Bacterial cellulose is a biopolymer that stands out in biomaterials due to its high biocompatibility in several applications. In the area of dressings, it is already marketed as an alternative to traditional dressings. However, it lacks any intrinsic activity; among these, the need for antimicrobial activity in infected wounds stands out. We developed a cationic cellulose film by modifying cellulose with 1-(5-carboxypentyl)pyridin-1-ium bromide, enhancing its wettability (contact angle: 26.6°) and water retention capacity (2714.37 %). This modified film effectively retained oxacillin compared to the unmodified control. Liposomal encapsulation further prolonged oxacillin release up to 11 days. Both oxacillin-loaded films and liposomal formulations demonstrated antimicrobial activity against Staphylococcus aureus. Our findings demonstrate the potential of chemically modified cellulose as a platform for controlled anionic antibiotics and/or their formulations delivery in wound care.
Collapse
Affiliation(s)
- Karina Andressa Sedans
- Programa de Pós-graduação em Ciência e Engenharia de Materiais (PPGCEM), Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil
| | - Carolina Stiegler Jurkevicz
- Programa de Pós-graduação em Ciência e Engenharia de Materiais (PPGCEM), Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil
| | - Bruna Conceição Costa Silva
- Departamento Acadêmico de Química, Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil
| | - Viviany Blener Lopes
- Laboratório de Microbiologia Médica, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, UFSJ-CCO, CEP 35501-296, Divinópolis, MG, Brazil
| | - Gabriela Francine Martins Lopes
- Laboratório de Microbiologia Médica, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, UFSJ-CCO, CEP 35501-296, Divinópolis, MG, Brazil
| | | | - Danielle Braga Portes
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Vila Velha - UVV, CEP 29102-920, Vila Velha, ES, Brazil
| | - Marcio Fronza
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Vila Velha - UVV, CEP 29102-920, Vila Velha, ES, Brazil
| | - Denise Coutinho Endringer
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Vila Velha - UVV, CEP 29102-920, Vila Velha, ES, Brazil
| | - Cesar Augusto Tischer
- Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina, UEL, CEP 86051-980, Londrina, PR, Brazil
| | - Luis Fernando Cabeça
- Programa de Pós-graduação em Ciência e Engenharia de Materiais (PPGCEM), Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil; Departamento Acadêmico de Química, Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil
| | - Jaqueline Maria Siqueira Ferreira
- Laboratório de Microbiologia Médica, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, UFSJ-CCO, CEP 35501-296, Divinópolis, MG, Brazil
| | - Renato Márcio Ribeiro-Viana
- Programa de Pós-graduação em Ciência e Engenharia de Materiais (PPGCEM), Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil; Departamento Acadêmico de Química, Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil.
| |
Collapse
|
2
|
D A G, Adhikari J, Debnath P, Ghosh S, Ghosh P, Thomas S, Ghandilyan E, Gorbatov P, Kuchukyan E, Gasparyan S, Saha P. 3D printing of bacterial cellulose for potential wound healing applications: Current trends and prospects. Int J Biol Macromol 2024; 279:135213. [PMID: 39216564 DOI: 10.1016/j.ijbiomac.2024.135213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Several advances in skin tissue engineering have been made to restore skin damage, facilitating wound healing. Bacterial cellulose (BC), a naturally occurring polymer, has gained attention as a potential material in wound healing due to its unique physical and biological properties. In recent years, with the advent of 3D bio-printing technology, new avenues have opened for fabricating customized wound dressings and scaffolds for tissue engineering purposes. The existing literature in this field mainly focuses on the ways of modifications of bacterial cellulose to make it printable. Still, the applicability of 3D printed scaffolds for wound healing needs to be explored more. This review article focuses on the current research on using 3D-printed BC for skin regeneration, including its production methods and physical and biological properties, making it a better choice than traditional dressings. Furthermore, it also highlights the limitations and future directions for using BC in wound healing and tissue engineering applications. This review provides a comprehensive and up-to-date exploration of the applications of 3D-printed BC in wound healing, drawing insights from pre-existing studies and emphasizing patient compliance, clinical outcomes, and economic viability.
Collapse
Affiliation(s)
- Gouripriya D A
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB-700091, India
| | - Jaideep Adhikari
- School of Advanced Materials, Green Energy and Sensor Systems, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Poonam Debnath
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB-700091, India
| | - Shrayana Ghosh
- Department of Biotechnology, Amity University, Kolkata, India
| | - Pooja Ghosh
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB-700091, India
| | - Sabu Thomas
- School of Energy Materials, School of Nanoscience and Nanotechnology, School of Polymer Science and Technology, School of Chemical Science and IIUCNN, Mahatma Gandhi University, Kottayam 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028 Johannesburg, South Africa; TrEST Research Park, TC-4/2322, GEM Building, Opposite College of Engineering Trivandrum, Kulathoor Rd, Sreekariyam, Trivandrum, Kerala 695016, India
| | - Emmanuel Ghandilyan
- Foldink, 22 Orbeli Brothers Street 0028, Yerevan, Armenia; Institute of Physiology after L. Orbeli National Academy of Sciences of Republic of Armenia, 22 Orbeli Brothers Street, 0028 Yerevan, Armenia
| | - Pavel Gorbatov
- Foldink, 22 Orbeli Brothers Street 0028, Yerevan, Armenia
| | - Elza Kuchukyan
- Foldink, 22 Orbeli Brothers Street 0028, Yerevan, Armenia
| | - Seda Gasparyan
- Foldink, 22 Orbeli Brothers Street 0028, Yerevan, Armenia; Institute of Physiology after L. Orbeli National Academy of Sciences of Republic of Armenia, 22 Orbeli Brothers Street, 0028 Yerevan, Armenia
| | - Prosenjit Saha
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB-700091, India.
| |
Collapse
|
3
|
Shishparenok AN, Furman VV, Dobryakova NV, Zhdanov DD. Protein Immobilization on Bacterial Cellulose for Biomedical Application. Polymers (Basel) 2024; 16:2468. [PMID: 39274101 PMCID: PMC11397966 DOI: 10.3390/polym16172468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
New carriers for protein immobilization are objects of interest in various fields of biomedicine. Immobilization is a technique used to stabilize and provide physical support for biological micro- and macromolecules and whole cells. Special efforts have been made to develop new materials for protein immobilization that are non-toxic to both the body and the environment, inexpensive, readily available, and easy to modify. Currently, biodegradable and non-toxic polymers, including cellulose, are widely used for protein immobilization. Bacterial cellulose (BC) is a natural polymer with excellent biocompatibility, purity, high porosity, high water uptake capacity, non-immunogenicity, and ease of production and modification. BC is composed of glucose units and does not contain lignin or hemicellulose, which is an advantage allowing the avoidance of the chemical purification step before use. Recently, BC-protein composites have been developed as wound dressings, tissue engineering scaffolds, three-dimensional (3D) cell culture systems, drug delivery systems, and enzyme immobilization matrices. Proteins or peptides are often added to polymeric scaffolds to improve their biocompatibility and biological, physical-chemical, and mechanical properties. To broaden BC applications, various ex situ and in situ modifications of native BC are used to improve its properties for a specific application. In vivo studies showed that several BC-protein composites exhibited excellent biocompatibility, demonstrated prolonged treatment time, and increased the survival of animals. Today, there are several patents and commercial BC-based composites for wounds and vascular grafts. Therefore, further research on BC-protein composites has great prospects. This review focuses on the major advances in protein immobilization on BC for biomedical applications.
Collapse
Affiliation(s)
| | - Vitalina V Furman
- The Center for Chemical Engineering, ITMO University, 197101 Saint Petersburg, Russia
| | | | - Dmitry D Zhdanov
- Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia
- Department of Biochemistry, People's Friendship University of Russia Named after Patrice Lumumba (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
4
|
Xie Y, Liu W, Yang Y, Shi M, Li J, Sun Y, Wang Y, Zhang J, Zheng Y. Fabrication of a modified bacterial cellulose with different alkyl chains and its prevention of abdominal adhesion. Int J Biol Macromol 2024; 273:133191. [PMID: 38880455 DOI: 10.1016/j.ijbiomac.2024.133191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Abdominal hernia mesh is a common product which is used for prevention of abdominal adhesion and repairing abdominal wall defect. Currently, designing and preparing a novel bio-mesh material with prevention of adhesion, promoting repair and good biocompatibility simultaneously remain a great bottleneck. In this study, a novel siloxane-modified bacterial cellulose (BC) was designed and fabricated by chemical vapor deposition silylation, then the effects of different alkyl chains length of siloxane on surface properties and cell behaviors were explored. The effect of preventing of abdominal adhesion and repairing abdominal wall defect in rats with the siloxane-modified BC was evaluated. As the grafted alkyl chains become longer, the surface of the siloxane-modified BC can be transformed from super hydrophilic to hydrophobic. In vivo results showed that BC-C16 had good long-term anti-adhesion effect, good tissue adaptability and histocompatibility, which is expected to be used as a new anti-adhesion hernia repair material in clinic.
Collapse
Affiliation(s)
- Yajie Xie
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenbo Liu
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yingying Yang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Miaojie Shi
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Junfei Li
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yi Sun
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yansen Wang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jian Zhang
- Shanghai Changzheng Hospital, 415 Fengyang Street, Shanghai 200003, China.
