1
|
Talekar S, Barrow CJ, Nguyen HC, Zolfagharian A, Zare S, Farjana SH, Macreadie PI, Ashraf M, Trevathan-Tackett SM. Using waste biomass to produce 3D-printed artificial biodegradable structures for coastal ecosystem restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171728. [PMID: 38492597 DOI: 10.1016/j.scitotenv.2024.171728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/02/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
The loss of ecosystem functions and services caused by rapidly declining coastal marine ecosystems, including corals and bivalve reefs and wetlands, around the world has sparked significant interest in interdisciplinary methods to restore these ecologically and socially important ecosystems. In recent years, 3D-printed artificial biodegradable structures that mimic natural life stages or habitat have emerged as a promising method for coastal marine restoration. The effectiveness of this method relies on the availability of low-cost biodegradable printing polymers and the development of 3D-printed biomimetic structures that efficiently support the growth of plant and sessile animal species without harming the surrounding ecosystem. In this context, we present the potential and pathway for utilizing low-cost biodegradable biopolymers from waste biomass as printing materials to fabricate 3D-printed biodegradable artificial structures for restoring coastal marine ecosystems. Various waste biomass sources can be used to produce inexpensive biopolymers, particularly those with the higher mechanical rigidity required for 3D-printed artificial structures intended to restore marine ecosystems. Advancements in 3D printing methods, as well as biopolymer modifications and blending to address challenges like biopolymer solubility, rheology, chemical composition, crystallinity, plasticity, and heat stability, have enabled the fabrication of robust structures. The ability of 3D-printed structures to support species colonization and protection was found to be greatly influenced by their biopolymer type, surface topography, structure design, and complexity. Considering limited studies on biodegradability and the effect of biodegradation products on marine ecosystems, we highlight the need for investigating the biodegradability of biopolymers in marine conditions as well as the ecotoxicity of the degraded products. Finally, we present the challenges, considerations, and future perspectives for designing tunable biomimetic 3D-printed artificial biodegradable structures from waste biomass biopolymers for large-scale coastal marine restoration.
Collapse
Affiliation(s)
- Sachin Talekar
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia; ARC Industrial Transformation Training Centre for Green Chemistry in Manufacturing, Deakin University, Waurn Ponds, Victoria 3216, Australia; Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Colin J Barrow
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia; ARC Industrial Transformation Training Centre for Green Chemistry in Manufacturing, Deakin University, Waurn Ponds, Victoria 3216, Australia; Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Hoang Chinh Nguyen
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia; Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Ali Zolfagharian
- School of Engineering, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Shahab Zare
- School of Engineering, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | | | - Peter I Macreadie
- Deakin Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Mahmud Ashraf
- School of Engineering, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Stacey M Trevathan-Tackett
- Deakin Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| |
Collapse
|
2
|
Wang G, Zhang Y, Kwong HK, Zheng M, Wu J, Cui C, Chan KWY, Xu C, Chen T. On-Site Melanoma Diagnosis Utilizing a Swellable Microneedle-Assisted Skin Interstitial Fluid Sampling and a Microfluidic Particle Dam for Visual Quantification of S100A1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306188. [PMID: 38417122 PMCID: PMC11040363 DOI: 10.1002/advs.202306188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/19/2024] [Indexed: 03/01/2024]
Abstract
Malignant melanoma (MM) is the most aggressive form of skin cancer. The delay in treatment will induce metastasis, resulting in a poor prognosis and even death. Here, a two-step strategy for on-site diagnosis of MM is developed based on the extraction and direct visual quantification of S100A1, a biomarker for melanoma. First, a swellable microneedle is utilized to extract S100A1 in skin interstitial fluid (ISF) with minimal invasion. After elution, antibody-conjugated magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) are introduced. A high expression level of S100A1 gives rise to a robust binding between MMPs and PMPs and reduces the number of free PMPs. By loading the reacted solution into the device with a microfluidic particle dam, the quantity of free PMPs after magnetic separation is displayed with their accumulation length inversely proportional to S100A1 levels. A limit of detection of 18.7 ng mL-1 for S100A1 is achieved. The animal experiment indicates that ISF-based S100A1 quantification using the proposed strategy exhibits a significantly higher sensitivity compared with conventional serum-based detection. In addition, the result is highly comparable with the gold standard enzyme-linked immunosorbent assay based on Lin's concordance correlation coefficient, suggesting the high practicality for routine monitoring of melanoma.
