1
|
Zhang S, Zhou X, Nie Z, Su C, Lu Q, Wei J, Liu T, Chi M, Luo B, Liu Y, Cai C, Wang J, Gao C, Wang S, Nie S. Smart Lanceolate Surface with Fast Fog-Digesting Performance for Triboelectric Energy Harvesting. ACS NANO 2024. [PMID: 39088752 DOI: 10.1021/acsnano.4c05403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Utilizing the ubiquitous fog in nature to create decentralized energy-harvesting devices, free from geographical and hydrological constraints, presents an opportunity to foster sustainable power generation. Extracting electrical energy from fog relies heavily on fog-digesting performance. Improving the efficiency of fogwater utilization remains a formidable challenge for existing fogwater energy-harvesting technologies. Inspired by the water-harvesting behavior of Tillandsia leaves, a smart lanceolate surface is developed to harvest triboelectric energy by rapidly digesting fog. Such a surface exhibits capabilities in fog management, encompassing precise fog capture, transportation, and critical droplet separation. Specifically, fog droplets condense at hydrophilic sites of acylated cellulose ester, subsequently migrating toward the rear under Laplace pressure, thereby producing energy as they traverse through the tail end. Such architecture yields a brief voltage restoration period (with an average of 9.36 s), can rush the capacitor to 11.59 V within 20 s, and achieves a water-digestion rate of up to 71.05 kg/m2 h. This biomimetic approach enhances the water-digestion efficacy of the atmospheric water energy apparatus and offers perspectives on mitigating deficiencies in power resources.
Collapse
Affiliation(s)
- Song Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Xujun Zhou
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Zhichao Nie
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Chaolin Su
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Qizhao Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Jiajia Wei
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Tao Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Mingchao Chi
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Bin Luo
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yanhua Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chenchen Cai
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Jinlong Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Cong Gao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
2
|
Bandyopadhyay S, Bakli C, Mukherjee R, Chakraborty S. Damped Oscillatory Dynamics of a Drop Impacting over Oil-Infused Slippery Interfaces─Does the Oil Viscosity Slow it Down? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12826-12834. [PMID: 37642554 DOI: 10.1021/acs.langmuir.3c01689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A liquid drop impacting on a soft surface is known to exhibit fascinating dynamics that is distinctive from its bounce-back atop a rigid surface. However, while the early spreading of the drop subsequent to its immediate impact with a lubricating liquid layer appears to be reasonably well understood, the later events of retraction and eventual stabilization appear to be poorly addressed. Here, we bring out the nontrivial confluence of the solid substrate wettability and the liquid layer viscosity toward modulating the post-collision dynamics of an impinging liquid drop on a viscous oil-infused surface during its later phase of settlement before arriving at an equilibrium state. Our results reveal that despite an intuitive analogy with the classical phenomenon of damped oscillation, the drop, during its later stages of motion, undergoes dynamical events that may be nontrivially dictated by not only the relative viscosity of the impacting drop and the liquid layer but also the intrinsic wettability of the solid substrate, governing its post-impact settlement via a sequel of spreading-retraction cycles. As a consequence, the viscous liquid layer, instead of providing additional damping, may nonintuitively reduce the effective viscous dissipation so as to hasten the drop's final settlement. These results may turn out to be critical in designing engineered surfaces for tuning the movement of drops in a preferential pathway, bearing decisive implications in the functionalities of liquid lenses, inkjet printing, spray coating and cooling, and several other emerging applications in the realm of lubricated fluidic interfaces.
Collapse
Affiliation(s)
- Saumyadwip Bandyopadhyay
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
| | - Chirodeep Bakli
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Rabibrata Mukherjee
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
- Instability and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Suman Chakraborty
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
3
|
Raj M K, Priyadarshani J, Karan P, Bandyopadhyay S, Bhattacharya S, Chakraborty S. Bio-inspired microfluidics: A review. BIOMICROFLUIDICS 2023; 17:051503. [PMID: 37781135 PMCID: PMC10539033 DOI: 10.1063/5.0161809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
Biomicrofluidics, a subdomain of microfluidics, has been inspired by several ideas from nature. However, while the basic inspiration for the same may be drawn from the living world, the translation of all relevant essential functionalities to an artificially engineered framework does not remain trivial. Here, we review the recent progress in bio-inspired microfluidic systems via harnessing the integration of experimental and simulation tools delving into the interface of engineering and biology. Development of "on-chip" technologies as well as their multifarious applications is subsequently discussed, accompanying the relevant advancements in materials and fabrication technology. Pointers toward new directions in research, including an amalgamated fusion of data-driven modeling (such as artificial intelligence and machine learning) and physics-based paradigm, to come up with a human physiological replica on a synthetic bio-chip with due accounting of personalized features, are suggested. These are likely to facilitate physiologically replicating disease modeling on an artificially engineered biochip as well as advance drug development and screening in an expedited route with the minimization of animal and human trials.