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
5
|
Shen K, Liu H, Qiu C, Yuan M, Chen Z, Qi H. Scalable Fabrication of Structurally Stable Polymer Film with Excellent UV-Shielding, Fluorescent, and Antibacterial Capabilities. Macromol Rapid Commun 2024; 45:e2400015. [PMID: 38414279 DOI: 10.1002/marc.202400015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/25/2024] [Indexed: 02/29/2024]
Abstract
This research presents a new approach to facilely fabricating a multifunctional film using polyvinyl alcohol (PVA) as the base material. The film is modified chemically to incorporate various desirable properties such as high transparency, UV-shielding, antibacterial activity, and fluorescence. The fabrication process of this film is straightforward and efficient. The modified film showed exceptional UV-blocking capability, effectively blocking 100% of UV radiation. It also exhibits strong antibacterial properties. Additionally, the film emitted bright blue fluorescence, which can be useful in various optical and sensing applications. Despite the chemical modification, the film retained the excellent properties of PVA, including high transparency (90%) at 550 nm and good mechanical strength. Furthermore, it demonstrated remarkable stability even under harsh conditions such as exposure to long-term UV radiation, extreme temperatures (-40 or 120 °C), or immersion in different solvents. Overall, this work showcases a promising strategy to develop versatile, structurally stable, transparent, and flexible polymer films with multiple functionalities. These films have potential applications in various fields that require protection, such as packaging materials, biomedical devices, and optical components.
Collapse
Affiliation(s)
- Kaiyuan Shen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Hongchen Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
- College of Textiles, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Changjing Qiu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Mengzhen Yuan
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhishan Chen
- Qingyuan Huayuan Institute of Science and Technology Collaborative Innovation Co., Ltd., Qingyuan, 511500, China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
6
|
Sreedharan M, Vijayamma R, Liyaskina E, Revin VV, Ullah MW, Shi Z, Yang G, Grohens Y, Kalarikkal N, Ali Khan K, Thomas S. Nanocellulose-Based Hybrid Scaffolds for Skin and Bone Tissue Engineering: A 10-Year Overview. Biomacromolecules 2024; 25:2136-2155. [PMID: 38448083 DOI: 10.1021/acs.biomac.3c00975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Cellulose, the most abundant polymer on Earth, has been widely utilized in its nanoform due to its excellent properties, finding applications across various scientific fields. As the demand for nanocellulose continues to rise and its ease of use becomes apparent, there has been a significant increase in research publications centered on this biomaterial. Nanocellulose, in its different forms, has shown tremendous promise as a tissue engineered scaffold for regeneration and repair. Particularly, nanocellulose-based composites and scaffolds have emerged as highly demanding materials for both soft and hard tissue engineering. Medical practitioners have traditionally relied on collagen and its analogue, gelatin, for treating tissue damage. However, the limited mechanical strength of these biopolymers restricts their direct use in various applications. This issue can be overcome by making hybrids of these biopolymers with nanocellulose. This review presents a comprehensive analysis of the recent and most relevant publications focusing on hybrid composites of collagen and gelatin with a specific emphasis on their combination with nanocellulose. While bone and skin tissue engineering represents two areas where a majority of researchers are concentrating their efforts, this review highlights the use of nanocellulose-based hybrids in these contexts.
Collapse
Affiliation(s)
- Mridula Sreedharan
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Raji Vijayamma
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Elena Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, Saransk 430005, Russia
| | - Viktor V Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, Saransk 430005, Russia
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yves Grohens
- Univ. Bretagne Sud, UMR CNRS 6027, IRDL, F-56321 Lorient, France
| | - Nandakumar Kalarikkal
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| |
Collapse
|
7
|
Brugnoli M, Mazzini I, La China S, De Vero L, Gullo M. A Microbial Co-Culturing System for Producing Cellulose-Hyaluronic Acid Composites. Microorganisms 2023; 11:1504. [PMID: 37375006 DOI: 10.3390/microorganisms11061504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, a co-culture system combining bacterial cellulose (BC) producers and hyaluronic acid (HA) producers was developed for four different combinations. AAB of the genus Komagataeibacter sp. and LAB of the Lactocaseibacillus genus were used to produce BC and HA, respectively. Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction were used to investigate changes in BC-HA composites chemical and morphological structure. Water absorption, uptake, and antibacterial properties were also tested. Outcomes highlighted a higher bacterial cellulose yield and the incorporation of hyaluronic acid into the composite. The presence of hyaluronic acid increased fiber dimension-nearly doubled for some combinations-which led to a decreased crystallinity of the composites. Different results were observed based on the BC producer and HA producer combination. However, water holding capacity (WHC) in all the samples improved with the presence of HA, while water uptake worsened. A thymol-enriched BC-HA composite showed high antibacterial activity against Escherichia coli DSM 30083T and Staphylococcus aureus DSM 20231T. Results could contribute to opening new applications in the cosmetics or pharmaceutical fields.
Collapse
Affiliation(s)
- Marcello Brugnoli
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, 42124 Reggio nell'Emilia, Italy
| | - Ilaria Mazzini
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, 42124 Reggio nell'Emilia, Italy
| | - Salvatore La China
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, 42124 Reggio nell'Emilia, Italy
| | - Luciana De Vero
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, 42124 Reggio nell'Emilia, Italy
| | - Maria Gullo
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, 42124 Reggio nell'Emilia, Italy
- NBFC-National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
8
|
Brugnoli M, La China S, Lasagni F, Romeo FV, Pulvirenti A, Gullo M. Acetic acid bacteria in agro-wastes: from cheese whey and olive mill wastewater to cellulose. Appl Microbiol Biotechnol 2023; 107:3729-3744. [PMID: 37115254 DOI: 10.1007/s00253-023-12539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
In this study, cheese whey and olive mill wastewater were investigated as potential feedstocks for producing bacterial cellulose by using acetic acid bacteria strains. Organic acids and phenolic compounds composition were assayed by high-pressure liquid chromatography. Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction were used to investigate modifications in bacterial cellulose chemical and morphological structure. Cheese whey was the most efficient feedstock in terms of bacterial cellulose yield (0.300 g of bacterial cellulose/gram of carbon source consumed). Bacterial cellulose produced in olive mill wastewater presented a more well-defined network compared to pellicles produced in cheese whey, resulting in a smaller fiber diameter in most cases. The analysis of bacterial cellulose chemical structure highlighted the presence of different chemical bonds likely to be caused by the adsorption of olive mill wastewater and cheese whey components. The crystallinity ranged from 45.72 to 80.82%. The acetic acid bacteria strains used in this study were characterized by 16S rRNA gene sequencing, allowing to assign them to Komagataeibacter xylinus and Komagataeibacter rhaeticus species. This study proves the suitability to perform sustainable bioprocesses for producing bacterial cellulose, combining the valorisation of agro-wastes with microbial conversions carried out by acetic acid bacteria. The high versatility in terms of yield, morphology, and fiber diameters obtained in cheese whey and olive mill wastewater contribute to set up fundamental criteria for developing customized bioprocesses depending on the final use of the bacterial cellulose. KEY POINTS: • Cheese whey and olive mill wastewater can be used for bacterial cellulose production. • Bacterial cellulose structure is dependent on the culture medium. • Komagataeibacter strains support the agro-waste conversion in bacterial cellulose.
Collapse
Affiliation(s)
- Marcello Brugnoli
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Salvatore La China
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Federico Lasagni
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Flora Valeria Romeo
- Research Centre for Olive, Fruit and Citrus Crops (CREA), Acireale, 95024, Italy
| | - Andrea Pulvirenti
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Maria Gullo
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy.
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy.
| |
Collapse
|
9
|
Gilmour KA, Aljannat M, Markwell C, James P, Scott J, Jiang Y, Torun H, Dade-Robertson M, Zhang M. Biofilm inspired fabrication of functional bacterial cellulose through ex-situ and in-situ approaches. Carbohydr Polym 2023; 304:120482. [PMID: 36641190 DOI: 10.1016/j.carbpol.2022.120482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/11/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Bacterial cellulose (BC) has been explored for use in a range of applications including tissue engineering and textiles. BC can be produced from waste streams, but sustainable approaches are needed for functionalisation. To this end, BslA, a B. subtilis biofilm protein was produced recombinantly with and without a cellulose binding module (CBM) and the cell free extract was used to treat BC either ex-situ, through drip coating or in-situ, by incorporating during fermentation. The results showed that ex-situ modified BC increased the hydrophobicity and water contact angle reached 120°. In-situ experiments led to a BC film morphological change and mechanical testing demonstrated that addition of BslA with CBM resulted in a stronger, more elastic material. This study presents a nature inspired approach to functionalise BC using a biofilm hydrophobin, and we demonstrate that recombinant proteins could be effective and sustainable molecules for functionalisation of BC materials.