Collapse
Affiliation(s)
- Gaobo Wang
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
| | - Yuyue Zhang
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
| | - Hoi Kwan Kwong
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
| | - Mengjia Zheng
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
| | - Jianpeng Wu
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
| | - Chenyu Cui
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
- Hong Kong Centre for Cerebro‐Cardiovascular Health EngineeringRm 1115‐1119, Building 19W, 19 Science Park West AvenueHong Kong SAR999077China
| | - Kannie W. Y. Chan
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
- Hong Kong Centre for Cerebro‐Cardiovascular Health EngineeringRm 1115‐1119, Building 19W, 19 Science Park West AvenueHong Kong SAR999077China
| | - Chenjie Xu
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
| | - Ting‐Hsuan Chen
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
- City University of Hong Kong Shenzhen Research Institute8 Yuexing 1st Road, Shenzhen Hi‐Tech Industrial Park, Nanshan DistrictShenzhen518057China
- Hong Kong Centre for Cerebro‐Cardiovascular Health EngineeringRm 1115‐1119, Building 19W, 19 Science Park West AvenueHong Kong SAR999077China
| |
Collapse
|
3
|
Belyaeva L, Ludwig C, Lai YC, Chou CC, Shih CJ. Uniform, Strain-Free, Large-Scale Graphene and h-BN Monolayers Enabled by Hydrogel Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307054. [PMID: 37867241 DOI: 10.1002/smll.202307054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/05/2023] [Indexed: 10/24/2023]
Abstract
Translation of the unique properties of 2D monolayers from non-scalable micron-sized samples to macroscopic scale is a longstanding challenge obstructed by the substrate-induced strains, interface nonuniformities, and sample-to-sample variations inherent to the scalable fabrication methods. So far, the most successful strategies to reduce strain in graphene are the reduction of the interface roughness and lattice mismatch by using hexagonal boron nitride (h-BN), with the drawback of limited uniformity and applicability to other 2D monolayers, and liquid water, which is not compatible with electronic devices. This work demonstrates a new class of substrates based on hydrogels that overcome these limitations and excel h-BN and water substrates at strain relaxation enabling superiorly uniform and reproducible centimeter-sized sheets of unstrained monolayers. The ultimate strain relaxation and uniformity are rationalized by the extreme structural adaptability of the hydrogel surface owing to its high liquid content and low Young's modulus, and are universal to all 2D materials irrespective of their crystalline structure. Such platforms can be integrated into field effect transistors and demonstrate enhanced charge carrier mobilities in graphene. These results present a universal strategy for attaining uniform and strain-free sheets of 2D materials and underline the opportunities enabled by interfacing them with soft matter.
