1
|
Sánchez PA, Cerrato A, Cerdà JJ, Bona-Casas C, Sintes T, Massó J. Dynamic response of a ferromagnetic nanofilament under rotating fields: effects of flexibility, thermal fluctuations and hydrodynamics. NANOSCALE 2024; 16:11724-11738. [PMID: 38864189 DOI: 10.1039/d4nr01034e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Using nonequilibrium computer simulations, we study the response of ferromagnetic nanofilaments, consisting of stabilized one dimensional chains of ferromagnetic nanoparticles, under external rotating magnetic fields. In difference with their analogous microscale and stiff counterparts, which have been actively studied in recent years, nonequilibrium properties of rather flexible nanoparticle filaments remain mostly unexplored. By progressively increasing the modeling details, we are able to evidence the qualitative impact of main interactions that can not be neglected at the nanoscale, showing that filament flexibility, thermal fluctuations and hydrodynamic interactions contribute independently to broaden the range of synchronous frequency response in this system. Furthermore, we also show the existence of a limited set of characteristic dynamic filament configurations and discuss in detail the asynchronous response, which at finite temperature becomes probabilistic.
Collapse
Affiliation(s)
- Pedro A Sánchez
- Physics Department, University of the Balearic Islands, 07122 Palma, Spain.
| | - Antonio Cerrato
- Physics Department, University of the Balearic Islands, 07122 Palma, Spain.
| | - Joan J Cerdà
- Physics Department, University of the Balearic Islands, 07122 Palma, Spain.
| | - Carles Bona-Casas
- Physics Department, University of the Balearic Islands, 07122 Palma, Spain.
| | - Tomás Sintes
- Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (UIB-CSIC), University of the Balearic Islands, 07122 Palma, Spain
| | - Joan Massó
- Physics Department, University of the Balearic Islands, 07122 Palma, Spain.
| |
Collapse
|
2
|
Chen Y, Zhang HA, El-Ghazaly A. Tuning the dimensional order in self-assembled magnetic nanostructures: theory, simulations, and experiments. NANOSCALE 2024. [PMID: 38525804 DOI: 10.1039/d3nr06299f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
A major obstacle to building nanoscale magnetic devices or even experimentally studying novel nanomagnetic spin textures is the present lack of a simple and robust method to fabricate various nano-structured alloys. Here, theoretical and experimental investigations were conducted to understand the underlying physical mechanisms of magnetic particle self-assembly in zero applied magnetic field. By changing the amount of NaOH added during the synthesis, we demonstrate that the resulting morphology of the assembled FeCo structure can be tuned from zero-dimensional (0D) nanoparticles to one-dimensional (1D) chains, and even three-dimensional (3D) networks. Two numerical simulations were developed to predict aspects of nanostructure formation by accounting for the magnetic interactions between individual magnetic nanoparticles. The first utilized the Boltzmann distribution to determine the equilibrium structure of a nanochain, iteratively predicting the local deviation angle θ of each particle as it attaches to a forming chain. The second simulation illustrates the differences in nanostructure arrangement and dimensionality (0D, 1D, or 3D) that arise from random interactions at various nanoparticle densities. The simulation results closely match the experimental findings, as seen from SEM images, demonstrating their ability to capture the system's structural properties. In addition, magnetic hysteresis measurements of the samples were performed along two orthogonal directions to show the influence of dimensional order on the magnetic behavior. The normalized remanence (MR/MS||) of the FeCo alloys increases as the dimensions of nanostructures are increased. Of the three cases, the FeCo 3D network structures exhibit the highest normalized nanostructure remanence of 0.33 and an increased coercivity to above 200 Oe at 300 K. This combined numerical and experimental investigation aims to shed light on the preparation of FeCo nanostructures with tailorable dimensional order and it opens new avenues for exploring the complex spin textures and coercive behavior of these multi-dimensional nanomagnetic structures.
Collapse
Affiliation(s)
- Yulan Chen
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA.
| | - Hanyu Alice Zhang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Amal El-Ghazaly
- School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
3
|
Mostarac D, Novak EV, Kantorovich SS. Relating the length of a magnetic filament with solvophobic, superparamagnetic colloids to its properties in applied magnetic fields. Phys Rev E 2023; 108:054601. [PMID: 38115450 DOI: 10.1103/physreve.108.054601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/08/2023] [Indexed: 12/21/2023]
Abstract
The idea of creating polymer-like structures by crosslinking magnetic nanoparticles (MNPs) opened an alternative perspective on controlling the rheological properties of magnetoresponsive systems, because unlike suspensions of self-assembled MNPs, whose cluster sizes are sensitive to temperature, magnetic filaments (MFs) preserve their initial topology. Considering the length scales characteristic of single-domain nanoparticles used to create MFs, the MNPs can be both ferro- and superparamagnetic. Moreover, steric or electrostatic stabilization might not fully screen van der Waals interactions. In this paper, using coarse-grained molecular dynamics simulations, we investigate the influence of susceptibility of superparamagnetic MNPs-their number and central attraction forces between them-on the polymeric, structural, and magnetic properties of MFs with varied backbone rigidity. We find that, due to the general tendency of MFs with superparamagnetic monomers to bend, reinforced for colloids with a high susceptibility, properties of MFs vary greatly with chain length.
Collapse
Affiliation(s)
- Deniz Mostarac
- Computational and Soft Matter Physics, University of Vienna, 1090, Vienna, Austria
| | - Ekaterina V Novak
- Department of Theoretical and Mathematical Physics, Ural Federal University, 620000, Ekaterinburg, Russia
| | - Sofia S Kantorovich
- Computational and Soft Matter Physics, University of Vienna, 1090, Vienna, Austria and Research Platform Mathematics-Magnetism-Materials, University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
4
|
Mostarac D, Xiong Y, Gang O, Kantorovich S. Nanopolymers for magnetic applications: how to choose the architecture? NANOSCALE 2022; 14:11139-11151. [PMID: 35771156 PMCID: PMC9367751 DOI: 10.1039/d2nr01502a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/15/2022] [Indexed: 05/06/2023]
Abstract
Directional assembly of nanoscale objects results in morphologies that can broadly be classified as supra-molecular nanopolymers. Such morphologies, given a functional choice of the monomers used as building blocks, can be of ubiquitous utility in optical, magnetic, rheological, and medical applications. These applications, however, require a profound understanding of the interplay between monomer shape and bonding on one side, and polymeric properties - on the other. Recently, we fabricated nanopolymers using cuboid DNA nanochambers, as they not only allow fine-tuning of the resulting morphologies but can also carry magnetic nanoparticles. However, it is not known if the cuboid shape and inter-cuboid connectivity restrict the equilibrium confirmations of the resulting nanopolymers, making them less responsive to external stimuli. In this work, using Molecular Dynamics simulations, we perform an extensive comparison between various nanopolymer architectures to explore their polymeric properties, and their response to an applied magnetic field if magnetic nanoparticles are embedded. We explain the impact of monomer shape and bonding on the mechanical and magnetic properties and show that DNA nanochambers can build highly responsive and magnetically controllable nanopolymers.