Collapse
Affiliation(s)
- Katie A Gilmour
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University at Newcastle, NE1 8ST, UK.
| | - Mahab Aljannat
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and Landscape, Newcastle University, NE1 7RU, UK.
| | - Christopher Markwell
- Department of Applied Sciences, Northumbria University at Newcastle, NE1 8ST, UK.
| | - Paul James
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University at Newcastle, NE1 8ST, UK.
| | - Jane Scott
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and Landscape, Newcastle University, NE1 7RU, UK.
| | - Yunhong Jiang
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University at Newcastle, NE1 8ST, UK.
| | - Hamdi Torun
- Department of Mathematics, Physics and Electrical Engineering, Faculty of Environment and Engineering, Northumbria University at Newcastle, NE1 8ST, UK.
| | - Martyn Dade-Robertson
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and Landscape, Newcastle University, NE1 7RU, UK.
| | - Meng Zhang
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University at Newcastle, NE1 8ST, UK.
| |
Collapse
|
10
|
Samyn P, Meftahi A, Geravand SA, Heravi MEM, Najarzadeh H, Sabery MSK, Barhoum A. Opportunities for bacterial nanocellulose in biomedical applications: Review on biosynthesis, modification and challenges. Int J Biol Macromol 2023; 231:123316. [PMID: 36682647 DOI: 10.1016/j.ijbiomac.2023.123316] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
Bacterial nanocellulose (BNC) is a natural polysaccharide produced as extracellular material by bacterial strains and has favorable intrinsic properties for primary use in biomedical applications. In this review, an update on state-of-the art and challenges in BNC production, surface modification and biomedical application is given. Recent insights in biosynthesis allowed for better understanding of governing parameters improving production efficiency. In particular, introduction of different carbon/nitrogen sources from alternative feedstock and industrial upscaling of various production methods is challenging. It is important to have control on the morphology, porosity and forms of BNC depending on biosynthesis conditions, depending on selection of bacterial strains, reactor design, additives and culture conditions. The BNC is intrinsically characterized by high water absorption capacity, good thermal and mechanical stability, biocompatibility and biodegradability to certain extent. However, additional chemical and/or physical surface modifications are required to improve cell compatibility, protein interaction and antimicrobial properties. The novel trends in synthesis include the in-situ culturing of hybrid BNC nanocomposites in combination with organic material, inorganic material or extracellular components. In parallel with toxicity studies, the applications of BNC in wound care, tissue engineering, medical implants, drug delivery systems or carriers for bioactive compounds, and platforms for biosensors are highlighted.
Collapse
Affiliation(s)
- Pieter Samyn
- SIRRIS, Department Innovations in Circular Economy, Leuven, Belgium.
| | - Amin Meftahi
- Department of Polymer and Textile Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran; Nanotechnology Research Center, Islamic Azad University, South Tehran Branch, Tehran, Iran
| | - Sahar Abbasi Geravand
- Department of Technical & Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Hamideh Najarzadeh
- Department of Textile Engineering, Science And Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, 11795 Cairo, Egypt; School of Chemical Sciences, Dublin City University, Dublin 9, D09 Y074 Dublin, Ireland.
| |
Collapse
|
11
|
Gayathri V, Lobo NP, Vikash VL, Kamini NR, Samanta D. Functionalization of Bacterial Cellulose and Related Surfaces Using a Facile Coupling Reaction by Thermoresponsive Catalyst. ACS Biomater Sci Eng 2023; 9:625-641. [PMID: 36632811 DOI: 10.1021/acsbiomaterials.2c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recently, bacterial cellulose and related materials attracted significant attention for applications such as leather-like materials, wound healing materials, etc., due to their abundance in pure form and excellent biocompatibility. Chemical modification of bacterial cellulose further helps to improve specific properties for practical utility and economic viability. However, in most cases, chemical modification of cellulose materials involves harsh experimental conditions such as higher temperatures or organic solvents, which may destroy the 3-dimensional network of bacterial cellulose, thereby altering its characteristic properties. Hence, in this work, we have adopted the Suzuki coupling methodology, which is relatively unexplored for chemically modifying cellulose materials. As the Suzuki coupling reaction is tolerable against air and water, modification can be done under mild conditions so that the covalently modified cellulose materials remain intact without destroying their 3-dimensional form. We performed Suzuki coupling reactions on cellulose surfaces using a recently developed thermoresponsive catalyst consisting of poly(N-isopropylacrylamide) (PNIPAM)-tagged N-heterocyclic carbene (NHC)-based palladium(II) complex. The thermoresponsive nature of the catalyst particularly helped to perform reactions in a water medium under mild conditions considering the biological nature of the substrates, where separation of the catalyst can be easily achieved by tuning temperature. The boronic acid derivatives have been chosen to alter the wettability behavior of bacterial cellulose. Bacterial cellulose (BC) obtained from fermentation on a lab scale using a cellulose-producing bacterium called Gluconacetobacter kombuchae (MTCC 6913) under Hestrin-Schramm (HS) medium, or kombucha-derived bacterial cellulose (KBC) obtained from kombucha available in the market or cotton-cellulose (CC) was chosen for the surface functionalization to find the methodology's diversity. Movie files in the Supporting Information and figures in the manuscript demonstrated the utility of the methodology for fluorescent labeling of bacterial cellulose and related materials. Finally, contact angle analysis of the surfaces showed the hydrophobic natures of some functionalized BC-based materials, which are important for the practical use of biomaterials in wet climatic conditions.
Collapse
Affiliation(s)
- Varnakumar Gayathri
- Polymer Science & Technology division, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Nitin P Lobo
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India.,Centre For Analysis, Testing, Evaluation & Reporting Services (CATERS), Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai600 020, India
| | - Vijan Lal Vikash
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India.,Biochemistry & Biotechnology Department, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai600020, India
| | - Numbi Ramudu Kamini
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India.,Biochemistry & Biotechnology Department, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai600020, India
| | - Debasis Samanta
- Polymer Science & Technology division, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
12
|
Synergistic Wound Healing by Novel Ag@ZIF-8 Nanostructures. Int J Pharm 2022; 629:122339. [DOI: 10.1016/j.ijpharm.2022.122339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/10/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
13
|
Das M, Zandraa O, Mudenur C, Saha N, Sáha P, Mandal B, Katiyar V. Composite Scaffolds Based on Bacterial Cellulose for Wound Dressing Application. ACS APPLIED BIO MATERIALS 2022; 5:3722-3733. [DOI: 10.1021/acsabm.2c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Munmi Das
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Oyunchimeg Zandraa
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tř. T. Bati 5678, 760 01 Zlín, Czech Republic
| | - Chethana Mudenur
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Nabanita Saha
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tř. T. Bati 5678, 760 01 Zlín, Czech Republic
| | - Petr Sáha
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tř. T. Bati 5678, 760 01 Zlín, Czech Republic
| | - Bishnupada Mandal
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Vimal Katiyar
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
14
|
Abdelhamid HN, Mathew AP. Cellulose-Based Nanomaterials Advance Biomedicine: A Review. Int J Mol Sci 2022; 23:5405. [PMID: 35628218 PMCID: PMC9140895 DOI: 10.3390/ijms23105405] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
There are various biomaterials, but none fulfills all requirements. Cellulose biopolymers have advanced biomedicine to satisfy high market demand and circumvent many ecological concerns. This review aims to present an overview of cellulose knowledge and technical biomedical applications such as antibacterial agents, antifouling, wound healing, drug delivery, tissue engineering, and bone regeneration. It includes an extensive bibliography of recent research findings from fundamental and applied investigations. Cellulose-based materials are tailorable to obtain suitable chemical, mechanical, and physical properties required for biomedical applications. The chemical structure of cellulose allows modifications and simple conjugation with several materials, including nanoparticles, without tedious efforts. They render the applications cheap, biocompatible, biodegradable, and easy to shape and process.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden;
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Aji P. Mathew
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden;
| |
Collapse
|
15
|
Xie Y, Qiao K, Yue L, Tang T, Zheng Y, Zhu S, Yang H, Fang Z. A self-crosslinking, double-functional group modified bacterial cellulose gel used for antibacterial and healing of infected wound. Bioact Mater 2022; 17:248-260. [PMID: 35386438 PMCID: PMC8965089 DOI: 10.1016/j.bioactmat.2022.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Cellulose/chitosan composite, as a mature commercial antibacterial dressing, is an important type of wound repair material. However, how to achieve the perfect compound of two components and improve antibacterial activity is a major, lingering issue. In this study, a bifunctional group modified bacterial cellulose (DCBC) was prepared by carboxymethylation and selective oxidation. Further, the chitosan (CS) was compounded in the network of DCBC by self-crosslinking to form dialdehyde carboxymethyl bacterial cellulose/chitosan composites (S-DCBC/CS). The aldehyde group can react with amino of CS by Schiff base reaction. The carboxyl group of DCBC and the amorphous distribution of CS molecular chains increase the antimicrobial properties of composites. The bacteriostatic rate of composites could be higher than 95%. Bacteria can be attracted onto the surface of composites, what we call it “directional adhesion antibacterial effects”. In particular, a kind of large animal wound model, deep Ⅱ degree infected scald of Bama miniature pig, was used to research the antimicrobial and healing properties of materials. The S-DCBC/CS can effectively inhibit bacterial proliferation of wound and kill the bacteria. The wound healing rate of S-DCBC/CS was up to 80% after three weeks. The composites show better antibacterial and promoting concrescence effects than traditional chitosan dressings. A network composites from dialdehyde carboxylmethyl BC with chitosan that has good antibacterial properties. Deep Ⅱ degree infected scald of Bama pig was used to research the antimicrobial and healing properties of S-DCBC/CS. The S-DCBC/CS composites could promote epidermal growth and collagen production.