Collapse
Affiliation(s)
- Kiran Raj M
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Jyotsana Priyadarshani
- Department of Mechanical Engineering, Biomechanics Section (BMe), KU Leuven, Celestijnenlaan 300, 3001 Louvain, Belgium
| | - Pratyaksh Karan
- Géosciences Rennes Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | - Saumyadwip Bandyopadhyay
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Soumya Bhattacharya
- Achira Labs Private Limited, 66b, 13th Cross Rd., Dollar Layout, 3–Phase, JP Nagar, Bangalore, Karnataka 560078, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
4
|
Kao LH, Lin WC, Huang CW, Tsai PS. Fabrication of Robust and Effective Oil/Water Separating Superhydrophobic Textile Coatings. MEMBRANES 2023; 13:401. [PMID: 37103828 PMCID: PMC10146041 DOI: 10.3390/membranes13040401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
A superhydrophobic (SH) surface is typically constructed by combining a low-surface-energy substance and a high-roughness microstructure. Although these surfaces have attracted considerable attention for their potential applications in oil/water separation, self-cleaning, and anti-icing devices, fabricating an environmentally friendly superhydrophobic surface that is durable, highly transparent, and mechanically robust is still challenging. Herein, we report a facile painting method to fabricate a new micro/nanostructure containing ethylenediaminetetraacetic acid/poly(dimethylsiloxane)/fluorinated SiO2 (EDTA/PDMS/F-SiO2) coatings on the surface of a textile with two different sizes of SiO2 particles, which have high transmittance (>90%) and mechanical robustness. The different-sized SiO2 particles were employed to construct the rough micro/nanostructure, fluorinated alkyl silanes were employed as low-surface-energy materials, PDMS was used for its heat-durability and wear resistance, and ETDA was used to strengthen the adhesion between the coating and textile. The obtained surfaces showed excellent water repellency, with a water contact angle (WCA) greater than 175° and a sliding angle (SA) of 4°. Furthermore, the coating retained excellent durability and remarkable superhydrophobicity for oil/water separation, abrasion resistance, ultraviolet (UV) light irradiation stability, chemical stability, self-cleaning, and antifouling under various harsh environments.
Collapse
Affiliation(s)
- Li-Heng Kao
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Wei-Chen Lin
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Chao-Wei Huang
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
| | - Ping-Szu Tsai
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Tagliaro I, Seccia S, Pellegrini B, Bertini S, Antonini C. Chitosan-based coatings with tunable transparency and superhydrophobicity: A solvent-free and fluorine-free approach by stearoyl derivatization. Carbohydr Polym 2023; 302:120424. [PMID: 36604086 DOI: 10.1016/j.carbpol.2022.120424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
One of the current greatest challenges in materials science and technology is the development of safe- and sustainable-by-design coatings with enhanced functionalities, e.g. to substitute fluorinated substances raising concerns for their potential hazard on human health. Bio-based polymeric coatings represent a promising route with a high potential. In this study, we propose an innovative sustainable method for fabricating coatings based on chitosan with modified functionality, with a fine-tuning of coating properties, namely transparency and superhydrophobicity. The process consists in two main steps: i) fluorine-free modification of chitosan functional groups with stearoyl chloride and freeze-drying to obtain a superhydrophobic powder, ii) coating deposition using a novel solvent-free approach through a thermal treatment. The modified chitosan is characterized to assess its chemico-physical properties and confirm the functionality modification with fatty acid tails. The deposition method enables tuning the coating properties of transparency and superhydrophobicity, maintaining good durability.
Collapse
Affiliation(s)
- Irene Tagliaro
- Department of Materials Science, University of Milano-Bicocca, 20125 Milan, Italy.
| | - Stefano Seccia
- Department of Materials Science, University of Milano-Bicocca, 20125 Milan, Italy.
| | - Beatrice Pellegrini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milan, Italy; Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Carbohydrate Science Department, 20133 Milan, Italy.
| | - Sabrina Bertini
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Carbohydrate Science Department, 20133 Milan, Italy.
| | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milan, Italy.
| |
Collapse
|
6
|
Li S, Bista P, Weber SAL, Kappl M, Butt HJ. Spontaneous Charging of Drops on Lubricant-Infused Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12610-12616. [PMID: 36190842 PMCID: PMC9583601 DOI: 10.1021/acs.langmuir.2c02085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/21/2022] [Indexed: 06/16/2023]
Abstract
When a drop of a polar liquid slides over a hydrophobic surface, it acquires a charge. As a result, the surface charges oppositely. For applications such as the generation of electric energy, lubricant-infused surfaces (LIS) may be important because they show a low friction for drops. However, slide electrification on LIS has not been studied yet. Here, slide electrification on lubricant-infused surfaces was studied by measuring the charge generated by series of water drops sliding down inclined surfaces. As LIS, we used PDMS-coated glass with micrometer-thick silicone oil films on top. For PDMS-coated glass without lubricant, the charge for the first drop is highest. Then it decreases and saturates at a steady state charge per drop. With lubricant, the drop charge starts from 0, then it increases and reaches a maximum charge per drop. Afterward, it decreases again before reaching its steady-state value. This dependency is not a unique phenomenon for lubricant-infused PDMS; it also occurs on lubricant-infused micropillar surfaces. We attribute this dependency of charge on drop numbers to a change in surface conductivity and depletion of lubricant. These findings are helpful for understanding the charge process and optimizing solid-liquid nanogenerator devices in applications.