Collapse
Affiliation(s)
- Deniz Mostarac
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
- Research Platform MMM Mathematics-Magnetism-Materials, Vienna, Austria
| | | | - Oleg Gang
- Columbia University, New York, USA
- Brookhaven National Laboratories, New York, USA
| | - Sofia Kantorovich
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| |
Collapse
|
5
|
Mostarac D, Kantorovich SS. Rheology of a Nanopolymer Synthesized through Directional Assembly of DNA Nanochambers, for Magnetic Applications. Macromolecules 2022; 55:6462-6473. [PMID: 35966117 PMCID: PMC9367010 DOI: 10.1021/acs.macromol.2c00738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/09/2022] [Indexed: 11/29/2022]
Abstract
![]()
We present a numerical study of the effects of monomer
shape and
magnetic nature of colloids on the behavior of a single magnetic filament
subjected to the simultaneous action of shear flow and a stationary
external magnetic field perpendicular to the flow. We find that based
on the magnetic nature of monomers, magnetic filaments exhibit a completely
different phenomenology. Applying an external magnetic field strongly
inhibits tumbling only for filaments with ferromagnetic monomers.
Filament orientation with respect to the flow direction is in this
case independent of monomer shape. In contrast, reorientational dynamics
in filaments with superparamagnetic monomers are not inhibited by
applied magnetic fields, but enhanced. We find that the filaments
with spherical, superparamagnetic monomers, depending on the flow
and external magnetic field strength, assume semipersistent, collapsed,
coiled conformations, and their characteristic time of tumbling is
a function of field strength. However, external magnetic fields do
not affect the characteristic time of tumbling for filaments with
cubic, superparamagnetic monomers, but increase how often tumbling
occurs.
Collapse
Affiliation(s)
- Deniz Mostarac
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
- Research Platform MMM Mathematics-Magnetism-Materials, 1090 Vienna, Austria
| | - Sofia S. Kantorovich
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|
6
|
Pei Y, Wu S, Wang P, Qin J, Xu L, Wang Y. Path-Dependent Anisotropic Colloidal Assembly of Magnetic Nanocomposite-Protein Complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6265-6272. [PMID: 35548911 DOI: 10.1021/acs.langmuir.1c02923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anisotropic self-assembly of nanoparticles (NPs) stems from the fine-tuning of their surface functionality and NP interaction. Strategies involving ligand interaction, protein interaction, and external stimulus have been developed. However, robust construction of monodispersed magnetic NPs to tens of microns of anisotropically aligned colloidal assembly triggered by adsorbed protein intermolecular interaction is yet to be elucidated. Here, we present the NP-protein interaction, magnetic force, and protein corona intermolecular interaction serially but independently induced path-dependent self-assembly of 100 nm Fe3O4@SiO2 nanocomposites. Dynamic formation of the micron-sized anisotropic magnetic assembly was reproducibly realized in a continuous medium in a controllable manner. Formation of the primary globular clusters upon the unique NP-protein complexes with the help of ions acts as the prerequisite for the anisotropic colloidal assembly, followed by the magnetic force-driven pre-organization and protein intermolecular electrostatic interaction-mediated elongation. The protein concentration rather than the protein original structure plays a more pivotal role in the NP-protein interaction and subsequent colloidal assembly process. Two typical serum proteins fibrinogen and bovine serum albumin enable formation of the anisotropic colloidal assembly but with a different subtle morphology. Furthermore, the obtained micron-sized magnetic colloidal assembly can be dissociated rapidly by adding a negative electrolyte in the medium due to the interference in the NP-protein interaction. However, the self-assembly process can be recycled based on the dissociated colloidal assembly.
Collapse
Affiliation(s)
- Yanbai Pei
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Shengming Wu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Peng Wang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Jingwen Qin
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Lehua Xu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Yilong Wang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
7
|
Mhanna R, Gao Y, Van Tol I, Springer E, Wu N, Marr DWM. Chain Assembly Kinetics from Magnetic Colloidal Spheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5730-5737. [PMID: 35486385 DOI: 10.1021/acs.langmuir.2c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnetic colloidal chains are a microrobotic system with promising applications due to their versatility, biocompatibility, and ease of manipulation under magnetic fields. Their synthesis involves kinetic pathways that control chain quality, length, and flexibility, a process performed by first aligning superparamagnetic particles under a one-dimensional magnetic field and then chemically linking them using a four-armed maleimide-functionalized poly(ethylene glycol). Here, we systematically vary the concentration of the poly(ethylene glycol) linkers, the reaction temperature, and the magnetic field strength to study their impact on the physical properties of synthesized chains, including the chain length distribution, reaction temperature, and bending modulus. We find that this chain fabrication process resembles step-growth polymerization and can be accurately described by the Flory-Schulz model. Under optimized experimental conditions, we have successfully synthesized long flexible colloidal chains with a bending modulus, which is 4 orders of magnitude smaller than previous studies. Such flexible and long chains can be folded entirely into concentric rings and helices with multiple turns, demonstrating the potential for investigating the actuation, assembly, and folding behaviors of these colloidal polymer analogues.
Collapse
Affiliation(s)
- Ramona Mhanna
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Yan Gao
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Isaac Van Tol
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ela Springer
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ning Wu
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - David W M Marr
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
8
|
Novak EV, Pyanzina ES, Gupalo MA, Mauser NJ, Kantorovich SS. Structural transitions and magnetic response of supramolecular magnetic polymerlike structures with bidisperse monomers. Phys Rev E 2022; 105:054601. [PMID: 35706172 DOI: 10.1103/physreve.105.054601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Supramolecular magnetic polymerlike (SMP) structures are nanoscaled objects that combine the flexibility of polymeric conformations and controllability of magnetic nanoparticles. The advantage provided by the presence of permanent cross-linkers is that even at high temperature, a condition at which entropy dominates over magnetic interactions, the length and the topology of the SMP structures are preserved. On cooling, however, preexistent bonds constrain thermodynamically equilibrium configurations, making a low-temperature regime for SMP structures worth investigating in detail. Moreover, making SMP structures with perfectly monodisperse monomers has been a challenge. Thus, the second open problem in the application of SMP structures is the missing understanding of the polydispersity impact on their structural and magnetic properties. Here extensive Langevin dynamics simulations combined with parallel tempering method are used to investigate SMP structures of four different types, i.e., chainlike, Y-like, X-like, and ringlike, composed of monomers of two different sizes. Our results show that the presence of small particles in SMP structures can qualitatively change the magnetic response at low temperature, making those structures surprisingly more magnetically responsive than their monodisperse counterparts.