Collapse
Affiliation(s)
- Liubov Belyaeva
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, Zürich, CH-8093, Switzerland
| | - Cyril Ludwig
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, Zürich, CH-8093, Switzerland
| | - Yu-Cheng Lai
- Institute of Applied Mechanics, College of Engineering, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Chia-Ching Chou
- Institute of Applied Mechanics, College of Engineering, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Chih-Jen Shih
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, Zürich, CH-8093, Switzerland
| |
Collapse
|
4
|
Avgoustakis K, Angelopoulou A. Biomaterial-Based Responsive Nanomedicines for Targeting Solid Tumor Microenvironments. Pharmaceutics 2024; 16:179. [PMID: 38399240 PMCID: PMC10892652 DOI: 10.3390/pharmaceutics16020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Solid tumors are composed of a highly complex and heterogenic microenvironment, with increasing metabolic status. This environment plays a crucial role in the clinical therapeutic outcome of conventional treatments and innovative antitumor nanomedicines. Scientists have devoted great efforts to conquering the challenges of the tumor microenvironment (TME), in respect of effective drug accumulation and activity at the tumor site. The main focus is to overcome the obstacles of abnormal vasculature, dense stroma, extracellular matrix, hypoxia, and pH gradient acidosis. In this endeavor, nanomedicines that are targeting distinct features of TME have flourished; these aim to increase site specificity and achieve deep tumor penetration. Recently, research efforts have focused on the immune reprograming of TME in order to promote suppression of cancer stem cells and prevention of metastasis. Thereby, several nanomedicine therapeutics which have shown promise in preclinical studies have entered clinical trials or are already in clinical practice. Various novel strategies were employed in preclinical studies and clinical trials. Among them, nanomedicines based on biomaterials show great promise in improving the therapeutic efficacy, reducing side effects, and promoting synergistic activity for TME responsive targeting. In this review, we focused on the targeting mechanisms of nanomedicines in response to the microenvironment of solid tumors. We describe responsive nanomedicines which take advantage of biomaterials' properties to exploit the features of TME or overcome the obstacles posed by TME. The development of such systems has significantly advanced the application of biomaterials in combinational therapies and in immunotherapies for improved anticancer effectiveness.
Collapse
Affiliation(s)
- Konstantinos Avgoustakis
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
- Clinical Studies Unit, Biomedical Research Foundation Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece
| | - Athina Angelopoulou
- Department of Chemical Engineering, Polytechnic School, University of Patras, 26504 Patras, Greece
| |
Collapse
|
5
|
Muthukutty P, Woo HY, Ragothaman M, Yoo SY. Recent Advances in Cancer Immunotherapy Delivery Modalities. Pharmaceutics 2023; 15:pharmaceutics15020504. [PMID: 36839825 PMCID: PMC9967630 DOI: 10.3390/pharmaceutics15020504] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Immunotherapy is crucial in fighting cancer and achieving successful remission. Many novel strategies have recently developed, but there are still some obstacles to overcome before we can effectively attack the cancer cells and decimate the cancer environment by inducing a cascade of immune responses. To successfully demonstrate antitumor activity, immune cells must be delivered to cancer cells and exposed to the immune system. Such cutting-edge technology necessitates meticulously designed delivery methods with no loss or superior homing onto cancer environments, as well as high therapeutic efficacy and fewer adverse events. In this paper, we discuss recent advances in cancer immunotherapy delivery techniques, as well as their future prospects.
Collapse
Affiliation(s)
- Palaniyandi Muthukutty
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun Young Woo
- Department of Internal Medicine and Medical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Murali Ragothaman
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: or ; Tel.: +82-51-510-3402
| |
Collapse
|
6
|
Wu P, Han J, Gong Y, Liu C, Yu H, Xie N. Nanoparticle-Based Drug Delivery Systems Targeting Tumor Microenvironment for Cancer Immunotherapy Resistance: Current Advances and Applications. Pharmaceutics 2022; 14:pharmaceutics14101990. [PMID: 36297426 PMCID: PMC9612242 DOI: 10.3390/pharmaceutics14101990] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer immunotherapy has shown impressive anti-tumor activity in patients with advanced and early-stage malignant tumors, thus improving long-term survival. However, current cancer immunotherapy is limited by barriers such as low tumor specificity, poor response rate, and systemic toxicities, which result in the development of primary, adaptive, or acquired resistance. Immunotherapy resistance has complex mechanisms that depend on the interaction between tumor cells and the tumor microenvironment (TME). Therefore, targeting TME has recently received attention as a feasibility strategy for re-sensitizing resistant neoplastic niches to existing cancer immunotherapy. With the development of nanotechnology, nanoplatforms possess outstanding features, including high loading capacity, tunable porosity, and specific targeting to the desired locus. Therefore, nanoplatforms can significantly improve the effectiveness of immunotherapy while reducing its toxic and side effects on non-target cells that receive intense attention in cancer immunotherapy. This review explores the mechanisms of tumor microenvironment reprogramming in immunotherapy resistance, including TAMs, CAFs, vasculature, and hypoxia. We also examined whether the application of nano-drugs combined with current regimens is improving immunotherapy clinical outcomes in solid tumors.