Collapse
|
7
|
|
8
|
Gong Z, Su Z, Liu X, Pan D, Liu J, Zheng H, Joo SW. Boosting Electrically Actuated Manipulation of Water Droplets on Lubricated Surfaces through a Corona Discharge. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:400-405. [PMID: 33356299 DOI: 10.1021/acs.langmuir.0c03048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Controllable liquid transportation is of great value in various practical applications. Here, we experimentally demonstrate a method of actuating high-speed droplet transport with large manipulation controllability on lubricated surfaces using a corona discharge generated by a simple needle-plate electrode configuration. Linear motion of droplets is realized with a maximum velocity of 30 mm/s. Factors affecting the velocity of these droplets are analyzed systematically, and the mechanism of droplet transport is explained. The lubrication film flow induced by charge deposition is shown to be the dominating factor in the droplet manipulation controllability. The new method presented here opens a new path of high-performance manipulation of liquid droplets by controlling the lubrication liquid film flow with charge deposition.
Collapse
Affiliation(s)
- Zheng Gong
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Zhenpeng Su
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaofeng Liu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Di Pan
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Jie Liu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Huai Zheng
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, South Korea
| |
Collapse
|
9
|
Baumli P, D'Acunzi M, Hegner KI, Naga A, Wong WSY, Butt HJ, Vollmer D. The challenge of lubricant-replenishment on lubricant-impregnated surfaces. Adv Colloid Interface Sci 2021; 287:102329. [PMID: 33302056 DOI: 10.1016/j.cis.2020.102329] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 11/18/2022]
Abstract
Lubricant-impregnated surfaces are two-component surface coatings. One component, a fluid called the lubricant, is stabilized at a surface by the second component, the scaffold. The scaffold can either be a rough solid or a polymeric network. Drops immiscible with the lubricant, hardly pin on these surfaces. Lubricant-impregnated surfaces have been proposed as candidates for various applications, such as self-cleaning, anti-fouling, and anti-icing. The proposed applications rely on the presence of enough lubricant within the scaffold. Therefore, the quality and functionality of a surface coating are, to a large degree, given by the extent to which it prevents lubricant-depletion. This review summarizes the current findings on lubricant-depletion, lubricant-replenishment, and the resulting understanding of both processes. A multitude of different mechanisms can cause the depletion of lubricant. Lubricant can be taken along by single drops or be sheared off by liquid flowing across. Nano-interstices and scaffolds showing good chemical compatibility with the lubricant can greatly delay lubricant depletion. Often, depletion of lubricant cannot be avoided under dynamic conditions, which warrants lubricant-replenishment strategies. The strategies to replenish lubricant are presented and range from spraying or stimuli-responsive release to built-in reservoirs.
Collapse
Affiliation(s)
- Philipp Baumli
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Maria D'Acunzi
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina I Hegner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Abhinav Naga
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - William S Y Wong
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Doris Vollmer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
10
|
Biomimicking properties of cellulose nanofiber under ethanol/water mixture. Sci Rep 2020; 10:21070. [PMID: 33273623 PMCID: PMC7712784 DOI: 10.1038/s41598-020-78100-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/20/2020] [Indexed: 11/08/2022] Open
Abstract
The two types of cellulose nanofiber (CNF) surface characteristics were evaluated by oil contact angle under ethanol-water solution at several concentrations as well as in air. Wood pulp-based 2,2,6,6-tetramethylpiperidine-1-oxylradical (TEMPO)-oxidized cellulose nanofiber (TOCNF) sheets and bamboo-derived mechanical counter collision cellulose nanofiber (ACC-CNF) sheets were fabricated by casting followed by drying. The CNF shows underwater superoleophobic mimicking fish skin properties and slippery surface mimicking Nepenthes pitcher. The underwater superoleophobic properties of CNF was evaluated theoretically and experimentally. The theoretical calculation and experimental results of contact angle showed a large deviation. The roughness, zeta potential, and water absorption at different concentrations were key factors that determine the deviation. Antifouling investigation revealed that CNF was a good candidate for antifouling material.
Collapse
|
11
|
Fabrication of Ultralow Ice-Adhesion Slippery Liquid Infused Porous Surfaces on Aluminum Alloy (7075-T651). COATINGS 2020. [DOI: 10.3390/coatings10111025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Slippery liquid infused porous surfaces (SLIPS) have been considered to be potential and effective method for anti-icing. Much work needed to be done for the application in field. In this study, SLIPS were successfully fabricated on 7075-T651 aluminum alloy by anodizing in phosphoric acid solution with three different voltage parameters and coating lubricant. Then the most suitable anodization parameters of samples were selected through the anti-icing performance tests. The best as-prepared surface exhibited ultralow ice-adhesion strength, which reduced from 261 to 6 kPa. Meanwhile, the freezing time of water-drop on aluminum alloy surfaces have been dramatically delayed at −5 and −10 °C (humidity of 75% ± 5%), respectively. Moreover, the durability of the SLIPS have also been investigated. Cycles of icing/deicing, mechanical damage, thermal and UV exposure were used to investigate the durability of SLIPS, and SLIPS could still show low ice-adhesion strength.