Collapse
Affiliation(s)
- Yajie Xie
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Kun Qiao
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Lina Yue
- Hebei Key Laboratory of Hazardous Chemicals Safety and Control Technology, School of Chemical and Environmental Engineering, North China Institute of Science and Technology, Langfang, 065201, Hebei, China
| | - Tao Tang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
- Corresponding author.
| | - Shihui Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- Corresponding author.
| | - Huiyi Yang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Ziyuan Fang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
16
|
Mhatre A, Shinde S, Jha AK, Rodriguez A, Wardak Z, Jansen A, Gladden JM, George A, Davis RW, Varman AM. Corynebacterium glutamicum as an Efficient Omnivorous Microbial Host for the Bioconversion of Lignocellulosic Biomass. Front Bioeng Biotechnol 2022; 10:827386. [PMID: 35433642 PMCID: PMC9011048 DOI: 10.3389/fbioe.2022.827386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/03/2022] [Indexed: 01/07/2023] Open
Abstract
Corynebacterium glutamicum has been successfully employed for the industrial production of amino acids and other bioproducts, partially due to its native ability to utilize a wide range of carbon substrates. We demonstrated C. glutamicum as an efficient microbial host for utilizing diverse carbon substrates present in biomass hydrolysates, such as glucose, arabinose, and xylose, in addition to its natural ability to assimilate lignin-derived aromatics. As a case study to demonstrate its bioproduction capabilities, L-lactate was chosen as the primary fermentation end product along with acetate and succinate. C. glutamicum was found to grow well in different aromatics (benzoic acid, cinnamic acid, vanillic acid, and p-coumaric acid) up to a concentration of 40 mM. Besides, 13C-fingerprinting confirmed that carbon from aromatics enter the primary metabolism via TCA cycle confirming the presence of β-ketoadipate pathway in C. glutamicum. 13C-fingerprinting in the presence of both glucose and aromatics also revealed coumarate to be the most preferred aromatic by C. glutamicum contributing 74 and 59% of its carbon for the synthesis of glutamate and aspartate respectively. 13C-fingerprinting also confirmed the activity of ortho-cleavage pathway, anaplerotic pathway, and cataplerotic pathways. Finally, the engineered C. glutamicum strain grew well in biomass hydrolysate containing pentose and hexose sugars and produced L-lactate at a concentration of 47.9 g/L and a yield of 0.639 g/g from sugars with simultaneous utilization of aromatics. Succinate and acetate co-products were produced at concentrations of 8.9 g/L and 3.2 g/L, respectively. Our findings open the door to valorize all the major carbon components of biomass hydrolysate by using C. glutamicum as a microbial host for biomanufacturing.
Collapse
Affiliation(s)
- Apurv Mhatre
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - Somnath Shinde
- Department of Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, United States
| | - Amit Kumar Jha
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States,Department of Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, United States
| | - Alberto Rodriguez
- Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA, United States,Joint BioEnergy Institute, Emeryville, CA, United States
| | - Zohal Wardak
- Department of Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, United States
| | - Abigail Jansen
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - John M. Gladden
- Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA, United States,Joint BioEnergy Institute, Emeryville, CA, United States
| | - Anthe George
- Department of Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, United States,Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA, United States
| | - Ryan W. Davis
- Department of Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, United States,*Correspondence: Ryan W. Davis, ; Arul M. Varman,
| | - Arul M. Varman
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States,*Correspondence: Ryan W. Davis, ; Arul M. Varman,
| |
Collapse
|
17
|
Chen C, Ding W, Zhang H, Zhang L, Huang Y, Fan M, Yang J, Sun D. Bacterial cellulose-based biomaterials: From fabrication to application. Carbohydr Polym 2022; 278:118995. [PMID: 34973797 DOI: 10.1016/j.carbpol.2021.118995] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/17/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023]
Abstract
Driven by its excellent physical and chemical properties, BC (bacterial cellulose) has achieved significant progress in the last decade, rendering with many novel applications. Due to its resemblance to the structure of extracellular matrix, BC-based biomaterials have been widely explored for biomedical applications such as tissue engineering and drug delivery. The recent advances in nanotechnology endow further modifications on BC and generate BC-based composites for different applications. This article presents a review on the research advancement on BC-based biomaterials from fabrication methods to biomedical applications, including wound dressing, artificial skin, vascular tissue engineering, bone tissue regeneration, drug delivery, and other applications. The preparation of these materials and their potential applications are reviewed and summarized. Important factors for the applications of BC in biomedical applications including degradation and pore structure characteristic are discussed in detail. Finally, the challenges in future development and potential advances of these materials are also discussed.
Collapse
Affiliation(s)
- Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China
| | - Weixiao Ding
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China
| | - Heng Zhang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China
| | - Lei Zhang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China
| | - Yang Huang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Mengmeng Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Jiazhi Yang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China.
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China.
| |
Collapse
|
18
|
van Rensburg W, Laubscher WE, Rautenbach M. High throughput method to determine the surface activity of antimicrobial polymeric materials. MethodsX 2022; 8:101593. [PMID: 35004225 PMCID: PMC8720914 DOI: 10.1016/j.mex.2021.101593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Surface colonization by microorganisms, combined with the rise in antibiotic resistance, is the main cause of production failures in various industries. Self-sterilising materials are deemed the best prevention of surface colonization. However, current screening methods for these sterilising materials are laborious and time-consuming. The disk diffusion antimicrobial assay and the Japanese industrial standard method for antimicrobial activity on solid surfaces, JIS Z 2801, were compared to our modified solid surface antimicrobial assay in terms of detecting the activity of antibiotic-containing cellulose disks against four bacterial pathogens. Our novel assay circumvents the long incubation times by utilising the metabolic active dye, resazurin, to shorten the time in which antibacterial results are obtained to less than 4 h. This assay allows for increased screening to identify novel sterilising materials for combatting surface colonisation.Disk diffusion assay could only detect the activity of small compounds that leached from the material over 20–24 h. JIS Z 2801 was also able to detect the surface activity of non-polar compounds, thought to be inactive based on the disk diffusion results. The resazurin solid surface antimicrobial assay could obtain the same results as the JIS Z 2801, within a shorter time and in a high-throughput 96-well plate setup.
Collapse
|
19
|
|
20
|
Raghav N, Sharma MR, Kennedy JF. Nanocellulose: A mini-review on types and use in drug delivery systems. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2020.100031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
21
|
Atta OM, Manan S, Ahmed AAQ, Awad MF, Ul-Islam M, Subhan F, Ullah MW, Yang G. Development and Characterization of Yeast-Incorporated Antimicrobial Cellulose Biofilms for Edible Food Packaging Application. Polymers (Basel) 2021; 13:polym13142310. [PMID: 34301067 PMCID: PMC8309339 DOI: 10.3390/polym13142310] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 01/01/2023] Open
Abstract
The unique properties and advantages of edible films over conventional food packaging have led the way to their extensive exploration in recent years. Moreover, the incorporation of bioactive components during their production has further enhanced the intrinsic features of packaging materials. This study was aimed to develop edible and bioactive food packaging films comprising yeast incorporated into bacterial cellulose (BC) in conjunction with carboxymethyl cellulose (CMC) and glycerol (Gly) to extend the shelf life of packaged food materials. First, yeast biomass and BC hydrogels were produced by Meyerozyma guilliermondii (MT502203.1) and Gluconacetobacter xylinus (ATCC53582), respectively, and then the films were developed ex situ by mixing 30 wt.% CMC, 30 wt.% Gly, 2 wt.% yeast dry biomass, and 2 wt.% BC slurry. FE-SEM observation showed the successful incorporation of Gly and yeast into the fibrous cellulose matrix. FTIR spectroscopy confirmed the development of composite films through chemical interaction between BC, CMC, Gly, and yeast. The developed BC/CMC/Gly/yeast composite films showed high water solubility (42.86%). The yeast-incorporated films showed antimicrobial activities against three microbial strains, including Escherichia coli, Pseudomonas aeruginosa, and Saccharomyces aureus, by producing clear inhibition zones of 16 mm, 10 mm, and 15 mm, respectively, after 24 h. Moreover, the films were non-toxic against NIH-3T3 fibroblast cells. Finally, the coating of oranges and tomatoes with BC/CMC/Gly/yeast composites enhanced the shelf life at different storage temperatures. The BC/CMC/Gly/yeast composite film-coated oranges and tomatoes demonstrated acceptable sensory features such as odor and color, not only at 6 °C but also at room temperature and further elevated temperatures at 30 °C and 40 °C for up to two weeks. The findings of this study indicate that the developed BC/CMC/Gly/yeast composite films could be used as edible packaging material with high nutritional value and distinctive properties related to the film component, which would provide protection to foods and extend their shelf life, and thus could find applications in the food industry.
Collapse
Affiliation(s)
- Omar Mohammad Atta
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (O.M.A.); (S.M.); (A.A.Q.A.)
- Department of Botany and Microbiology, College of Science, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Sehrish Manan
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (O.M.A.); (S.M.); (A.A.Q.A.)
| | - Abeer Ahmed Qaed Ahmed
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (O.M.A.); (S.M.); (A.A.Q.A.)
| | - Mohamed F. Awad
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 211, Oman;
| | - Fazli Subhan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (O.M.A.); (S.M.); (A.A.Q.A.)