Collapse
Affiliation(s)
- Peijie Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jun Han
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yanju Gong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Chao Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Han Yu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Correspondence: (H.Y.); (N.X.); Tel.:+86-158-8455-5293 (N.X.)
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
- Correspondence: (H.Y.); (N.X.); Tel.:+86-158-8455-5293 (N.X.)
| |
Collapse
|
7
|
Raju GSR, Pavitra E, Varaprasad GL, Bandaru SS, Nagaraju GP, Farran B, Huh YS, Han YK. Nanoparticles mediated tumor microenvironment modulation: current advances and applications. J Nanobiotechnology 2022; 20:274. [PMID: 35701781 PMCID: PMC9195263 DOI: 10.1186/s12951-022-01476-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
The tumor microenvironment (TME) plays a key role in cancer development and emergence of drug resistance. TME modulation has recently garnered attention as a potential approach for reprogramming the TME and resensitizing resistant neoplastic niches to existing cancer therapies such as immunotherapy or chemotherapy. Nano-based solutions have important advantages over traditional platform and can be specifically targeted and delivered to desired sites. This review explores novel nano-based approaches aimed at targeting and reprogramming aberrant TME components such as macrophages, fibroblasts, tumor vasculature, hypoxia and ROS pathways. We also discuss how nanoplatforms can be combined with existing anti-tumor regimens such as radiotherapy, immunotherapy, phototherapy or chemotherapy to enhance clinical outcomes in solid tumors.
Collapse
Affiliation(s)
- Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Eluri Pavitra
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Ganji Lakshmi Varaprasad
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | | | | | - Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
8
|
Lei R, Akins EA, Wong KCY, Repina NA, Wolf KJ, Dempsey GE, Schaffer DV, Stahl A, Kumar S. Multiwell Combinatorial Hydrogel Array for High-Throughput Analysis of Cell-ECM Interactions. ACS Biomater Sci Eng 2021; 7:2453-2465. [PMID: 34028263 DOI: 10.1021/acsbiomaterials.1c00065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Biophysical cues in the extracellular matrix (ECM) regulate cell behavior in a complex, nonlinear, and interdependent manner. To quantify these important regulatory relationships and gain a comprehensive understanding of mechanotransduction, there is a need for high-throughput matrix platforms that enable parallel culture and analysis of cells in various matrix conditions. Here we describe a multiwell hyaluronic acid (HA) platform in which cells are cultured on combinatorial arrays of hydrogels spanning a range of elasticities and adhesivities. Our strategy utilizes orthogonal photopatterning of stiffness and adhesivity gradients, with the stiffness gradient implemented by a programmable light illumination system. The resulting platform allows individual treatment and analysis of each matrix environment while eliminating contributions of haptotaxis and durotaxis. In human mesenchymal stem cells, our platform recapitulates expected relationships between matrix stiffness, adhesivity, and cell mechanosensing. We further applied the platform to show that as integrin ligand density falls, cell adhesion and migration depend more strongly on CD44-mediated interactions with the HA backbone. We anticipate that our system could bear great value for mechanistic discovery and screening where matrix mechanics and adhesivity are expected to influence phenotype.