Collapse
|
12
|
Blanken N, Saleem MS, Antonini C, Thoraval MJ. Rebound of self-lubricating compound drops. SCIENCE ADVANCES 2020; 6:eaay3499. [PMID: 32201721 PMCID: PMC7069704 DOI: 10.1126/sciadv.aay3499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/13/2019] [Indexed: 06/02/2023]
Abstract
Drop impact on solid surfaces is encountered in numerous natural and technological processes. Although the impact of single-phase drops has been widely explored, the impact of compound drops has received little attention. Here, we demonstrate a self-lubrication mechanism for water-in-oil compound drops impacting on a solid surface. Unexpectedly, the core water drop rebounds from the surface below a threshold impact velocity, irrespective of the substrate wettability. This is interpreted as the result of lubrication from the oil shell that prevents contact between the water core and the solid surface. We combine side and bottom view high-speed imaging to demonstrate the correlation between the water core rebound and the oil layer stability. A theoretical model is developed to explain the observed effect of compound drop geometry. This work sets the ground for precise complex drop deposition, with a strong impact on two- and three-dimensional printing technologies and liquid separation.
Collapse
Affiliation(s)
- Nathan Blanken
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Key Laboratory of Environment and Control for Flight Vehicle, International Center for Applied Mechanics, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Muhammad Saeed Saleem
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Key Laboratory of Environment and Control for Flight Vehicle, International Center for Applied Mechanics, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, Milan, Italy
- Cellulose and Wood Materials, Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland
| | - Marie-Jean Thoraval
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Key Laboratory of Environment and Control for Flight Vehicle, International Center for Applied Mechanics, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
13
|
Electrospun nanofibre membrane based transparent slippery liquid-infused porous surfaces with icephobic properties. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124177] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Bandyopadhyay S, Sriram SM, Parihar V, Das Gupta S, Mukherjee R, Chakraborty S. Tunable adhesion and slip on a bio-mimetic sticky soft surface. SOFT MATTER 2019; 15:9031-9040. [PMID: 31637378 DOI: 10.1039/c9sm01680e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Simultaneous tuning of wettability and adhesion of a surface requires intricate procedures for altering the interfacial structures. Here, we present a simple method for preparing a stable slippery surface, with an intrinsic capability of varying its adhesion characteristics. Cross-linked PDMS, an inherent hydrophobic material commonly used for microfluidic applications, is used to replicate the structures on the surface of a rose petal which acts as a high adhesion solid base and is subsequently oleoplaned with silicone oil. Our results demonstrate that the complex hierarchical rose petal structures can arrest dewetting of the silicone oil on the cross linked PDMS base by anchoring the oil film strongly even under flow. Further, by tuning the extent of submergence of the rose petal structures with silicone oil, we could alter the adhesion characteristics of the surface on demand, while retaining its slippery characteristics for a wide range of the pertinent parameters. We have also demonstrated the possible fabrication of gradient adhesion surfaces. This, in turn, may find a wide variety of applications in water harvesting, droplet maneuverability and no-loss transportation in resource-limited settings.
Collapse
Affiliation(s)
- Saumyadwip Bandyopadhyay
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, 721 302, West Bengal, India.
| | - S M Sriram
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal 575025, Karnataka, India
| | - Vartika Parihar
- Instability & Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, 721302, West Bengal, India.
| | - Sunando Das Gupta
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, 721 302, West Bengal, India. and Instability & Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, 721302, West Bengal, India.
| | - Rabibrata Mukherjee
- Instability & Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, 721302, West Bengal, India.
| | - Suman Chakraborty
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, 721 302, West Bengal, India. and Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, 721302, West Bengal, India
| |
Collapse
|
15
|
Cui W, Pakkanen TA. Icephobic performance of one-step silicone-oil-infused slippery coatings: Effects of surface energy, oil and nanoparticle contents. J Colloid Interface Sci 2019; 558:251-258. [PMID: 31593858 DOI: 10.1016/j.jcis.2019.09.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 12/18/2022]
Abstract
HYPOTHESIS State-of-the-art superhydrophobic surfaces (SHSs) usually do not function in high humidity and frosty climate conditions. Lubricant-infused slippery surfaces (LISSs) with a homogeneous and ultraslippery surface are expected to be a reliable icephobic technique. Hence, the fabrication of simple and scalable bioinspired LISSs is important for practical applications. EXPERIMENTS Durable one-step LISSs consisting of silicone oil and polymer mixtures were fabricated. A grid map based on added oil and silica nanoparticles was developed to tune wettability, morphology, and slippery behavior of surfaces. A similar framework for ice adhesion of lubricant-infused coatings was also presented for the design of optimal icephobic materials. FINDINGS LISSs with slight hydrophobicity yield slippery properties, resulting in an order of magnitude lower ice adhesion compared to SHSs. The stable 20-w% silicone-oil-infused slippery coating with slight hydrophobicity and silica nanoparticles was found to be effective in anti-icing. The nanoparticles firmly anchor the oil overlayer and eliminate contamination by drying the surface. The LISSs made of polymers with surface energy ranging from 29 to 31 mJ/m2 show the potential to achieve low ice adhesion. As a result, the use of systematic frameworks highlights the role of material parameters. One-production strategy can be broadly used to design icephobic materials.