- Correspondence: (M.W.U.); (G.Y.)
| | - Guang Yang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (O.M.A.); (S.M.); (A.A.Q.A.)
- Correspondence: (M.W.U.); (G.Y.)
| |
Collapse
|
22
|
Blanco FG, Hernández N, Rivero-Buceta V, Maestro B, Sanz JM, Mato A, Hernández-Arriaga AM, Prieto MA. From Residues to Added-Value Bacterial Biopolymers as Nanomaterials for Biomedical Applications. NANOMATERIALS 2021; 11:nano11061492. [PMID: 34200068 PMCID: PMC8228158 DOI: 10.3390/nano11061492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022]
Abstract
Bacterial biopolymers are naturally occurring materials comprising a wide range of molecules with diverse chemical structures that can be produced from renewable sources following the principles of the circular economy. Over the last decades, they have gained substantial interest in the biomedical field as drug nanocarriers, implantable material coatings, and tissue-regeneration scaffolds or membranes due to their inherent biocompatibility, biodegradability into nonhazardous disintegration products, and their mechanical properties, which are similar to those of human tissues. The present review focuses upon three technologically advanced bacterial biopolymers, namely, bacterial cellulose (BC), polyhydroxyalkanoates (PHA), and γ-polyglutamic acid (PGA), as models of different carbon-backbone structures (polysaccharides, polyesters, and polyamides) produced by bacteria that are suitable for biomedical applications in nanoscale systems. This selection models evidence of the wide versatility of microorganisms to generate biopolymers by diverse metabolic strategies. We highlight the suitability for applied sustainable bioprocesses for the production of BC, PHA, and PGA based on renewable carbon sources and the singularity of each process driven by bacterial machinery. The inherent properties of each polymer can be fine-tuned by means of chemical and biotechnological approaches, such as metabolic engineering and peptide functionalization, to further expand their structural diversity and their applicability as nanomaterials in biomedicine.
Collapse
Affiliation(s)
- Francisco G. Blanco
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Natalia Hernández
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Virginia Rivero-Buceta
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Beatriz Maestro
- Host-Parasite Interplay in Pneumococcal Infection Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain; (B.M.); (J.M.S.)
| | - Jesús M. Sanz
- Host-Parasite Interplay in Pneumococcal Infection Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain; (B.M.); (J.M.S.)
| | - Aránzazu Mato
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Ana M. Hernández-Arriaga
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - M. Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
23
|
Emre Oz Y, Keskin-Erdogan Z, Safa N, Esin Hames Tuna E. A review of functionalised bacterial cellulose for targeted biomedical fields. J Biomater Appl 2021; 36:648-681. [PMID: 33673762 DOI: 10.1177/0885328221998033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bacterial cellulose (BC), which can be produced by microorganisms, is an ideal biomaterial especially for tissue engineering and drug delivery systems thanks to its properties of high purity, biocompatibility, high mechanical strength, high crystallinity, 3 D nanofiber structure, porosity and high-water holding capacity. Therefore, wide ranges of researches have been done on the BC production process and its structural and physical modifications to make it more suitable for certain targeted biomedical applications thoroughly. BC's properties such as mechanical strength, pore diameter and porosity can be tuned in situ or ex situ processes by using various polymer and compounds. Besides, different organic or inorganic compounds that support cell attachment, proliferation and differentiation or provide functions such as antimicrobial effectiveness can be gained to its structure for targeted application. These processes not only increase the usage options of BC but also provide success for mimicking the natural tissue microenvironment, especially in tissue engineering applications. In this review article, the studies on optimisation of BC production in the last decade and the BC modification and functionalisation studies conducted for the three main perspectives as tissue engineering, drug delivery and wound dressing with diverse approaches are summarized.
Collapse
Affiliation(s)
- Yunus Emre Oz
- Department of Bioengineering, Graduate School of Natural and Applied Science, Ege University, Izmir, Turkey
| | - Zalike Keskin-Erdogan
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London, UK
| | - Neriman Safa
- Department of Bioengineering, Graduate School of Natural and Applied Science, Ege University, Izmir, Turkey
| | - E Esin Hames Tuna
- Department of Bioengineering, Graduate School of Natural and Applied Science, Ege University, Izmir, Turkey.,Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| |
Collapse
|
24
|
Thomas P, Duolikun T, Rumjit NP, Moosavi S, Lai CW, Bin Johan MR, Fen LB. Comprehensive review on nanocellulose: Recent developments, challenges and future prospects. J Mech Behav Biomed Mater 2020; 110:103884. [DOI: 10.1016/j.jmbbm.2020.103884] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/23/2020] [Accepted: 05/25/2020] [Indexed: 01/26/2023]
|
25
|
Kolesovs S, Semjonovs P. Production of bacterial cellulose from whey-current state and prospects. Appl Microbiol Biotechnol 2020; 104:7723-7730. [PMID: 32761463 DOI: 10.1007/s00253-020-10803-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
Bacterial cellulose (BC) is a biopolymer with a wide range of potential applications starting from the food industry and biomedicine to electronics and cosmetics. Despite that, BC industrial production to date still is associated with certain difficulties. One of them is the high cost of growth media, which can reach up to 30% of production costs. To decrease production costs, use of industrial and agricultural by-products, including whey, as alternative growth media has been reported. Whey, as the main high-volume by-product of dairy industry, which is known for its low valorisation opportunities and negative environmental impact, can nevertheless be considered as an alternative growth medium for BC production. To date, several studies aimed at evaluating BC production on whey and lactose substrates have been reported, but they are still insufficient. Reviews of them showed that, in general, BC production on untreated whey- and lactose-containing media was lower than that on the standard medium. However, some wild and recombinant strains have been reported to produce BC on whey as good as the standard medium. Enzymatic and acidic pre-treatment of whey significantly enhanced BC yield. Changes in the microstructure of BC obtained from whey were also recognised, which should be considered regarding the impact on physical properties of the desired BC product. This mini-review indicates that currently whey can be recognised as quite a problematic alternative growth substrate for industrial BC production; however, further extensive studies may improve the prospects in both the search for a cheap alternative growth substrate for industrial BC production and valorisation of whey. KEY POINTS: • Whey is a by-product in which valorisation is still challenging. • Whey can be used for bacterial cellulose (BC) production. • BC yield and properties vary upon cultivation conditions and producer strains.
Collapse
Affiliation(s)
- Sergejs Kolesovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Ojara Vaciesa street 4, Riga, LV-1004, Latvia
| | - Pavels Semjonovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Ojara Vaciesa street 4, Riga, LV-1004, Latvia.
| |
Collapse
|
26
|
Rong L, Yang D, Wang B, Xiao D, Lu M, Mao Z, Xu H, Gu Y, Feng X, Sui X. Durable and Effective Antibacterial Cotton Fabric Collaborated with Polypropylene Tissue Mesh for Abdominal Wall Defect Repair. ACS Biomater Sci Eng 2020; 6:3868-3877. [PMID: 33463345 DOI: 10.1021/acsbiomaterials.0c00626] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A feasible, efficient antibacterial and anti-infective mesh for clinical abdominal wall defect repair is significant, but challenging due to the complexity of the postoperative wound environment. Herein, a simple strategy was provided to construct woven cotton fabric modified with gentamicin (Gem) via the enamine bonds. The obtained cotton fabric possessed favorable antibacterial properties against E. coli and S. aureus with the bactericidal rate of over 99.99% and could be combined with a commercial polypropylene (PP) mesh to serve as a two-layer composite mesh for abdominal wall defect repair. The antibacterial cotton layer was systematically characterized by FTIR, XPS, SEM, EDS, and mechanical measurements. The C2C12 cells and human fibroblasts were employed to assess the cytocompatibility of the composite mesh in vitro. Furthermore, the rat abdominal wall defect model was used to evaluate the efficacy of antibacterial and anti-infection properties. It was demonstrated that the two-layer composite mesh possessed favorable biocompatibility and satisfactory anti-infection properties involved in abdominal wall defect repair. Therefore, this synergetic two-layer composite mesh would out-perform surgical PP meshes in preventing infectious complications.
Collapse
Affiliation(s)
- Liduo Rong
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Dongchao Yang
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
| | - Bijia Wang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Dongdong Xiao
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, People's Republic of China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
| | - Mujun Lu
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, People's Republic of China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Hong Xu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yan Gu
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
| | - Xueling Feng
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| |
Collapse
|
27
|
Bacterial Cellulose as a Versatile Platform for Research and Development of Biomedical Materials. Processes (Basel) 2020. [DOI: 10.3390/pr8050624] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The unique pool of features found in intracellular and extracellular bacterial biopolymers attracts a lot of research, with bacterial cellulose (BC) being one of the most versatile and common. BC is an exopolysaccharide consisting solely of cellulose, and the variation in the production process can vary its shape or even its composition when compounding is applied in situ. Together with ex situ modification pathways, including specialised polymers, particles or exclusively functional groups, BC provides a robust platform that yields complex multifunctional compounds that go far beyond ultra-high purity, intrinsic hydrophilicity, mechanical strength and biocompatibility to introduce bioactive, (pH, thermal, electro) responsive, conductive and ‘smart’ properties. This review summarises the research outcomes in BC-medical applications, focusing mainly on data from the past decade (i.e., 2010–2020), with special emphasis on BC nanocomposites as materials and devices applicable in medicine. The high purity and unique structural/mechanical features, in addition to its capacity to closely adhere to irregular skin surfaces, skin tolerance, and demonstrated efficacy in wound healing, all stand as valuable attributes advantageous in topical drug delivery. Numerous studies prove BC compatibility with various human cells, with modifications even improving cell affinity and viability. Even BC represents a physical barrier that can reduce the penetration of bacteria into the tissue, but in its native form does not exhibit antimicrobial properties, therefore carious modifications have been made or specific compounds added to confer antimicrobial or anti-inflammatory properties. Progress in the use of BC-compounds as wound dressings, vascular grafts, and scaffolds for the treatment of cartilage, bone and osteochondral defects, the role as a basement membrane in blood-brain barrier models and many more are discussed to particular extent, emphasising the need for BC compounding to meet specific requirements.