Collapse
Affiliation(s)
- Ekaterina V Novak
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620083, Russian Federation
| | - Elena S Pyanzina
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620083, Russian Federation
| | - Marina A Gupalo
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620083, Russian Federation
| | - Norbert J Mauser
- Research Platform MMM Mathematics-Magnetism-Material, c/o Faculty of Mathematics, University of Vienna, 1090 Vienna, Austria
| | - Sofia S Kantorovich
- Faculty of Physics, Computational and Soft Matter Physics, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
9
|
Cerdà JJ, Bona-Casas C, Cerrato A, Sintes T, Massó J. Colloidal magnetic brushes: influence of the magnetic content and presence of short-range attractive forces in the micro-structure and field response. SOFT MATTER 2021; 17:5780-5791. [PMID: 34027950 DOI: 10.1039/d0sm02006k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The behaviour of supramolecular brushes, whose filaments are composed of sequences of magnetic and non-magnetic colloidal particles, has been studied using Langevin dynamics simulations. Two types of brushes have been considered: sticky or Stockmayer brushes (SB) and non-sticky magnetic brushes (NSB). In both cases, the microstructure and the collective behaviour have been analysed for a wide range of magnetic field strengths including the zero-field case, and negative fields. The results show that, for the same magnetic content, SB placed in a magnetic field present an extensibility up to two times larger than NSB. The analysis of the microstructure of SB at zero field shows that magnetic particles belonging to different filaments in the brush self-organize into ring and chain aggregates, while magnetic colloids in NSB mainly remain in a non-aggregated state. Clustering among magnetic particles belonging to different filaments is observed to gradually fade away as the magnetic content of SB filaments increases towards 100%. Under an external field, SB are observed to form chains, threads and sheets depending on the magnetic content and the applied field strength. The chain-like clusters in SB are observed to decrease in size as the magnetic content in the filaments increases. A non-monotonic field dependence is observed for the average size of these clusters. In spite of the very different microstructure, both NSB and SB are observed to have a very similar magnetization, especially in high strength fields.
Collapse
Affiliation(s)
- Joan J Cerdà
- Dpt. de Física UIB i Institut d'Aplicacions Computacionals de Codi Comunitari (IAC3), Campus UIB, E-07122 Palma de Mallorca, Spain.
| | | | | | | | | |
Collapse
|
10
|
Borges DS, Herrmann HJ, Carmona HA, Andrade JS, Araújo AD. Morphological Transition between Patterns Formed by Threads of Magnetic Beads. PHYSICAL REVIEW LETTERS 2021; 126:118001. [PMID: 33798379 DOI: 10.1103/physrevlett.126.118001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Magnetic beads attract each other, forming chains. We push such chains into an inclined Hele-Shaw cell and discover that they spontaneously form self-similar patterns. Depending on the angle of inclination of the cell, two completely different situations emerge; namely, above the static friction angle the patterns resemble the stacking of a rope and below they look similar to a fortress from above. Moreover, locally the first pattern forms a square lattice, while the second pattern exhibits triangular symmetry. For both patterns, the size distributions of enclosed areas follow power laws. We characterize the morphological transition between the two patterns experimentally and numerically and explain the change in polarization as a competition between friction-induced buckling and gravity.
Collapse
Affiliation(s)
- Danilo S Borges
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, 60455-760 Fortaleza, Ceará, Brazil
| | - Hans J Herrmann
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, 60455-760 Fortaleza, Ceará, Brazil
- PMMH, ESPCI, CNRS UMR 7636, 7 quai St. Bernard, 75005 Paris, France
| | - Humberto A Carmona
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, 60455-760 Fortaleza, Ceará, Brazil
| | - José S Andrade
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, 60455-760 Fortaleza, Ceará, Brazil
| | - Ascânio D Araújo
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, 60455-760 Fortaleza, Ceará, Brazil
| |
Collapse
|
11
|
Borges DS, Herrmann HJ, Carmona HA, Andrade JS, Araújo AD. Patterns formed by chains of magnetic beads. EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202124915004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Magnetic beads attract each other forming rather stable chains. We consider such chains formed by magnetic beads and push them into a Hele-Shaw cell either from the boundary or from the center. When such a chain is pushed into a cavity, it bends and folds spontaneously forming interesting unreported patterns. These patterns are self-similar and an effective fractal dimension can be defined. As found experimentally and with numerical simulations, the numbers of beads, loops and contacts follow power laws as a function of packing fraction and, depending on the injection procedure, even energetically less favorable triangular configurations can be stabilized.
Collapse
|
12
|
Rahim M, Mas Haris MRH, Saqib NU. An overview of polymeric nano-biocomposites as targeted and controlled-release devices. Biophys Rev 2020; 12:1223-1231. [PMID: 32901426 DOI: 10.1007/s12551-020-00750-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, controlled drug delivery has become an important area of research. Nano-biocomposites can fulfil the necessary requirements of a targeted drug delivery device. This review describes use of polymeric nano-biocomposites in controlled drug delivery devices. Selection of suitable biopolymer and methods of preparation are discussed.
Collapse
Affiliation(s)
- Muhammad Rahim
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Pulau Penang, Malaysia.
| | | | - Najm Us Saqib
- Department of Zoology, University of Buner, Buner, KP, Pakistan
| |
Collapse
|
13
|
Sánchez PA, Novak EV, Pyanzina ES, Kantorovich SS, Cerdà JJ, Sintes T. Adsorption transition of a grafted ferromagnetic filament controlled by external magnetic fields. Phys Rev E 2020; 102:022609. [PMID: 32942453 DOI: 10.1103/physreve.102.022609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Extensive Langevin dynamics simulations are used to characterize the adsorption transition of a flexible magnetic filament grafted onto an attractive planar surface. Our results identify different structural transitions at different ratios of the thermal energy to the surface attraction strength: filament straightening, adsorption, and the magnetic flux closure. The adsorption temperature of a magnetic filament is found to be higher in comparison to an equivalent nonmagnetic chain. The adsorption has been also investigated under the application of a static homogeneous external magnetic field. We found that the strength and the orientation of the field can be used to control the adsorption process, providing a precise switching mechanism. Interestingly, we have observed that the characteristic field strength and tilt angle at the adsorption point are related by a simple power law.