Collapse
Affiliation(s)
- Wenjuan Cui
- Department of Chemistry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Tapani A Pakkanen
- Department of Chemistry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland.
| |
Collapse
|
16
|
Agrawal P, Salomons TT, Chiriac DS, Ross AC, Oleschuk RD. Facile Actuation of Organic and Aqueous Droplets on Slippery Liquid-Infused Porous Surfaces for the Application of On-Chip Polymer Synthesis and Liquid-Liquid Extraction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28327-28335. [PMID: 31291086 DOI: 10.1021/acsami.9b08849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Digital microfluidics employs water-repellant surfaces to exquisitely manipulate droplets of water for chemical analysis. However, the actuation and manipulation of organic droplets is still relatively unexplored as it is significantly more difficult to synthesize organic-repellent surfaces compared to water-repellent surfaces. Here, we present the fabrication of slippery liquid-infused porous surfaces (SLIPS) based on a porous polymer monolithic approach. The synthesized SLIPS were able to repel organic liquids such as hexane and methanol with a contact angle of 42.1 ± 0.4° and 69.0 ± 1.8°, respectively, as well as water with a contact angle of 115.8 ± 0.8°. More importantly for digital microfluidic applications, the sliding angle of liquids tested was between 4° and 6°. As a result, droplets containing magnetically susceptible material could be facilely manipulated on the SLIPS surface. A systematic actuation study was carried out to explore how actuation parameters including speed, paramagnetic particle (PMP) concentrations, and droplet volume impacted the outcomes (droplet actuation, disengagement, and PMP extraction). Two different applications were used to demonstrate the utility of actuating organic droplets on SLIPS surfaces including on-chip liquid-liquid extractions of natural products (NPs) from marine bacteria and droplet-based polymer synthesis with different polymerization conditions. Both applications employ an aqueous droplet and organic droplet interface at which either phase transfer or a chemical reaction is carried out. Two NPs (prodigiosin from Pseudoalteromonas rubra and violacein from Pseudoalteromonas luteoviolacea) were extracted, from aqueous droplets containing the bacteria, into butanol droplets and characterized with matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS). Nylon 6,6 was synthesized on-chip via magnetic actuation of organic droplets containing adipoyl chloride and hexamethylamine. Relative intensities of the characteristic polymer masses suggest that droplet-based microfluidic synthesis on slips can be used to probe reaction conditions. The compatibility of SLIPS with both aqueous and organic solutions opens up a wider number of droplet-based sample preparation protocols and chemical transformations.
Collapse
Affiliation(s)
- Prashant Agrawal
- Department of Chemistry , Queen's University , Kingston K7L 3N6 , Ontario , Canada
| | - Timothy T Salomons
- Department of Chemistry , Queen's University , Kingston K7L 3N6 , Ontario , Canada
| | - Dragos S Chiriac
- Department of Chemistry , Queen's University , Kingston K7L 3N6 , Ontario , Canada
| | - Avena Clara Ross
- Department of Chemistry , Queen's University , Kingston K7L 3N6 , Ontario , Canada
| | | |
Collapse
|
17
|
Jamil MI, Ali A, Haq F, Zhang Q, Zhan X, Chen F. Icephobic Strategies and Materials with Superwettability: Design Principles and Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15425-15444. [PMID: 30445813 DOI: 10.1021/acs.langmuir.8b03276] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ice formation and accretion on surfaces is a serious economic issue in energy supply and transportation. Recent strategies for developing icephobic surfaces are intimately associated with superwettability. Commonly, the superwettability of icephobic materials depends on their surface roughness and chemical composition. This article critically categorizes the possible strategies to mitigate icing problems from daily life. The wettability and classical nucleation theories are used to characterize the icephobic surfaces. Thermodynamically, the advantages/disadvantages of superhydrophobic surfaces are discussed to explain icephobic behavior. The importance of elasticity, slippery liquid-infused porous surfaces (SLIPSs), amphiphilicity, antifreezing protein, organogels, and stimuli-responsive materials has been highlighted to induce icephobic performance. In addition, the design principles and mechanism to fabricate icephobic surfaces with superwettability are explored and summarized.
Collapse
Affiliation(s)
- Muhammad Imran Jamil
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Abid Ali
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Fazal Haq
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Qinghua Zhang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Xiaoli Zhan
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Fengqiu Chen
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
18
|
Pham QN, Zhang S, Montazeri K, Won Y. Droplets on Slippery Lubricant-Infused Porous Surfaces: A Macroscale to Nanoscale Perspective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14439-14447. [PMID: 30372082 DOI: 10.1021/acs.langmuir.8b02765] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A recent design approach in creating super-repellent surfaces through slippery surface lubrication offers tremendous liquid-shedding capabilities. Previous investigations have provided significant insights into droplet-lubricant interfacial behaviors that govern antiwetting properties but have often studied using macroscale droplets. Despite drastically different governing characteristics of ultrasmall droplets on slippery lubricated surfaces, little is known about the effects at the micro- and nanoscale. In this investigation, we impregnate a three-dimensionally, well-ordered porous metal architecture with a lubricant to confirm durable slippery surfaces. We then reduce the droplet size to a nanoliter range and experimentally compare the droplet behaviors at different length scales. By experimentally varying the lubricant thickness levels, we also reveal that the effect of lubricant wetting around ultrasmall droplets is intensely magnified, which significantly affects the transient droplet dynamics. Molecular dynamics computations further examine the ultrasmall droplets with varying lubricant levels or pore cut levels at the nanoscale. The combined experimental and computational work provides insights into droplet interfacial phenomena on slippery surfaces from a macroscale to nanoscale perspective.