Collapse
Affiliation(s)
- Ruoxing Lei
- Department of Chemistry, Latimer Hall, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Bioengineering, Stanley Hall, University of California, Berkeley, Berkeley, California 94720, United States
| | - Erin A Akins
- Department of Bioengineering, Stanley Hall, University of California, Berkeley, Berkeley, California 94720, United States.,University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Stanley Hall, Berkeley, California 94720, United States
| | - Kelly C Y Wong
- Department of Bioengineering, Stanley Hall, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nicole A Repina
- Department of Bioengineering, Stanley Hall, University of California, Berkeley, Berkeley, California 94720, United States.,University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Stanley Hall, Berkeley, California 94720, United States
| | - Kayla J Wolf
- Department of Bioengineering, Stanley Hall, University of California, Berkeley, Berkeley, California 94720, United States.,University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Stanley Hall, Berkeley, California 94720, United States
| | - Garrett E Dempsey
- Department of Nutritional Sciences and Toxicology, Morgan Hall, University of California, Berkeley, California 94720, United States
| | - David V Schaffer
- Department of Bioengineering, Stanley Hall, University of California, Berkeley, Berkeley, California 94720, United States.,University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Stanley Hall, Berkeley, California 94720, United States.,Department of Molecular and Cell Biology, Life Sciences Addition, University of California, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, Gilman Hall, University of California, Berkeley, Berkeley, California 94720, United States
| | - Andreas Stahl
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Stanley Hall, Berkeley, California 94720, United States.,Department of Nutritional Sciences and Toxicology, Morgan Hall, University of California, Berkeley, California 94720, United States
| | - Sanjay Kumar
- Department of Bioengineering, Stanley Hall, University of California, Berkeley, Berkeley, California 94720, United States.,University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Stanley Hall, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, Gilman Hall, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Bioengineering and Therapeutic Sciences, Byers Hall, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
9
|
Zhao Y, Zheng X, Zheng Y, Chen Y, Fei W, Wang F, Zheng C. Extracellular Matrix: Emerging Roles and Potential Therapeutic Targets for Breast Cancer. Front Oncol 2021; 11:650453. [PMID: 33968752 PMCID: PMC8100244 DOI: 10.3389/fonc.2021.650453] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence shows that the extracellular matrix (ECM) is an important regulator of breast cancer (BC). The ECM comprises of highly variable and dynamic components. Compared with normal breast tissue under homeostasis, the ECM undergoes many changes in composition and organization during BC progression. Induced ECM proteins, including fibrinogen, fibronectin, hyaluronic acid, and matricellular proteins, have been identified as important components of BC metastatic cells in recent years. These proteins play major roles in BC progression, invasion, and metastasis. Importantly, several specific ECM molecules, receptors, and remodeling enzymes are involved in promoting resistance to therapeutic intervention. Additional analysis of these ECM proteins and their downstream signaling pathways may reveal promising therapeutic targets against BC. These potential drug targets may be combined with new nanoparticle technologies. This review summarizes recent advances in functional nanoparticles that target the ECM to treat BC. Accurate nanomaterials may offer a new approach to BC treatment.
Collapse
Affiliation(s)
- Yunchun Zhao
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoling Zheng
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongquan Zheng
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yue Chen
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Zhang M, Yan S, Xu X, Yu T, Guo Z, Ma M, Zhang Y, Gu Z, Feng Y, Du C, Wan M, Hu K, Han X, Gu N. Three-dimensional cell-culture platform based on hydrogel with tunable microenvironmental properties to improve insulin-secreting function of MIN6 cells. Biomaterials 2021; 270:120687. [PMID: 33540170 DOI: 10.1016/j.biomaterials.2021.120687] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/10/2020] [Accepted: 01/18/2021] [Indexed: 01/13/2023]
Abstract
Pancreatic β-cells have been reported to be mechanosensitive to cellular microenvironments, and subjecting the cells to more physiologically relevant microenvironments can produce better results than when subjecting them to the conventional two-dimensional (2D) cell-culture conditions. In this work, we propose a novel three-dimensional (3D) strategy for inducing multicellular spheroid formation based on hydrogels with tunable mechanical and interfacial properties. The results indicate that MIN6 cells can sense the substrates and form tightly clustered monolayers or multicellular spheroids on hydrogels with tunable physical properties. Compared to the conventional 2D cell-culture system, the glucose sensitivities of the MIN6 cells cultured in the 3D culture model is enhanced greatly and their insulin content (relative to the amount of protein) is increased 7.3-7.9 folds. Moreover, the relative gene and protein expression levels of some key factors such as Pdx1, NeuroD1, Piezo1, and Rac1 in the MIN6 cells are significantly higher on the 3D platform, compared to the 2D control group. We believe that this 3D cell-culture system developed for the generation of multicellular spheroids will be a promising platform for diabetes treatment in clinical islet transplantation.