Collapse
Affiliation(s)
- Pedro A Sánchez
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russian Federation
| | - Ekaterina V Novak
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russian Federation
| | - Elena S Pyanzina
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russian Federation
| | - Sofia S Kantorovich
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russian Federation
| | - Joan J Cerdà
- Dpt. de Física UIB i Institut d'Aplicacions Computacionals de Codi Comunitari (IAC3), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - Tomás Sintes
- Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (UIB-CSIC), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
14
|
Mostarac D, Sánchez PA, Kantorovich S. Characterisation of the magnetic response of nanoscale magnetic filaments in applied fields. NANOSCALE 2020; 12:13933-13947. [PMID: 32406897 DOI: 10.1039/d0nr01646b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Incorporating magnetic nanoparticles (MNPs) within permanently crosslinked polymer-like structures opens up the possibility for synthesis of complex, highly magneto-responsive systems. Among such structures are chains of prealigned magnetic (ferro- or super-paramagnetic) monomers, permanently crosslinked by means of macromolecules, which we refer to as magnetic filaments (MFs). In this paper, using molecular dynamics simulations, we encompass filament synthesis scenarios, with a compact set of easily tuneable computational models, where we consider two distinct crosslinking approaches, for both ferromagnetic and super-paramagnetic monomers. We characterise the equilibrium structure, correlations and magnetic properties of MFs in static magnetic fields. Calculations show that MFs with ferromagnetic MNPs in crosslinking scenarios where the dipole moment orientations are decoupled from the filament backbone, have similar properties to MFs with super-paramagnetic monomers. At the same time, magnetic properties of MFs with ferromagnetic MNPs are more dependent on the crosslinking approach than they are for ones with super-paramagnetic monomers. Our results show that, in a strong applied field, MFs with super-paramagnetic MNPs have similar magnetic properties to ferromagnetic ones, while exhibiting higher susceptibility in low fields. We find that MFs with super-paramagnetic MNPs have a tendency to bend the backbone locally rather than to fully stretch along the field. We explain this behaviour by supplementing Flory theory with an explicit dipole-dipole interaction potential, with which we can take in to account folded filament configurations. It turns out that the entropy gain obtained through bending compensates an insignificant loss in dipolar energy for the filament lengths considered in the manuscript.
Collapse
Affiliation(s)
| | - Pedro A Sánchez
- Ural Federal University, Ekaterinburg, Russia and Wolfgang Pauli Institute, Vienna, Austria
| | - Sofia Kantorovich
- University of Vienna, Vienna, Austria. and Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
15
|
The impact of magnetic field on the conformations of supracolloidal polymer-like structures with super-paramagnetic monomers. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Park SS, Urbach ZJ, Brisbois CA, Parker KA, Partridge BE, Oh T, Dravid VP, Olvera de la Cruz M, Mirkin CA. DNA- and Field-Mediated Assembly of Magnetic Nanoparticles into High-Aspect Ratio Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906626. [PMID: 31814172 DOI: 10.1002/adma.201906626] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/20/2019] [Indexed: 05/22/2023]
Abstract
Under an applied magnetic field, superparamagnetic Fe3 O4 nanoparticles with complementary DNA strands assemble into crystalline, pseudo-1D elongated superlattice structures. The assembly process is driven through a combination of DNA hybridization and particle dipolar coupling, a property dependent on particle composition, size, and interparticle distance. The DNA controls interparticle distance and crystal symmetry, while the magnetic field leads to anisotropic crystal growth. Increasing the dipole interaction between particles by increasing particle size or external field strength leads to a preference for a particular crystal morphology (e.g., rhombic dodecahedra, stacked clusters, and smooth rods). Molecular dynamics simulations show that an understanding of both DNA hybridization energetic and magnetic interactions is required to predict the resulting crystal morphology. Taken together, the data show that applied magnetic fields with magnetic nanoparticles can be deliberately used to access nanostructures beyond what is possible with DNA hybridization alone.
Collapse
Affiliation(s)
- Sarah S Park
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Zachary J Urbach
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chase A Brisbois
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| | - Kelly A Parker
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| | - Benjamin E Partridge
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Taegon Oh
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| | - Monica Olvera de la Cruz
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
17
|
Wan L, Song H, Chen X, Zhang Y, Yue Q, Pan P, Su J, Elzatahry AA, Deng Y. A Magnetic-Field Guided Interface Coassembly Approach to Magnetic Mesoporous Silica Nanochains for Osteoclast-Targeted Inhibition and Heterogeneous Nanocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707515. [PMID: 29733478 DOI: 10.1002/adma.201707515] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/12/2018] [Indexed: 05/20/2023]
Abstract
1D core-shell magnetic materials with mesopores in shell are highly desired for biocatalysis, magnetic bioseparation, and bioenrichment and biosensing because of their unique microstructure and morphology. In this study, 1D magnetic mesoporous silica nanochains (Fe3 O4 @nSiO2 @mSiO2 nanochain, Magn-MSNCs named as FDUcs-17C) are facilely synthesized via a novel magnetic-field-guided interface coassembly approach in two steps. Fe3 O4 particles are coated with nonporous silica in a magnetic field to form 1D Fe3 O4 @nSiO2 nanochains. A further interface coassembly of cetyltrimethylammonium bromide and silica source in water/n-hexane biliquid system leads to 1D Magn-MSNCs with core-shell-shell structure, uniform diameter (≈310 nm), large and perpendicular mesopores (7.3 nm), high surface area (317 m2 g-1 ), and high magnetization (34.9 emu g-1 ). Under a rotating magnetic field, the nanochains with loaded zoledronate (a medication for treating bone diseases) in the mesopores, show an interesting suppression effect of osteoclasts differentiation, due to their 1D nanostructure that provides a shearing force in dynamic magnetic field to induce sufficient and effective reactions in cells. Moreover, by loading Au nanoparticles in the mesopores, the 1D Fe3 O4 @nSiO2 @mSiO2 -Au nanochains can service as a catalytically active magnetic nanostirrer for hydrogenation of 4-nitrophenol with high catalytic performance and good magnetic recyclability.
Collapse
Affiliation(s)
- Li Wan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Hongyuan Song
- Department of Orthopaedics Trauma, Department of Ophthalmology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Xiao Chen
- Department of Orthopaedics Trauma, Department of Ophthalmology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yu Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Qin Yue
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Panpan Pan
- Department of Orthopaedics Trauma, Department of Ophthalmology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Jiacan Su
- Department of Orthopaedics Trauma, Department of Ophthalmology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Ahmed A Elzatahry
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
18
|
Yang T, Marr DW, Wu N. Superparamagnetic colloidal chains prepared via Michael-addition. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.12.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Hosseinifar A, Shariaty-Niassar M, Seyyed Ebrahimi SA, Moshref-Javadi M. Synthesis, Characterization, and Application of Partially Blocked Amine-Functionalized Magnetic Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14728-14737. [PMID: 29182875 DOI: 10.1021/acs.langmuir.7b02093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this study, a novel technique was introduced for selective surface modification of amine-functionalized magnetic nanoparticles. The method was based on alignment of magnetic nanoparticles in an external magnetic field, which resulted in formation of chain-like assemblies in diluted suspensions. The aligned chains were then modified on the surface via reaction of isocyanate species with the particle functionalities. Finally, after removal from the reactor medium, particles with segmented distribution of surface functionalities were achieved. We named these partially blocked amine-functionalized magnetic nanoparticles as "Saturn" nanoparticles. Application of the particles in fabrication of magnetic assemblies was successfully demonstrated. Using methylene diphenyl diisocyanate (MDI) as the bridging agent, structures in different forms such as chains and filaments were produced by the Saturn particles and compared with cross-linked structures of the unmodified amine-functionalized particles. It is expected that this novel nanoparticle with its unique structure will have great potential in assembly fabrication with a variety of applications in biomedical fields.