Collapse
|
19
|
Li Q, Guo Z. Lubricant-infused slippery surfaces: Facile fabrication, unique liquid repellence and antireflective properties. J Colloid Interface Sci 2018; 536:507-515. [PMID: 30384056 DOI: 10.1016/j.jcis.2018.10.083] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 10/28/2022]
Abstract
Versatile biomimetic materials possess exceptional functions to address practical challenges in a wide variety of industries. Lubricant-infused slippery (LIS) surfaces that imitate the microstructure of carnivorous nepenthes can repel water and various organic solutions. These materials are manufactured via the infusion of lubricant oil into porous surfaces, a process which yields interfaces that allow other fluids that contact those surfaces to slide off readily. Herein, a facile spin-coating strategy was introduced to construct LIS surfaces. Three kinds of silanes (Tetraethylorthosilicat (TEOS), vinyltriethoxysilane (VTES) and 1H,1H,2H,2H-perfluoroalkyltriethoxysilanes (POTS)) and a UV-curing adhesive were adopted to fabricate an omniphobic coating. After the lubricant (perfluoroalkylpolyether (PFPE)) infusion, the prepared LIS surfaces exhibited an excellent liquid repellent property and positive anti-reflectivity, self-cleaning, anti-icing, anti-corrosion and mechanical resistance properties. The results of this research indicated that this LIS surface can facilitate the manufacture of transparent and multi-functional slippery materials by means of straightforward procedures.
Collapse
Affiliation(s)
- Qi Li
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.
| |
Collapse
|
20
|
Chen L, Bonaccurso E, Gambaryan-Roisman T, Starov V, Koursari N, Zhao Y. Static and dynamic wetting of soft substrates. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2017.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Muschi M, Brudieu B, Teisseire J, Sauret A. Drop impact dynamics on slippery liquid-infused porous surfaces: influence of oil thickness. SOFT MATTER 2018; 14:1100-1107. [PMID: 29333557 DOI: 10.1039/c7sm02026k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Slippery liquid-infused porous surfaces (SLIPS) are porous nanostructures impregnated with a low surface tension lubricant. They have recently shown great promise in various applications that require non-wettable superhydrophobic surfaces. In this paper, we investigate experimentally the influence of the oil thickness on the wetting properties and drop impact dynamics of new SLIPS. By tuning the thickness of the oil layer deposited through spin-coating, we show that a sufficiently thick layer of oil is necessary to avoid dewetting spots on the porous nanostructure and thus increasing the homogeneity of the liquid distribution. Drop impact on these surfaces is investigated with a particular emphasis on the spreading and rebound dynamics when varying the oil thickness and the Weber number.
Collapse
Affiliation(s)
- M Muschi
- Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain, 93303 Aubervilliers, France.
| | | | | | | |
Collapse
|
22
|
Baidya A, Das SK, Pradeep T. An Aqueous Composition for Lubricant-Free, Robust, Slippery, Transparent Coatings on Diverse Substrates. GLOBAL CHALLENGES (HOBOKEN, NJ) 2018; 2:1700097. [PMID: 31565323 PMCID: PMC6607131 DOI: 10.1002/gch2.201700097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/05/2017] [Indexed: 06/10/2023]
Abstract
Transparent, durable coating materials that show excellent liquid repellency, both water and oil, have multiple applications in science and technology. In this perspective, herein, a simple aqueous chemical formulation is developed that provides a transparent slippery coating without any lubricating fluids, on various substrates extended over large areas. The coatings repel liquids having a range of polarity (solvents) as well as viscosity (oils and emulsions) and withstand mechanical strains. Exceptional optical transparency of 99% in the range of 350-900 nm along with high stability even after cyclic temperature, frost, exposure to sunlight, and corrosive liquids like aqua regia treatments, makes this material unique and widens its applicability in different fields. Besides, being a liquid, it can be coated on an array of substrates independent of their underlying topography, by various easily available techniques. Aside from these interesting properties, the coating is demonstrated as a potential solution contributing to the remediation of one of the biggest global issues of tomorrow: affordable drinking water. The coated surface can capture 5 L of water per day per m2 at 27 °C when exposed to an atmosphere of 63% relative humidity.
Collapse
Affiliation(s)
- Avijit Baidya
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE)Department of ChemistryIndian Institute of Technology MadrasChennai600 036India
- Department of Mechanical EngineeringIndian Institute of Technology MadrasChennai600036India
| | - Sarit Kumar Das
- Department of Mechanical EngineeringIndian Institute of Technology MadrasChennai600036India
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE)Department of ChemistryIndian Institute of Technology MadrasChennai600 036India
| |
Collapse
|
23
|
Yildirim Erbil H. Use of Liquid Ad(ab)sorbing Surfaces for Anti-icing Applications. ADVANCES IN POLYMER SCIENCE 2017. [DOI: 10.1007/12_2017_41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
24
|
Fabrication of highly transparent slippery surfaces with omniphobicity by an improved process using non-solvent-induced phase separation. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4255-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Sotiri I, Overton JC, Waterhouse A, Howell C. Immobilized liquid layers: A new approach to anti-adhesion surfaces for medical applications. Exp Biol Med (Maywood) 2016; 241:909-18. [PMID: 27022136 PMCID: PMC4950346 DOI: 10.1177/1535370216640942] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Surface fouling and undesired adhesion are nearly ubiquitous problems in the medical field, complicating everything from surgeries to routine daily care of patients. Recently, the concept of immobilized liquid (IL) interfaces has been gaining attention as a highly versatile new approach to antifouling, with a wide variety of promising applications in medicine. Here, we review the general concepts behind IL layers and discuss the fabrication strategies on medically relevant materials developed so far. We also summarize the most important findings to date on applications of potential interest to the medical community, including the use of these surfaces as anti-thrombogenic and anti-bacterial materials, anti-adhesive textiles, high-performance coatings for optics, and as unique platforms for diagnostics. Although the full potential and pitfalls of IL layers in medicine are just beginning to be explored, we believe that this approach to anti-adhesive surfaces will prove broadly useful for medical applications in the future.