Collapse
|
28
|
Qu G, Cui H, Zhu Y, Yang L, Li S. Substantial Improvement of the Dielectric Strength of Cellulose-Liquid Composites: Effects of Traps at the Nanoscale Interface. J Phys Chem Lett 2020; 11:1881-1889. [PMID: 32058721 DOI: 10.1021/acs.jpclett.0c00235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The dielectric strength of cellulose-liquid composites is always about several times higher than that of the cellulose paper and insulating liquids. However, this experimental phenomenon has not yet been demonstrated theoretically. Herein, the spectra characterization, molecular simulation, and wave function analysis method provide a new insight that the role of nanoscale interfacial adsorption of cellulose-liquid is exclusive for composites affecting the charge separation and producing the deep-level traps to seriously hinder electromigration under an electric field, which is responsible for the difference in dielectric strength. Meanwhile, the π conjugation and σ-π hyperconjugation effects enhance the electrical stability of aromatic hydrocarbon insulating liquids. In conclusion, interfacial trap theory can be used to explain the correlation of dielectric strength between cellulose-liquid composites and cellulose paper or dielectric liquids. It can be expected that materials with high dielectric strength can be manufactured according to the fundamental study of interfacial trap theory.
Collapse
Affiliation(s)
- Guanghao Qu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huize Cui
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yuanwei Zhu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Liuqing Yang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shengtao Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
29
|
The Nanofication and Functionalization of Bacterial Cellulose and Its Applications. NANOMATERIALS 2020; 10:nano10030406. [PMID: 32106515 PMCID: PMC7152840 DOI: 10.3390/nano10030406] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 01/24/2023]
Abstract
Since economic and environmental issues have become critical in the last several years, the amount of sustainable bio-based production has increased. In this article, microbial polysaccharides, including bacterial cellulose (BC), are analyzed as promising resources with the potential for applications in biofields and non-biofields. Many scientists have established various methods of BC production, nanofication, and functionalization. In particular, this review will address the essential advances in recent years focusing on nanofication methods and nanoficated BC applications as well as functionalization methods and functionalized BC applications.
Collapse
|
30
|
Bacterial cellulose sponges obtained with green cross-linkers for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110740. [PMID: 32204048 DOI: 10.1016/j.msec.2020.110740] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/20/2019] [Accepted: 02/09/2020] [Indexed: 01/31/2023]
Abstract
Three-dimensional (3D) porous structures with controlled pore size and interconnected pores, good mechanical properties and biocompatibility are of great interest for tissue engineering. In this work we propose a new strategy to obtain highly porous 3D structures with improved properties using bacterial cellulose (BC) and eco-friendly additives and processes. Glucose, vanillin and citric acid were used as non-toxic and cheap cross-linkers and γ-aminopropyltriethoxysilane was used to partially replace the surface OH groups of cellulose with amino groups. The efficiency of grafting and cross-linking reactions was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The morphological investigation of BC sponges revealed a multi-hierarchical organization after functionalization and cross-linking. Micro-computed tomography analysis showed 80-90% open porosity in modified BC sponges. The thermal and mechanical properties of the sponges were influenced by the cross-linker type and concentration. The strength-to-weight ratio of BC sponges cross-linked with glucose and citric acid was 150% and 120% higher compared to that of unmodified BC sponge. In vitro assays revealed that the modified BC sponges are non-cytotoxic and do not trigger an inflammatory response in macrophages. This study provides a simple and green method to obtain highly porous cellulose sponges with hierarchical design, biocompatibility and good mechanical properties.
Collapse
|
31
|
Blanco Parte FG, Santoso SP, Chou CC, Verma V, Wang HT, Ismadji S, Cheng KC. Current progress on the production, modification, and applications of bacterial cellulose. Crit Rev Biotechnol 2020; 40:397-414. [PMID: 31937141 DOI: 10.1080/07388551.2020.1713721] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adoption of biomass for the development of biobased products has become a routine agenda in evolutionary metabolic engineering. Cellulose produced by bacteria is a "rising star" for this sustainable development. Unlike plant cellulose, bacterial cellulose (BC) shows several unique properties like a high degree of crystallinity, high purity, high water retention, high mechanical strength, and enhanced biocompatibility. Favored with those extraordinary properties, BC could serve as ideal biomass for the development of various industrial products. However, a low yield and the requirement for large growth media have been a persistent challenge in mass production of BC. A significant number of techniques has been developed in achieving efficient BC production. This includes the modification of bioreactors, fermentation parameters, and growth media. In this article, we summarize progress in metabolic engineering in order to solve BC growth limitation. This article emphasizes current engineered BC production by using various bioreactors, as well as highlighting the structure of BC fermented by different types of engineered-bioreactors. The comprehensive overview of the future applications of BC, aims to provide readers with insight into new economic opportunities of BC and their modifiable properties for various industrial applications. Modifications in chemical composition, structure, and genetic regulation, which preceded the advancement of BC applications, were also emphasized.
Collapse
Affiliation(s)
- Francisco German Blanco Parte
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia.,Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Chih-Chan Chou
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Vivek Verma
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India.,Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Hsueh-Ting Wang
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Suryadi Ismadji
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia.,Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
32
|
Pang M, Huang Y, Meng F, Zhuang Y, Liu H, Du M, Ma Q, Wang Q, Chen Z, Chen L, Cai T, Cai Y. Application of bacterial cellulose in skin and bone tissue engineering. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109365] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
33
|
Kumar M, Tanoj N, Saran S. A Modified, Efficient and Sensitive pH Indicator Dye Method for the Screening of Acid-Producing Acetobacter Strains Having Potential Application in Bio-Cellulose Production. Appl Biochem Biotechnol 2019; 191:631-636. [PMID: 31845193 DOI: 10.1007/s12010-019-03211-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
It is imperative that promising bacterial cellulose-producing bacteria mainly belongs to genera Acetobacter (acid-producing bacteria). In order to screen cellulose-producing Acetobacter, the isolated cultures from vinegar/rotten fruits were inoculated in Hestrin-Schramm (HS) medium containing ethanol and CaCO3. After the desired incubation, the positive cultures form a zone, which is observed around the bacterial growth, resulted from the solubilization of CaCO3 by acetic acid produced from the oxidation of ethanol during fermentation. However, in this method, the clarity of the solubilized zone is not very sharp and distinct. In the present, investigation, an improved method for screening, of the microorganisms producing acetic acid has been developed. In this method, methyl red (MR) is incorporated as a pH indicator in HS medium containing ethanol and CaCO3. Plates containing MR at alkaline pH are yellow and turn dark red at acidic pH. Thus, a distinctive, clear zone is formed around bacterial colonies producing acetic acid and is easy to differentiate between acid producers and non-producers. The present method is more rapid, accurate, and sensitive and can be successfully be used for the detection of acetic acid-producing bacteria particularly for the screening of potent cellulose producer Acetobacter sp.
Collapse
Affiliation(s)
- Manoj Kumar
- Fermentation Technology Group, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Nipunta Tanoj
- Fermentation Technology Group, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Saurabh Saran
- Fermentation Technology Group, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India.
| |
Collapse
|
34
|
Quero F, Quintro A, Orellana N, Opazo G, Mautner A, Jaque N, Valdebenito F, Flores M, Acevedo C. Production of Biocompatible Protein Functionalized Cellulose Membranes by a Top-Down Approach. ACS Biomater Sci Eng 2019; 5:5968-5978. [PMID: 33405719 DOI: 10.1021/acsbiomaterials.9b01015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Protein functionalized cellulose fibrils were isolated from the tunic of Pyura chilensis and subsequently used to produce protein functionalized cellulose membranes. Bleached cellulose membranes were also obtained and used as reference material. FTIR and Raman spectroscopy demonstrated that the membranes are mostly constituted of cellulose along with the presence of residual proteins and pigments. Protein functionalized cellulose membranes were found to possess ∼3.1% of protein at their surface as measured by X-ray photoelectron spectroscopy. Powder X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis were used to identify and semiquantify the amount of residual sand grains present within the structure of the membranes. The presence of residual proteins was found not to significantly affect the tensile mechanical properties of the membranes. Streaming ζ-potential was used to assess surface charges of the membranes. Below pH 4, nonbleached cellulose membranes possessed highly negative surfaces charges and also significantly less negative surface charges at physiological pH when compared to bleached cellulose membranes. No significant difference was found with respect to growth kinetics of myoblasts at the surface of the membranes for cell culturing times of 48 and 72 h. After 48 h of culture, protein functionalized cellulose-based membranes that possess ∼3.1% of proteins at their surface (H1) were, however, found to promote higher cell density, cell spreading, and more orientated shape cell morphology when compared to the other cellulose-based membranes (H3 and B) evaluated in the present study.