Collapse
Affiliation(s)
- A Hosseinifar
- Transport Phenomena & Nanotechnology (TPNT) Lab., School of Chemical Engineering, College of Engineering, University of Tehran , Tehran 111554563, Iran
- Advanced Magnetic Materials Research Center, School of Metallurgy and Materials, College of Engineering, University of Tehran , Tehran 111554563, Iran
| | - M Shariaty-Niassar
- Transport Phenomena & Nanotechnology (TPNT) Lab., School of Chemical Engineering, College of Engineering, University of Tehran , Tehran 111554563, Iran
- Advanced Magnetic Materials Research Center, School of Metallurgy and Materials, College of Engineering, University of Tehran , Tehran 111554563, Iran
| | - S A Seyyed Ebrahimi
- Advanced Magnetic Materials Research Center, School of Metallurgy and Materials, College of Engineering, University of Tehran , Tehran 111554563, Iran
| | - M Moshref-Javadi
- Department of Materials Science and Engineering, Monash University , Clayton, VIC 3800, Australia
| |
Collapse
|
20
|
Mikkelsen A, Kertmen A, Khobaib K, Rajňák M, Kurimský J, Rozynek Z. Assembly of 1D Granular Structures from Sulfonated Polystyrene Microparticles. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1212. [PMID: 29065465 PMCID: PMC5667018 DOI: 10.3390/ma10101212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 01/21/2023]
Abstract
Being able to systematically modify the electric properties of nano- and microparticles opens up new possibilities for the bottom-up fabrication of advanced materials such as the fabrication of one-dimensional (1D) colloidal and granular materials. Fabricating 1D structures from individual particles offers plenty of applications ranging from electronic sensors and photovoltaics to artificial flagella for hydrodynamic propulsion. In this work, we demonstrate the assembly of 1D structures composed of individual microparticles with modified electric properties, pulled out of a liquid environment into air. Polystyrene particles were modified by sulfonation for different reaction times and characterized by dielectric spectroscopy and dipolar force measurements. We found that by increasing the sulfonation time, the values of both electrical conductivity and dielectric constant of the particles increase, and that the relaxation frequency of particle electric polarization changes, causing the measured dielectric loss of the particles to shift towards higher frequencies. We attributed these results to water adsorbed at the surface of the particles. With sulfonated polystyrene particles exhibiting a range of electric properties, we showed how the electric properties of individual particles influence the formation of 1D structures. By tuning applied voltage and frequency, we were able to control the formation and dynamics of 1D structures, including chain bending and oscillation.
Collapse
Affiliation(s)
- Alexander Mikkelsen
- Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland.
| | - Ahmet Kertmen
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
- NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland.
| | - Khobaib Khobaib
- Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland.
| | - Michal Rajňák
- Institute of Experimental Physics SAS, Watsonova 47, 040-01 Kosice, Slovakia.
- Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice, Slovakia.
| | - Juraj Kurimský
- Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice, Slovakia.
| | - Zbigniew Rozynek
- Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland.
| |
Collapse
|
21
|
Rozhkov DA, Pyanzina ES, Novak EV, Cerdà JJ, Sintes T, Ronti M, Sánchez PA, Kantorovich SS. Self-assembly of polymer-like structures of magnetic colloids: Langevin dynamics study of basic topologies. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1378815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- D. A. Rozhkov
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia
- Computational Physics, University of Vienna, Vienna, Austria
| | - E. S. Pyanzina
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia
| | - E. V. Novak
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia
| | - J. J. Cerdà
- Physics Department, University of the Balearic Islands, Palma de Mallorca, Spain
| | - T. Sintes
- Physics Department, University of the Balearic Islands, Palma de Mallorca, Spain
| | - M. Ronti
- Computational Physics, University of Vienna, Vienna, Austria
| | - P. A. Sánchez
- Computational Physics, University of Vienna, Vienna, Austria
| | - S. S. Kantorovich
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia
- Computational Physics, University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Formation of printable granular and colloidal chains through capillary effects and dielectrophoresis. Nat Commun 2017; 8:15255. [PMID: 28497791 PMCID: PMC5437296 DOI: 10.1038/ncomms15255] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/10/2017] [Indexed: 02/02/2023] Open
Abstract
One-dimensional conductive particle assembly holds promise for a variety of practical applications, in particular for a new generation of electronic devices. However, synthesis of such chains with programmable shapes outside a liquid environment has proven difficult. Here we report a route to simply ‘pull' flexible granular and colloidal chains out of a dispersion by combining field-directed assembly and capillary effects. These chains are automatically stabilized by liquid bridges formed between adjacent particles, without the need for continuous energy input or special particle functionalization. They can further be deposited onto any surface and form desired conductive patterns, potentially applicable to the manufacturing of simple electronic circuits. Various aspects of our route, including the role of particle size and the voltages needed, are studied in detail. Looking towards practical applications, we also present the possibility of two-dimensional writing, rapid solidification of chains and methods to scale up chain production. Conductive colloidal chains are promising for electronics but difficult to synthesize outside of a liquid environment. Here, the authors use field-directed assembly and capillary effects to pull conductive particle chains out of a suspension, which remain held together by flexible liquid bridges even after the external field is turned off.
Collapse
|
23
|
Lüsebrink D, Cerdà JJ, Sánchez PA, Kantorovich SS, Sintes T. The behavior of a magnetic filament in flow under the influence of an external magnetic field. J Chem Phys 2016; 145:234902. [DOI: 10.1063/1.4971860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Daniel Lüsebrink
- IFISC (UIB-CSIC) Instituto de Física Interdisciplinar y Sistemas Complejos, Campus UIB, 07122 Palma de Mallorca, Spain
| | - Joan J. Cerdà
- IFISC (UIB-CSIC) Instituto de Física Interdisciplinar y Sistemas Complejos, Campus UIB, 07122 Palma de Mallorca, Spain
| | - Pedro A. Sánchez
- Faculty of Physics, Universität Wien, Boltzmanngasse 5, 1090 Wien, Austria
| | | | - Tomás Sintes
- IFISC (UIB-CSIC) Instituto de Física Interdisciplinar y Sistemas Complejos, Campus UIB, 07122 Palma de Mallorca, Spain
| |
Collapse
|
24
|
Aldana S, Vereda F, Hidalgo-Alvarez R, de Vicente J. Facile synthesis of magnetic agarose microfibers by directed self-assembly in W/O emulsions. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Cerdà JJ, Sánchez PA, Lüsebrink D, Kantorovich S, Sintes T. Flexible magnetic filaments under the influence of external magnetic fields in the limit of infinite dilution. Phys Chem Chem Phys 2016; 18:12616-25. [PMID: 27095133 DOI: 10.1039/c6cp00923a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present work we use Langevin dynamics computer simulations to understand how the presence of a constant external magnetic field modifies the conformational phase diagram of magnetic filaments in the limit of infinite dilution. We have considered the filaments immersed in either a good (non-sticky filaments) or a poor (Stockmayer polymers) solvent. It has been found that in the presence of an applied field, filaments turn out to be much more susceptible to parameters such as temperature and solvent conditions. Filaments owe this increased susceptibility to the fact that the external magnetic field tends to level the free energy landscape as compared to the zero-field case. The field induces equalization in the free energy of competing conformational states that were separated by large energy differences in the zero-field limit. In this new scenario multistability arises, and manifests itself in the existence of broad regions in the phase diagram where two or more equilibrium configurations coexist. The existence of multistability greatly enhances the possibility of tuning the properties of the filament.