Collapse
Affiliation(s)
- Miao Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Sen Yan
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xueqin Xu
- Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Tingting Yu
- Department of Medical Genetics, School of Basic Medical Science & Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Ming Ma
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yi Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zhuxiao Gu
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yiwei Feng
- Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Chunyue Du
- Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Mengqi Wan
- Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Ke Hu
- Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
11
|
Abstract
Brain tumors' severity ranges from benign to highly aggressive and invasive. Bioengineering tools can assist in understanding the pathophysiology of these tumors from outside the body and facilitate development of suitable antitumoral treatments. Here, we first describe the physiology and cellular composition of brain tumors. Then, we discuss the development of three-dimensional tissue models utilizing brain tumor cells. In particular, we highlight the role of hydrogels in providing a biomimetic support for the cells to grow into defined structures. Microscale technologies, such as electrospinning and bioprinting, and advanced cellular models aim to mimic the extracellular matrix and natural cellular localization in engineered tumor tissues. Lastly, we review current applications and prospects of hydrogels for therapeutic purposes, such as drug delivery and co-administration with other therapies. Through further development, hydrogels can serve as a reliable option for in vitro modeling and treatment of brain tumors for translational medicine.
Collapse
|
12
|
Zhou Y, Chen X, Cao J, Gao H. Overcoming the biological barriers in the tumor microenvironment for improving drug delivery and efficacy. J Mater Chem B 2020; 8:6765-6781. [PMID: 32315375 DOI: 10.1039/d0tb00649a] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The delivery of drugs to tumors by nanoparticles is a rapidly growing field. However, the complex tumor microenvironment (TME) barriers greatly hinder drug delivery to tumors. In this study, we first summarized the barriers in TME, including anomalous vasculature, rigid extracellular matrix, hypoxia, acidic pH, irregular enzyme level, altered metabolism pathway and immunosuppressive conditions. To overcome these barriers, many strategies have been developed, such as modulating TME, active targeting by ligand modification and biomimetic strategies, and TME-responsive drug delivery strategies to improve nanoparticle penetration, cellular uptake and drug release. Although extensive progress has been achieved, there are still many challenges, which are discussed in the last section. Overall, we carefully discuss the landscape of TME, development for improving drug delivery, and challenges that need to be further addressed.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.
| | | | | | | |
Collapse
|
13
|
Shi W, Huang J, Fang R, Liu M. Imparting Functionality to the Hydrogel by Magnetic-Field-Induced Nano-assembly and Macro-response. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5177-5194. [PMID: 31916743 DOI: 10.1021/acsami.9b16770] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydrogels are composed of 3D hydrophilic networks with an abundance of water; they are analogous to biological soft tissues. Their unique physico-chemical properties endow hydrogels with great potential in many fields, including tissue engineering and flexible sensing. However, inadequate functionality, such as lack of rapid responsiveness, severely limits practical applications in many areas. Therefore, imparting functionality to the hydrogel is a hot research topic. The magnetic field, as an important physical field, provides a new strategy with a variety of advantages. Magnetic-field-induced ordered nano-assembly brought anisotropic properties and novel performance. Furthermore, the magnetic responsiveness of hydrogels with magnetic nanoparticles can lead to the generation of functionality under magnetic fields. Thus, we aim to systematically describe the significant effect of magnetic fields on the functionality of the hydrogel. In this review, magnetic-field-induced assembly of nanomaterials with different dimensions and resulting functional performance are introduced. The functionalities of hydrogels based on magnetic-field-induced macroscopic responses are also summarized. We believe this review will motivate more exploration of the application of magnetic fields to develop functional hydrogel materials.