Collapse
Affiliation(s)
- Irini Sotiri
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115 USA John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Jonathan C Overton
- Department of Chemical and Biological Engineering, University of Maine, Orono, ME 04469, USA
| | - Anna Waterhouse
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115 USA
| | - Caitlin Howell
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115 USA John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA Department of Chemical and Biological Engineering, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
26
|
Cao M, Guo D, Yu C, Li K, Liu M, Jiang L. Water-Repellent Properties of Superhydrophobic and Lubricant-Infused "Slippery" Surfaces: A Brief Study on the Functions and Applications. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3615-23. [PMID: 26447551 DOI: 10.1021/acsami.5b07881] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bioinspired water-repellent materials offer a wealth of opportunities to solve scientific and technological issues. Lotus-leaf and pitcher plants represent two types of antiwetting surfaces, i.e., superhydrophobic and lubricant-infused "slippery" surfaces. Here we investigate the functions and applications of those two types of interfacial materials. The superhydrophobic surface was fabricated on the basis of a hydrophobic fumed silica nanoparticle/poly(dimethylsiloxane) composite layer, and the lubricant-infused "slippery" surface was prepared on the basis of silicone oil infusion. The fabrication, characteristics, and functions of both substrates were studied, including the wettability, transparency, adhesive force, dynamic droplet impact, antifogging, self-cleaning ability, etc. The advantages and disadvantages of the surfaces were briefly discussed, indicating the most suitable applications of the antiwetting materials. This contribution is aimed at providing meaningful information on how to select water-repellent substrates to solve the scientific and practical issues, which can also stimulate new thinking for the development of antiwetting interfacial materials.
Collapse
Affiliation(s)
- Moyuan Cao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University , Beijing, P. R. China
| | - Dawei Guo
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University , Beijing, P. R. China
| | | | | | - Mingjie Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University , Beijing, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University , Beijing, P. R. China
| |
Collapse
|
27
|
Pant R, Roy PK, Nagarajan AK, Khare K. Slipperiness and stability of hydrophilic surfaces coated with a lubricating fluid. RSC Adv 2016. [DOI: 10.1039/c5ra23140j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stable slippery lubricating-fluid-coated surfaces on smooth hydrophilic silicon surfaces.
Collapse
Affiliation(s)
- Reeta Pant
- Department of Physics
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Pritam Kumar Roy
- Department of Physics
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | | | - Krishnacharya Khare
- Department of Physics
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
28
|
Moriya T, Manabe K, Tenjimbayashi M, Suwabe K, Tsuchiya H, Matsubayashi T, Navarrini W, Shiratori S. A superrepellent coating with dynamic fluorine chains for frosting suppression: effects of polarity, coalescence and ice nucleation free energy barrier. RSC Adv 2016. [DOI: 10.1039/c6ra18483a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We designed 3 types oleophobic smooth surface (DTMS, FAS13, FAS17) with dynamic molecular chains and investigated their anti-frosting property under freezing conditions.
Collapse
Affiliation(s)
- Takeo Moriya
- Center for Material Design Science
- School of Integrated Design Engineering
- Keio University
- Yokohama
- Japan
| | - Kengo Manabe
- Center for Material Design Science
- School of Integrated Design Engineering
- Keio University
- Yokohama
- Japan
| | - Mizuki Tenjimbayashi
- Center for Material Design Science
- School of Integrated Design Engineering
- Keio University
- Yokohama
- Japan
| | - Ken Suwabe
- Center for Material Design Science
- School of Integrated Design Engineering
- Keio University
- Yokohama
- Japan
| | - Hirotaka Tsuchiya
- Center for Material Design Science
- School of Integrated Design Engineering
- Keio University
- Yokohama
- Japan
| | - Takeshi Matsubayashi
- Center for Material Design Science
- School of Integrated Design Engineering
- Keio University
- Yokohama
- Japan
| | - Walter Navarrini
- Politecnico di Milano
- Dipartimento di Chimica
- Materiali e Ingegneria Chimica
- 20131 Milano
- Italy
| | - Seimei Shiratori
- Center for Material Design Science
- School of Integrated Design Engineering
- Keio University
- Yokohama
- Japan
| |
Collapse
|
29
|
Ozbay S, Yuceel C, Erbil HY. Improved Icephobic Properties on Surfaces with a Hydrophilic Lubricating Liquid. ACS APPLIED MATERIALS & INTERFACES 2015; 7:22067-22077. [PMID: 26375386 DOI: 10.1021/acsami.5b07265] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Slippery liquid-infused porous surfaces were developed recently for icephobic surface applications. Perfluorinated liquids, silicone oil, hydrocarbon, and water were used as lubricating liquids to form a continuous layer on a suitable substrate to prevent icing. However, ice accretion performances of these surfaces have not been reported previously depending on the type of the lubricant. In this work, fluorinated aliphatics, polyalphaolefin, silicone oil, and decamethylcyclopenta siloxane were used as hydrophobic lubricants; water, ethylene glycol, formamide, and water-glycerine mixture were used as hydrophilic lubricants to be impregnated by hydrophobic polypropylene and hydrophilic cellulose-based filter paper surfaces; ice accretion, drop freezing delay time, and ice adhesion strength properties of these surfaces were examined; and the results were compared to those of the reference surfaces such as aluminum, copper, polypropylene, and polytetrafluoroethylene. An ice accretion test method was also developed to investigate the increase of the mass of formed ice gravimetrically by spraying supercooled water onto these surfaces at different subzero temperatures ranging between -1 and -5 °C. It was determined that hydrophilic solvents (especially a water-glycerine mixture) that impregnated hydrophilic porous surfaces would be a promising candidate for anti-icing applications at -2 °C and 56-83% relative humidity because ice accretion and ice adhesion strength properties of these surface decreased simultaneously in these conditions.