Collapse
Affiliation(s)
- Joan J Cerdà
- Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain.
| | | | | | | | | |
Collapse
|
26
|
Ourry L, Mammeri F, Toulemon D, Gaudisson T, Delamar M, Ammar S. A tandem polyol process and ATRP used to design new processable hybrid exchange-biased CoxFe3−xO4@CoO@PMMA nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra06963k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The relationships between interparticle distance and magnetic properties of CoxFe3−xO4@CoO@PMMA nanoparticles clearly emphasize the role of material processing for the design of tailored flexible polymer based hybrid materials.
Collapse
Affiliation(s)
- L. Ourry
- Université Paris Diderot
- Sorbonne Paris Cité
- ITODYS CNRS UMR 7086
- 75205 Paris Cedex 13
- France
| | - F. Mammeri
- Université Paris Diderot
- Sorbonne Paris Cité
- ITODYS CNRS UMR 7086
- 75205 Paris Cedex 13
- France
| | - D. Toulemon
- Université Paris Diderot
- Sorbonne Paris Cité
- ITODYS CNRS UMR 7086
- 75205 Paris Cedex 13
- France
| | - T. Gaudisson
- Université Paris Diderot
- Sorbonne Paris Cité
- ITODYS CNRS UMR 7086
- 75205 Paris Cedex 13
- France
| | - M. Delamar
- Université Paris Diderot
- Sorbonne Paris Cité
- ITODYS CNRS UMR 7086
- 75205 Paris Cedex 13
- France
| | - S. Ammar
- Université Paris Diderot
- Sorbonne Paris Cité
- ITODYS CNRS UMR 7086
- 75205 Paris Cedex 13
- France
| |
Collapse
|
27
|
Ma W, Xu L, Wang L, Kuang H, Xu C. Orientational nanoparticle assemblies and biosensors. Biosens Bioelectron 2015; 79:220-36. [PMID: 26708241 DOI: 10.1016/j.bios.2015.12.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/06/2015] [Accepted: 12/12/2015] [Indexed: 02/01/2023]
Abstract
Assemblies of nanoparticles (NPs) have regional correlated properties with new features compared to individual NPs or random aggregates. The orientational NP assembly contributes greatly to the collective interaction of individual NPs with geometrical dependence. Therefore, orientational NPs assembly techniques have emerged as promising tools for controlling inorganic NPs spatial structures with enhanced interesting properties. The research fields of orientational NP assembly have developed rapidly with characteristics related to the different methods used, including chemical, physical and biological techniques. The current and potential applications, important challenges remain to be investigated. An overview of recent developments in orientational NPs assemblies, the multiple strategies, biosensors and challenges will be discussed in this review.
Collapse
Affiliation(s)
- Wei Ma
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Liguang Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Libing Wang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
28
|
Bharti B, Fameau AL, Rubinstein M, Velev OD. Nanocapillarity-mediated magnetic assembly of nanoparticles into ultraflexible filaments and reconfigurable networks. NATURE MATERIALS 2015; 14:1104-9. [PMID: 26237128 PMCID: PMC4816044 DOI: 10.1038/nmat4364] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/26/2015] [Indexed: 05/17/2023]
Abstract
The fabrication of multifunctional materials with tunable structure and properties requires programmed binding of their building blocks. For example, particles organized in long-ranged structures by external fields can be bound permanently into stiff chains through electrostatic or van der Waals attraction, or into flexible chains through soft molecular linkers such as surface-grafted DNA or polymers. Here, we show that capillarity-mediated binding between magnetic nanoparticles coated with a liquid lipid shell can be used for the assembly of ultraflexible microfilaments and network structures. These filaments can be magnetically regenerated on mechanical damage, owing to the fluidity of the capillary bridges between nanoparticles and their reversible binding on contact. Nanocapillary forces offer opportunities for assembling dynamically reconfigurable multifunctional materials that could find applications as micromanipulators, microbots with ultrasoft joints, or magnetically self-repairing gels.
Collapse
Affiliation(s)
- Bhuvnesh Bharti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA
| | - Anne-Laure Fameau
- National Institute of French Agricultural Research, Nantes 44300, France
| | - Michael Rubinstein
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Orlin D. Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA
| |
Collapse
|
29
|
Zhang W, Si X, Liu B, Bian G, Qi Y, Yang X, Li C. Synthesis of 1D Fe3O4/P(MBAAm-co-MAA) nanochains as stabilizers for Ag nanoparticles and templates for hollow mesoporous structure, and their applications in catalytic reaction and drug delivery. J Colloid Interface Sci 2015; 456:145-54. [DOI: 10.1016/j.jcis.2015.06.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
|
30
|
van Reenen A, de Jong AM, Prins MWJ. Transportation, dispersion and ordering of dense colloidal assemblies by magnetic interfacial rotaphoresis. LAB ON A CHIP 2015; 15:2864-2871. [PMID: 26023744 DOI: 10.1039/c5lc00294j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Colloidal systems exhibit intriguing assembly phenomena with impact in a wide variety of technological fields. The use of magnetically responsive colloids allows one to exploit interactions with an anisotropic dipolar nature. Here, we reveal magnetic interfacial rotaphoresis - a magnetically-induced rotational excitation that imposes a translational motion on colloids by a strong interaction with a solid-liquid interface - as a means to transport, disperse, and order dense colloidal assemblies. By balancing magnetic dipolar and hydrodynamic interactions at a symmetry-breaking interface, rotaphoresis effectuates a translational dispersive motion of the colloids and surprisingly transforms large and dense multilayer assemblies into single-particle layers with quasi-hexagonal ordering within seconds and with velocities of mm s(-1). We demonstrate the application of interfacial rotaphoresis to enhance molecular target capture, showing an increase of the molecular capture rate by more than an order of magnitude.