Collapse
Affiliation(s)
- Wei Shi
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry , Beihang University , Beijing 100191 , P. R. China
| | - Jin Huang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry , Beihang University , Beijing 100191 , P. R. China
| | - Ruochen Fang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry , Beihang University , Beijing 100191 , P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100191 , P. R. China
| | - Mingjie Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry , Beihang University , Beijing 100191 , P. R. China
- International Research Institute for Multidisciplinary Science , Beihang University , Beijing 100191 , P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100191 , P. R. China
| |
Collapse
|
14
|
Sharma PK, Halder M, Srivastava U, Singh Y. Antibacterial PEG-Chitosan Hydrogels for Controlled Antibiotic/Protein Delivery. ACS APPLIED BIO MATERIALS 2019; 2:5313-5322. [DOI: 10.1021/acsabm.9b00570] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Peeyush Kumar Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140 001, Punjab, India
| | - Moumita Halder
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140 001, Punjab, India
| | - Udit Srivastava
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140 001, Punjab, India
| | - Yashveer Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140 001, Punjab, India
| |
Collapse
|
15
|
Ma S, Wang Z, Guo Y, Wang P, Yang Z, Han L, Sun J, Xia Y. Enhanced osteoinduction of electrospun scaffolds with assemblies of hematite nanoparticles as a bioactive interface. Int J Nanomedicine 2019; 14:1051-1068. [PMID: 30804670 PMCID: PMC6371950 DOI: 10.2147/ijn.s185122] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Electrospun scaffolds have been studied extensively for their potential use in bone tissue engineering. However, their hydrophobicity and relatively low matrix stiffness constrain their osteoinduction capacities. In the present study, we studied polymer electrospun scaffolds coated with hydrophilic hematite nanoparticles (αFeNPs) constructed using layer-by-layer (LbL) assembly to construct a bioactive interface between the scaffolds and cells, to improve the osteoinduction capacities of the scaffolds. Materials and methods The morphology of the αFeNPs was assessed. Surface properties of the scaffolds were tested by X-ray photoelectron spectroscopy (XPS), surface water contact angle, and in vitro protein adsorption test. The stiffness of the coating was tested using an atomic force microscope (AFM). In vitro cell assays were performed using rat adipose-derived stem cells (ADSCs). Results Morphology characterizations showed that αFeNPs assembled on the surface of the scaffold, where the nano assemblies improved hydrophilicity and increased surface roughness, with increased surface stiffness. Enhanced initial ADSC cell spread was found in the nano assembled groups. Significant enhancements in osteogenic differentiation, represented by enhanced alkaline phosphatase (ALP) activities, elevated expression of osteogenic marker genes, and increased mineral synthesis by the seeded ADSCs, were detected. The influencing factors were attributed to the better hydrophilicity, rougher surface topography, and harder interface stiffness. In addition, the presence of nanoparticles was believed to provide better cell adhesion sites. Conclusion The results suggested that the construction of a bioactive interface by LbL assembly using αFeNPs on traditional scaffolds should be a promising method for bone tissue engineering.