Collapse
Affiliation(s)
- Franck Quero
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 851, Santiago 8370456, Chile.,Millennium Nucleus on Smart Soft Mechanical Metamaterials, Avenida Beauchef 851, Santiago 8370456, Chile
| | - Abraham Quintro
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 851, Santiago 8370456, Chile
| | - Nicole Orellana
- Centro de Biotecnología "Dr. Daniel Alkalay Lowitt", Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
| | - Genesis Opazo
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 851, Santiago 8370456, Chile
| | - Andreas Mautner
- Polymer and Composite Engineering (PaCE) Group, Institute of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A-1090 Vienna, Austria
| | - Nestor Jaque
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 851, Santiago 8370456, Chile
| | - Fabiola Valdebenito
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 851, Santiago 8370456, Chile
| | - Marcos Flores
- Laboratorio de Superficies y Nanomateriales, Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 850, Santiago 8370448, Chile
| | - Cristian Acevedo
- Centro de Biotecnología "Dr. Daniel Alkalay Lowitt", Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile.,Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
| |
Collapse
|
35
|
Gorgieva S, Trček J. Bacterial Cellulose: Production, Modification and Perspectives in Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1352. [PMID: 31547134 PMCID: PMC6835293 DOI: 10.3390/nano9101352] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/08/2019] [Accepted: 09/16/2019] [Indexed: 01/09/2023]
Abstract
Bacterial cellulose (BC) is ultrafine, nanofibrillar material with an exclusive combination of properties such as high crystallinity (84%-89%) and polymerization degree, high surface area (high aspect ratio of fibers with diameter 20-100 nm), high flexibility and tensile strength (Young modulus of 15-18 GPa), high water-holding capacity (over 100 times of its own weight), etc. Due to high purity, i.e., absence of lignin and hemicellulose, BC is considered as a non-cytotoxic, non-genotoxic and highly biocompatible material, attracting interest in diverse areas with hallmarks in medicine. The presented review summarizes the microbial aspects of BC production (bacterial strains, carbon sources and media) and versatile in situ and ex situ methods applied in BC modification, especially towards bionic design for applications in regenerative medicine, from wound healing and artificial skin, blood vessels, coverings in nerve surgery, dura mater prosthesis, arterial stent coating, cartilage and bone repair implants, etc. The paper concludes with challenges and perspectives in light of further translation in highly valuable medical products.
Collapse
Affiliation(s)
- Selestina Gorgieva
- Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, University of Maribor, 2000 Maribor, Slovenia.
- Faculty of Electrical Engineering and Computer Science, Institute of Automation, University of Maribor, 2000 Maribor, Slovenia.
| | - Janja Trček
- Faculty of Natural Sciences and Mathematics, Department of Biology, University of Maribor, 2000 Maribor, Slovenia.
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia.
| |
Collapse
|
36
|
Alavi M. Modifications of microcrystalline cellulose (MCC), nanofibrillated cellulose (NFC), and nanocrystalline cellulose (NCC) for antimicrobial and wound healing applications. E-POLYMERS 2019. [DOI: 10.1515/epoly-2019-0013] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractRecently, great attention has been paid to nano-composites of cellulose, due to their unique structure as a most abundant natural polymer with having exceptional properties such as renewable, biodegradable and high specific tensile strength, aspect ratio, and Young’s modulus. Prominent cellulose is naturally present in plant lignocellulosic biomass as a biocomposite made of cellulose, hemi-celluloses, lignin, etc. In addition, it can be extracted from other natural sources including bacteria, algae, and sea animals. Microcrystalline cellulose (MCC), nanocrystalline cellulose (NCC), and nanofibrillated cellulose (NFC) is an emerging renewable nanomaterial that has various applications, such as food, paper production, industrial and pharmaceutical biomaterials. The surface modification on NCC can improves its disperse ability in different solvents and its utilization in protein immobilization, tissue engineering, drug delivery, and inorganic reaction template. Therefore, based on recent studies, this review illustrated considerable progresses with addressing medicinal properties involving antimicrobial and biocompatibility of nano-cellulose (NC) in the case of wound healing.
Collapse
Affiliation(s)
- Mehran Alavi
- Department of Nanobiotechnology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
37
|
Wu Y, Li Q, Zhang X, Li Y, Li B, Liu S. Cellulose-based peptidopolysaccharides as cationic antimicrobial package films. Int J Biol Macromol 2019; 128:673-680. [DOI: 10.1016/j.ijbiomac.2019.01.172] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 01/29/2023]
|
38
|
Poli E, Magnaudeix A, Damia C, Lalloué F, Chaleix V, Champion E, Sol V. Advanced protocol to functionalize CaP bioceramic surface with peptide sequences and effect on murine pre-osteoblast cells proliferation. Bioorg Med Chem Lett 2019; 29:1069-1073. [PMID: 30852082 DOI: 10.1016/j.bmcl.2019.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 11/25/2022]
Abstract
To bring osteoinductive properties to calcium phosphate (CaP) bioceramics, a silicon-substituted hydroxyapatite was functionalized by integrin-adhesive cyclic-pentapeptides (c-(DfKRG)). A new two-step protocol was set up to immobilize peptides at low and controlled density on the ceramic surface and limit contamination by adsorbed molecules. To this aim, a spacer bearing c-(DfKRG)-S-PEG6-NHS molecule was synthesized and bonded to an organosilane previously covalently bonded to the ceramic surface. The functionalized ceramic was tested in vitro for MC3T3-E1 murine pre-osteoblasts. CaP ceramic surface retained good biological properties thanks to low density of bonded molecules preserving part of the bioactive CaP surface free of bioorganic molecules. The final SiHA-T-PEG6-S-c-(DfKRG) was shown to increase cell density and to improve proliferation. Furthermore, the use of a strong and stable covalent bond between inorganic and organic parts prevented early burst release of the peptide and increased the persistence of its bioactivity over time. So, this CaP ceramic associating c-(DfKRG) by covalent grafting could be considered as promising new biomaterials for bone tissue engineering.
Collapse
Affiliation(s)
- Evelyne Poli
- Université de Limoges, CNRS, IRCER UMR 7315, F-87000 Limoges, France
| | | | - Chantal Damia
- Université de Limoges, CNRS, IRCER UMR 7315, F-87000 Limoges, France.
| | - Fabrice Lalloué
- Université de Limoges, CAPTuR, EA3842, F-87000 Limoges, France
| | - Vincent Chaleix
- Université de Limoges, Laboratoire PEIRENE, EA 7500, F-87000 Limoges, France
| | - Eric Champion
- Université de Limoges, CNRS, IRCER UMR 7315, F-87000 Limoges, France
| | - Vincent Sol
- Université de Limoges, Laboratoire PEIRENE, EA 7500, F-87000 Limoges, France
| |
Collapse
|
39
|
Durable antibacterial and hydrophobic cotton fabrics utilizing enamine bonds. Carbohydr Polym 2019; 211:173-180. [DOI: 10.1016/j.carbpol.2019.01.103] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 11/21/2022]
|
40
|
Stability and repeatability improvement of horseradish peroxidase by immobilization on amino-functionalized bacterial cellulose. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.12.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Sofi HS, Ashraf R, Khan AH, Beigh MA, Majeed S, Sheikh FA. Reconstructing nanofibers from natural polymers using surface functionalization approaches for applications in tissue engineering, drug delivery and biosensing devices. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:1102-1124. [DOI: 10.1016/j.msec.2018.10.069] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/19/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
|
42
|
Nanocellulose Composite Biomaterials in Industry and Medicine. BIOLOGICALLY-INSPIRED SYSTEMS 2019. [DOI: 10.1007/978-3-030-12919-4_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
C.R. R, Sundaran SP, T. S, Athiyanathil S. “Nano in micro” architecture composite membranes for controlled drug delivery. APPLIED CLAY SCIENCE 2018; 166:262-275. [DOI: 10.1016/j.clay.2018.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
44
|
Naseri-Nosar M, Ziora ZM. Wound dressings from naturally-occurring polymers: A review on homopolysaccharide-based composites. Carbohydr Polym 2018; 189:379-398. [DOI: 10.1016/j.carbpol.2018.02.003] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/21/2018] [Accepted: 02/01/2018] [Indexed: 12/18/2022]
|
45
|
Abstract
Although bacterial nanocellulose (BNC), a natural nanostructured biopolymer network, offers unique material characteristics, the number of drug-loaded BNC-based carriers in clinical trials or on the market is still low. This report provides an overview of aspects still limiting the broad application of BNC as drug-delivery system and the challenges for its future applications. Continuous large-scale production, storability, the loading and controlled release of critical drugs, for example, with high molar mass or highly lipophilic character as well as the formulation of long-term release systems will be highlighted. Recent achievements toward promoting the application of BNC as drug-delivery system and overcoming these obstacles will be discussed. [Formula: see text].