Collapse
Affiliation(s)
- Salih Ozbay
- Department of Chemical Engineering, Gebze Technical University , Gebze 41400, Kocaeli, Turkey
| | - Cigdem Yuceel
- Department of Chemical Engineering, Gebze Technical University , Gebze 41400, Kocaeli, Turkey
| | - H Yildirim Erbil
- Department of Chemical Engineering, Gebze Technical University , Gebze 41400, Kocaeli, Turkey
| |
Collapse
|
30
|
Wang C, Venditti RA, Zhang K. Tailor-made functional surfaces based on cellulose-derived materials. Appl Microbiol Biotechnol 2015; 99:5791-9. [PMID: 26084889 DOI: 10.1007/s00253-015-6722-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 01/30/2023]
Abstract
As one of the most abundant natural materials in nature, cellulose has revealed enormous potential for the construction of functional materials thanks to its sustainability, non-toxicity, biocompatibility, and biodegradability. Among many fascinating applications, functional surfaces based on cellulose-derived materials have attracted increasing interest recently, as platforms for diagnostics, sensoring, robust catalysis, water treatment, ultrafiltration, and anti-microbial surfaces. This mini-review attempts to cover the general methodology for the fabrication of functional cellulose surface and a few popular applications including bioactive and non-adhesive (i.e., anti-fouling and anti-microbial) surfaces.
Collapse
Affiliation(s)
- Chao Wang
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, 27695, USA
| | | | | |
Collapse
|
31
|
Zhao XF, Winter WT. Cellulose/Cellulose-Based Nanospheres: Perspectives and Prospective. Ind Biotechnol (New Rochelle N Y) 2015. [DOI: 10.1089/ind.2014.0030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xing Fei Zhao
- Department of Chemistry and Cellulose Research Institute, State University of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY
| | - William T. Winter
- Department of Chemistry and Cellulose Research Institute, State University of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY
| |
Collapse
|
32
|
Li J, Li L, Du X, Feng W, Welle A, Trapp O, Grunze M, Hirtz M, Levkin PA. Reactive superhydrophobic surface and its photoinduced disulfide-ene and thiol-ene (bio)functionalization. NANO LETTERS 2015; 15:675-81. [PMID: 25486338 DOI: 10.1021/nl5041836] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Reactive superhydrophobic surfaces are highly promising for biotechnological, analytical, sensor, or diagnostic applications but are difficult to realize due to their chemical inertness. In this communication, we report on a photoactive, inscribable, nonwettable, and transparent surface (PAINTS), prepared by polycondensation of trichlorovinylsilane to form thin transparent reactive porous nanofilament on a solid substrate. The PAINTS shows superhydrophobicity and can be conveniently functionalized with the photoclick thiol-ene reaction. In addition, we show for the first time that the PAINTS bearing vinyl groups can be easily modified with disulfides under UV irradiation. The effect of superhydrophobicity of PAINTS on the formation of high-resolution surface patterns has been investigated. The developed reactive superhydrophobic coating can find applications for surface biofunctionalization using abundant thiol or disulfide bearing biomolecules, such as peptides, proteins, or antibodies.
Collapse
Affiliation(s)
- Junsheng Li
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology , 76021 Karlsruhe, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Solomon BR, Khalil KS, Varanasi KK. Drag reduction using lubricant-impregnated surfaces in viscous laminar flow. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:10970-6. [PMID: 25144426 DOI: 10.1021/la5021143] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Lubricant-impregnated surfaces (LIS), where micro/nanotextured surfaces are impregnated with lubricating liquids, have received significant attention for their robust, superslippery properties. In this study, we systematically demonstrate the potential for LIS to reduce drag in laminar flows. We present a scaling model that incorporates the viscosity of the lubricant and elucidates the dependence of drag reduction on the ratio of the viscosity of the working fluid to that of the lubricant. We experimentally validate this dependence in a cone and plate rheometer and demonstrate a drag reduction of 16% and slip length of 18 μm in the case where the ratio of working fluid viscosity to lubricant viscosity is 260.
Collapse
Affiliation(s)
- Brian R Solomon
- Department of Mechanical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | | |
Collapse
|