Collapse
Affiliation(s)
- A van Reenen
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | | | | |
Collapse
|
31
|
Sánchez PA, Cerdà JJ, Sintes TM, Ivanov AO, Kantorovich SS. The effect of links on the interparticle dipolar correlations in supramolecular magnetic filaments. SOFT MATTER 2015; 11:2963-72. [PMID: 25727452 DOI: 10.1039/c5sm00172b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We present a combined computational and analytical study of supramolecular magnetic filaments, i.e., permanently linked chains of ferromagnetic nanocolloids. We put forward two different models for the interparticle connectivity within the chain. In the first model, the magnetic dipoles of the particles are free to rotate independently from the permanent links. The second model penalises the misalignment of the dipoles by coupling their orientations to the chain backbone. We show that the effect of the long-range magnetic dipolar interactions on the zero field net magnetic moment of the chain becomes less significant in the second case. However, the overall magnetic response in the model of freely rotating dipoles is much weaker.
Collapse
Affiliation(s)
- Pedro A Sánchez
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| | | | | | | | | |
Collapse
|
32
|
Peng E, Wang F, Xue JM. Nanostructured magnetic nanocomposites as MRI contrast agents. J Mater Chem B 2015; 3:2241-2276. [PMID: 32262055 DOI: 10.1039/c4tb02023e] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Magnetic resonance imaging (MRI) has become an integral part of modern clinical imaging due to its non-invasiveness and versatility in providing tissue and organ images with high spatial resolution. With the current MRI advancement, MRI imaging probes with suitable biocompatibility, good colloidal stability, enhanced relaxometric properties and advanced functionalities are highly demanded. As such, MRI contrast agents (CAs) have been an extensive research and development area. In the recent years, different inorganic-based nanoprobes comprising inorganic magnetic nanoparticles (MNPs) with an organic functional coating have been engineered to obtain a suitable contrast enhancement effect. For biomedical applications, the organic functional coating is critical to improve colloidal stability and biocompatibility. Simultaneously, it also provides a building block for generating a higher dimensional secondary structure. In this review, the combinatorial design approach by a self-assembling pre-formed hydrophobic inorganic MNPs core (from non-polar thermolysis synthesis) into various functional organic coatings (e.g. ligands, amphiphilic polymers and graphene oxide) to form water soluble nanocomposites will be discussed. The resultant magnetic ensembles were classified based on their dimensionality, namely, 0-D, 1-D, 2-D and 3-D structures. This classification provides further insight into their subsequent potential use as MRI CAs. Special attention will be dedicated towards the correlation between the spatial distribution and the associated MRI applications, which include (i) coating optimization-induced MR relaxivity enhancement, (ii) aggregation-induced MR relaxivity enhancement, (iii) off-resonance saturation imaging (ORS), (iv) magnetically-induced off-resonance imaging (ORI), (v) dual-modalities MR imaging and (vi) multifunctional nanoprobes.
Collapse
Affiliation(s)
- Erwin Peng
- Department of Materials Science and Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore.
| | | | | |
Collapse
|
33
|
|
34
|
Bharti B, Fameau AL, Velev OD. Magnetophoretic assembly of flexible nanoparticles/lipid microfilaments. Faraday Discuss 2015; 181:437-48. [DOI: 10.1039/c4fd00272e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The directed assembly of colloidal particles into linear chains and clusters is of fundamental and practical importance. In this study we characterize and analyse the mechanism of the magnetic field driven assembly of lipid-coated iron oxide nanoparticles into flexible microfilaments. Recently we showed that nanocapillary lipid binding can form a new class of magnetic nanoparticle-lipid microfilaments with unprecedented flexibility and self-healing properties. In the presence of a uniform magnetic field, the magnetophoretic attraction of the particles combined with interparticle dipole–dipole attraction drives the microfilament assembly. The fluid like lipid layer on the particles leads to stickiness on the surface of the filaments and the magnetic field concentration overcomes the potential electrostatic repulsion in the water phase. The lipid capillary bridges formed between the particles facilitate their permanent binding and sustain the flexible microfilament structure. We demonstrate that this surface stickiness combined with the magnetic response of the filaments can be used further to twist, bend and bundle the microfilaments into unusual structures.
Collapse
Affiliation(s)
- Bhuvnesh Bharti
- Department of Chemical and Biomolecular Engineering
- North Carolina State University
- Raleigh
- USA
| | | | - Orlin D. Velev
- Department of Chemical and Biomolecular Engineering
- North Carolina State University
- Raleigh
- USA
| |
Collapse
|
35
|
Situ SF, Samia ACS. Highly efficient antibacterial iron oxide@carbon nanochains from wüstite precursor nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2014; 6:20154-20163. [PMID: 25347201 DOI: 10.1021/am505744m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A new hydrothermal synthesis approach involving the carbonization of glucose in the presence of wüstite (FeO) nanoparticles is presented, which leads to the fabrication of rapidly acting and potent antibacterial agents based on iron oxide@carbon (IO@C) nanochains. By using nonmagnetic FeO precursor nanoparticles that slowly oxidize into the magnetic Fe3O4 crystal structure under hydrothermal conditions, we were able to prepare well-defined and short-length IO@C nanochains that are highly dispersed in aqueous media and readily interact with bacterial cells, leading to a complete loss in bacterial cell viability within short incubation times at minimal dosage. The smaller IO@C nanochains synthesized using the FeO precursor nanoparticles can reach above 2-fold enhancement in microbe-killing activity when compared to the larger nanochains fabricated directly from Fe3O4 nanoparticles. In addition, the synthesized IO@C nanochains can be easily isolated using an external magnet and be subsequently recycled to effectively eradicate Escherichia coli cells even after five separate treatment cycles.
Collapse
Affiliation(s)
- Shu F Situ
- Department of Chemistry, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | | |
Collapse
|
36
|
Anderson BD, Tracy JB. Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange. NANOSCALE 2014; 6:12195-216. [PMID: 25051257 DOI: 10.1039/c4nr02025a] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Conversion chemistry is a rapidly maturing field, where chemical conversion of template nanoparticles (NPs) into new compositions is often accompanied by morphological changes, such as void formation. The principles and examples of three major classes of conversion chemical reactions are reviewed: the Kirkendall effect for metal NPs, galvanic exchange, and anion exchange, each of which can result in void formation in NPs. These reactions can be used to obtain complex structures that may not be attainable by other methods. During each kind of conversion chemical reaction, NPs undergo distinct chemical and morphological changes, and insights into the mechanisms of these reactions will allow for improved fine control and prediction of the structures of intermediates and products. Conversion of metal NPs into oxides, phosphides, sulphides, and selenides often occurs through the Kirkendall effect, where outward diffusion of metal atoms from the core is faster than inward diffusion of reactive species, resulting in void formation. In galvanic exchange reactions, metal NPs react with noble metal salts, where a redox reaction favours reduction and deposition of the noble metal (alloying) and oxidation and dissolution of the template metal (dealloying). In anion exchange reactions, addition of certain kinds of anions to solutions containing metal compound NPs drives anion exchange, which often results in significant morphological changes due to the large size of anions compared to cations. Conversion chemistry thus allows for the formation of NPs with complex compositions and structures, for which numerous applications are anticipated arising from their novel catalytic, electronic, optical, magnetic, and electrochemical properties.