Collapse
|
46
|
Li S, Dong S, Xu W, Tu S, Yan L, Zhao C, Ding J, Chen X. Antibacterial Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700527. [PMID: 29876202 PMCID: PMC5980143 DOI: 10.1002/advs.201700527] [Citation(s) in RCA: 591] [Impact Index Per Article: 84.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/29/2017] [Indexed: 05/03/2023]
Abstract
Antibacterial materials are recognized as important biomaterials due to their effective inhibition of bacterial infections. Hydrogels are 3D polymer networks crosslinked by either physical interactions or covalent bonds. Currently, hydrogels with an antibacterial function are a main focus in biomedical research. Many advanced antibacterial hydrogels are developed, each possessing unique qualities, namely high water swellability, high oxygen permeability, improved biocompatibility, ease of loading and releasing drugs, and structural diversity. Here, an overview of the structures, performances, mechanisms of action, loading and release behaviors, and applications of various antibacterial hydrogel formulations is provided. Furthermore, the prospects in biomedical research and clinical applications are predicted.
Collapse
Affiliation(s)
- Shuqiang Li
- Department of Bone and Joint SurgeryThe First Hospital of Jilin UniversityChangchun130022P. R. China
| | - Shujun Dong
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- VIP Integrated DepartmentSchool and Hospital of Stomatology Jilin UniversityChangchun130021P. R. China
| | - Weiguo Xu
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Shicheng Tu
- Department of Bone and Joint SurgeryThe First Hospital of Jilin UniversityChangchun130022P. R. China
| | - Lesan Yan
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Changwen Zhao
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| |
Collapse
|
47
|
Yang K, Han Q, Chen B, Zheng Y, Zhang K, Li Q, Wang J. Antimicrobial hydrogels: promising materials for medical application. Int J Nanomedicine 2018; 13:2217-2263. [PMID: 29695904 PMCID: PMC5905846 DOI: 10.2147/ijn.s154748] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The rapid emergence of antibiotic resistance in pathogenic microbes is becoming an imminent global public health problem. Local application of antibiotics might be a solution. In local application, materials need to act as the drug delivery system. The drug delivery system should be biodegradable and prolonged antibacterial effect should be provided to satisfy clinical demand. Hydrogel is a promising material for local antibacterial application. Hydrogel refers to a kind of biomaterial synthesized by a water-soluble natural polymer or a synthesized polymer, which turns into gel according to the change in different signals such as temperature, ionic strength, pH, ultraviolet exposure etc. Because of its high hydrophilicity, unique three-dimensional network, fine biocompatibility and cell adhesion, hydrogel is one of the suitable biomaterials for drug delivery in antimicrobial areas. In this review, studies from the past 5 years were reviewed, and several types of antimicrobial hydrogels according to different ingredients, different preparations, different antimicrobial mechanisms, different antimicrobial agents they contained and different applications, were summarized. The hydrogels loaded with metal nanoparticles as a potential method to solve antibiotic resistance were highlighted. Finally, future prospects of development and application of antimicrobial hydrogels are suggested.
Collapse
Affiliation(s)
- Kerong Yang
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Qing Han
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Bingpeng Chen
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Yuhao Zheng
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Kesong Zhang
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Qiang Li
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
48
|
Li Y, Cai P, Tong ZF, Xiao H, Pan Y. Preparation of Copolymer-Based Nanoparticles with Broad-Spectrum Antimicrobial Activity. Polymers (Basel) 2017; 9:E717. [PMID: 30966016 PMCID: PMC6418692 DOI: 10.3390/polym9120717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/01/2017] [Accepted: 12/10/2017] [Indexed: 12/16/2022] Open
Abstract
Polyacrylate and guanidine-based nanoparticles which involve acrylate monomers and glycidyl methacrylate modified oligo-guanidine were prepared by a seeded semi-continuous emulsion polymerization. The results from transmission electron microscope and dynamic light scattering measurements showed that the nanoparticles were spherical in shape and the particle size was in the range of 80⁻130 nm. Antimicrobial experiments were performed with two types of bacteria, Gram-negative (Escherichia coli, ATCC 8739) and Gram-positive (Staphylococcus aureus, ATCC 6538). The as-synthesized cationic nanoparticles exhibited effective antimicrobial activities on Escherichia coli and Staphylococcus aureus with the minimal inhibitory concentrations at 8 μg/mL and 4 μg/mL, respectively. The mechanism of action of the resulted nanoparticles against these bacteria was revealed by the scanning electron microscopic observation. In addition, the films consisting of latex nanoparticles are non-leaching antimicrobial materials with excellent antimicrobial activity, which indicates the polymers could preserve their antimicrobial activity for long-term effectiveness.
Collapse
Affiliation(s)
- Yang Li
- Guangxi Key Lab of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Pingxiong Cai
- College of Petroleum and Chemical Engineering, Qinzhou University, Qinzhou 535006, China.
| | - Zhang-Fa Tong
- Guangxi Key Lab of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| | - Yuanfeng Pan
- Guangxi Key Lab of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
49
|
Li J, Tan L, Liu X, Cui Z, Yang X, Yeung KWK, Chu PK, Wu S. Balancing Bacteria-Osteoblast Competition through Selective Physical Puncture and Biofunctionalization of ZnO/Polydopamine/Arginine-Glycine-Aspartic Acid-Cysteine Nanorods. ACS NANO 2017; 11:11250-11263. [PMID: 29049874 DOI: 10.1021/acsnano.7b05620] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Bacterial infection and lack of bone tissue integration are two major concerns of orthopedic implants. In addition, osteoinductivity often decreases and toxicity may arise when antibacterial agents are introduced to increase the antibacterial ability. Here hybrid ZnO/polydopamine (PDA)/arginine-glycine-aspartic acid-cysteine (RGDC) nanorod (NR) arrays are designed and prepared on titanium (Ti) implants to not only enhance the osteoinductivity but also effectively kill bacteria simultaneously, which are ascribed to the selective physical puncture and the biofunctionalization of ZnO/PDA/RGDC nanorods during the competition between bacteria and osteoblasts. That is, owing to the much larger size of osteoblasts than bacteria, the hybrid NRs can puncture bacteria but not damage osteoblasts. Meanwhile, the cytocompatibility can be enhanced through the suppression of both reactive oxygen species and higher Zn2+ concentration by the covering of PDA and RGDC. The in vitro results confirm the selective puncture of the bacterial membrane and the better osteoinductivity. In vivo tests also show much higher antibacterial efficacy of the hybrid NRs with far less amounts of lobulated neutrophils and adherent bacteria in the surrounding tissues. In addition, the hybrid NRs also accelerate formation of new bone tissues (20.1% higher than pure Ti) and osteointegration between implants and newly formed tissues (32.0% higher than pure Ti) even in the presence of injected bacteria. This work provides a surface strategy for designing implants with desirable ability of osseointegration and infection prevention simultaneously, which will exhibit tremendous clinical potential in orthopedic and dental applications.
Collapse
Affiliation(s)
- Jun Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University , Wuhan 430062, China
| | - Lei Tan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University , Wuhan 430062, China
| | - Xiangmei Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University , Wuhan 430062, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, Tianjin University , Tianjin 300072, China
| | - Xianjin Yang
- School of Materials Science & Engineering, Tianjin University , Tianjin 300072, China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong , Pokfulam, Hong Kong, China
| | - Paul K Chu
- Department of Physics and Department of Materials Science and Engineering, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Shuilin Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University , Wuhan 430062, China
- School of Materials Science & Engineering, Tianjin University , Tianjin 300072, China
| |
Collapse
|
50
|
Wang X, Yan S, Song L, Shi H, Yang H, Luan S, Huang Y, Yin J, Khan AF, Zhao J. Temperature-Responsive Hierarchical Polymer Brushes Switching from Bactericidal to Cell Repellency. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40930-40939. [PMID: 29111641 DOI: 10.1021/acsami.7b09968] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Unlike conventional poly(N-isopropylacrylamide) (PNIPAM)-based surfaces switching from bactericidal activity to bacterial repellency upon decreasing temperature, we developed a hierarchical polymer architecture, which could maintain bactericidal activities at room temperature while presenting bacterial repellency at physiological temperature. In this architecture, a thermoresponsive bactericidal upper layer consisting of PNIPAM-based copolymer and vancomycin (Van) moieties was built on an antifouling poly(sulfobetaine methacrylate) (PSBMA) bottom layer via sequential surface-initiated photoiniferter-mediated polymerization. At room temperature below the lower critical solution temperature (LCST), the PNIPAM-based upper layer was stretchable, facilitating contact killing of bacteria by Van. At physiological temperature (above the LCST), the PNIPAM-based layer collapsed, thus leading to the burial of Van and exposure of bottom PSBMA brushes, finally displaying notable performances in bacterial inhibition, dead bacteria detachment, and biocompatibility, simultaneously. Our strategy provides a novel pathway in the rational design of temperature-sensitive switchable surfaces, which shows great advantages in the real-world infection-resistant applications.
Collapse
Affiliation(s)
- Xianghong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Shunjie Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Lingjie Song
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Huawei Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Ather Farooq Khan
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology , Defence Road, Off. Raiwind Road, Lahore 54000, Pakistan
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University , Changchun 130022, People's Republic of China
| |
Collapse
|