Collapse
Affiliation(s)
- Bryan D Anderson
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | | |
Collapse
|
37
|
Byrom J, Han P, Savory M, Biswal SL. Directing assembly of DNA-coated colloids with magnetic fields to generate rigid, semiflexible, and flexible chains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9045-52. [PMID: 25052952 DOI: 10.1021/la5009939] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We report the formation of colloidal macromolecules consisting of chains of micron-sized paramagnetic particles assembled using a magnetic field and linked with DNA. The interparticle spacing and chain flexibility were controlled by varying the magnetic field strength and the linker spring constant. Variations in the DNA lengths allowed for the generation of chains with an improved range of flexibility as compared to previous studies. These chains adopted the rigid-rod, semiflexible, and flexible conformations that are characteristic of linear polymer systems. These assembly techniques were investigated to determine the effects of the nanoscale DNA linker properties on the properties of the microscale colloidal chains. With stiff DNA linkers (564 base pairs) the chains were only stable at moderate to high field strengths and produced rigid chains. For flexible DNA linkers (8000 base pairs), high magnetic field strengths caused the linkers to be excluded from the gap between the particles, leading to a transition from very flexible chains at low field strengths to semiflexible chains at high field strengths. In the intermediate range of linker sizes, the chains exhibited predictable behavior, demonstrating increased flexibility with longer DNA linker length or smaller linking field strengths. This study provides insight into the process of directed assembly using magnetic fields and DNA by precisely tuning the components to generate colloidal analogues of linear macromolecular chains.
Collapse
Affiliation(s)
- Julie Byrom
- Department of Chemical and Biomolecular Engineering, Rice University , 6100 Main St., MS 362, Houston, Texas 77005, United States
| | | | | | | |
Collapse
|
38
|
Bannwarth M, Crespy D. Combining the best of two worlds: nanoparticles and nanofibers. Chem Asian J 2014; 9:2030-5. [PMID: 25044813 DOI: 10.1002/asia.201402316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Indexed: 12/16/2022]
Abstract
The preparation and applications of nanoparticles and nanofibers are widely described in the literature. Both types of materials have specific advantages but also drawbacks. We discuss here the methods to fabricate nanofibers from nanoparticles and vice versa by template-free methods and colloid-electrospinning. Nanoparticles and nanofibers can be also synergistically combined to yield nanostructured constructs that display highly advantageous properties such as good mechanical integrity, double protection of encapsulated substances, or the possibility to co-encapsulate payloads with different polarities.
Collapse
Affiliation(s)
- Markus Bannwarth
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany)
| | | |
Collapse
|
39
|
Hill LJ, Richey NE, Sung Y, Dirlam PT, Griebel JJ, Lavoie-Higgins E, Shim IB, Pinna N, Willinger MG, Vogel W, Benkoski JJ, Char K, Pyun J. Colloidal polymers from dipolar assembly of cobalt-tipped CdSe@CdS nanorods. ACS NANO 2014; 8:3272-3284. [PMID: 24645795 DOI: 10.1021/nn406104d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The synthesis of a modular colloidal polymer system based on the dipolar assembly of CdSe@CdS nanorods functionalized with a single cobalt nanoparticle "tip" (CoNP-tip) is reported. These heterostructured nanorods spontaneously self-assembled via magnetic dipolar associations of the cobalt domains. In these assemblies, CdSe@CdS nanorods were carried as densely grafted side chain groups along the dipolar NP chain to form bottlebrush-type colloidal polymers. Nanorod side chains strongly affected the conformation of individual colloidal polymer bottlebrush chains and the morphology of thin films. Dipolar CoNP-tipped nanorods were then used as "colloidal monomers" to form mesoscopic assemblies reminiscent of traditional copolymers possessing segmented and statistical compositions. Investigation of the phase behavior of colloidal polymer blends revealed the formation of mesoscopic phase separated morphologies from segmented colloidal copolymers. These studies demonstrated the ability to control colloidal polymer composition and morphology in a manner observed for classical polymer systems by synthetic control of heterostructured nanorod structure and harnessing interparticle dipolar associations.
Collapse
Affiliation(s)
- Lawrence J Hill
- Department of Chemistry and Biochemistry, University of Arizona , 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hill LJ, Richey NE, Sung Y, Dirlam PT, Griebel JJ, Shim IB, Pinna N, Willinger MG, Vogel W, Char K, Pyun J. Synthesis of ferromagnetic cobalt nanoparticle tipped CdSe@CdS nanorods: critical role of Pt-activation. CrystEngComm 2014. [DOI: 10.1039/c4ce00680a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Activation of CdSe@CdS nanorods by a platinum deposition reaction enables selective deposition of a single dipolar cobalt nanoparticle tip per nanorod.
Collapse
Affiliation(s)
- Lawrence J. Hill
- Department of Chemistry and Biochemistry
- University of Arizona
- Tucson, USA
| | | | - Younghun Sung
- World Class University Program for Chemical Convergence for Energy and Environment
- The National Creative Research Initiative Center for Intelligent Hybrids
- School of Chemical and Biological Engineering
- Seoul National University
- Seoul 151-744, Korea
| | - Philip T. Dirlam
- Department of Chemistry and Biochemistry
- University of Arizona
- Tucson, USA
| | - Jared J. Griebel
- Department of Chemistry and Biochemistry
- University of Arizona
- Tucson, USA
| | - In-Bo Shim
- Department of Nano and Electronic Physics
- Kookmin University
- Seoul, Korea
| | - Nicola Pinna
- Institut für Chemie
- Humboldt-Universität zu Berlin
- 12489 Berlin, Germany
| | - Marc-Georg Willinger
- Department of Inorganic Chemistry
- Fritz Haber Institute of the Max Planck Society
- Germany
| | - Walter Vogel
- Department of Chemistry
- National Central University
- Taiwan
| | - Kookheon Char
- World Class University Program for Chemical Convergence for Energy and Environment
- The National Creative Research Initiative Center for Intelligent Hybrids
- School of Chemical and Biological Engineering
- Seoul National University
- Seoul 151-744, Korea
| | - Jeffrey Pyun
- Department of Chemistry and Biochemistry
- University of Arizona
- Tucson, USA
- World Class University Program for Chemical Convergence for Energy and Environment
- The National Creative Research Initiative Center for Intelligent Hybrids
| |
Collapse
|