Collapse
Affiliation(s)
- Shanshan Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China,
| | - Zibin Wang
- Analysis and Test Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China,
| | - Peng Wang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Zukun Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China,
| | - Liping Han
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China,
| | - Jianfei Sun
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China, ,
| | - Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China, .,Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China, ,
| |
Collapse
|
16
|
Chen H, Sun J, Wang Z, Zhou Y, Lou Z, Chen B, Wang P, Guo Z, Tang H, Ma J, Xia Y, Gu N, Zhang F. Magnetic Cell-Scaffold Interface Constructed by Superparamagnetic IONP Enhanced Osteogenesis of Adipose-Derived Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44279-44289. [PMID: 30499649 DOI: 10.1021/acsami.8b17427] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
One of the key factors in tissue engineering and regenerative medicine is to optimize the interaction between seed cells and scaffolds such that the cells can grow in naturally biomimetic conditions. Their similarity to macromolecules and many unique properties mean that functional nanoparticles have promising potential for the modification and improvement of traditional scaffolds to obtain excellent biocompatibility, tunable stiffness, physical sensing, and stimulus-response capabilities. In the present study, we report magnetic poly(lactic- co-glycolic acid)/polycaprolactone (PLGA/PCL) scaffolds that were fabricated using a combination of the electrospinning technique and layer-by-layer assembly of superparamagnetic iron oxide nanoparticles (IONPs). PLGA/PCL scaffolds assembled with gold nanoparticles were prepared using the same method for comparison. The results showed that the assembled film of nanoparticles on the surface greatly enhanced the hydrophilicity and increased the elastic modulus of the scaffold, which subsequently improved the osteogenesis of the stem cells. Furthermore, the magnetic property of the IONPs proved to be the key factor in enhancing osteogenic differentiation, which explained the superior osteogenic capacity of the magnetic scaffolds compared with that of the gold nanoparticle-assembled scaffold. These results demonstrated the importance of magnetic nanomaterials as a bioactive interface between cells and scaffolds and will promote the design of biomaterials to improve tissue engineering and regenerative medicine efficacy.
Collapse
Affiliation(s)
- Huimin Chen
- Jiangsu Key Laboratory of Oral Diseases , Nanjing Medical University , Nanjing , Jiangsu 210029 , China
| | - Jianfei Sun
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering , Southeast University , Nanjing , Jiangsu 210096 , China
| | - Zibin Wang
- Analysis and Test Center , Nanjing Medical University Nanjing , Jiangsu 211166 , China
| | - Yi Zhou
- Yixing People's Hospital , Yixing , Jiangsu 214200 , China
| | - Zhichao Lou
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering , Southeast University , Nanjing , Jiangsu 210096 , China
- College of Materials Science and Engineering , Nanjing Forestry University , Nanjing , Jiangsu 210037 , China
| | - Bo Chen
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering , Southeast University , Nanjing , Jiangsu 210096 , China
- Materials Science and Devices Institute , Suzhou University of Science and Technology , Suzhou , Jiangsu 215009 , China
| | - Peng Wang
- Department of Sports Medicine and Adult Reconstructive Surgery , Drum Tower Hospital Affiliated to Medical School of Nanjing University , Nanjing , Jiangsu 210008 , China
| | - Zhirui Guo
- Department of Geriatrics, The Second Affiliated Hospital, Key Laboratory for Aging & Disease , Nanjing Medical University , Nanjing , Jiangsu 210011 , China
| | - Hui Tang
- Jiangsu Key Laboratory of Oral Diseases , Nanjing Medical University , Nanjing , Jiangsu 210029 , China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases , Nanjing Medical University , Nanjing , Jiangsu 210029 , China
| | - Yang Xia
- Jiangsu Key Laboratory of Oral Diseases , Nanjing Medical University , Nanjing , Jiangsu 210029 , China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering , Southeast University , Nanjing , Jiangsu 210096 , China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering , Southeast University , Nanjing , Jiangsu 210096 , China
- Collaborative Innovation Center of Suzhou Nano Science and Technology , Suzhou , Jiangsu 215123 , China
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases , Nanjing Medical University , Nanjing , Jiangsu 210029 , China
- Collaborative Innovation Center of Suzhou Nano Science and Technology , Suzhou , Jiangsu 215123 , China
| |
Collapse
|
17
|
Chen Q, Liu G, Liu S, Su H, Wang Y, Li J, Luo C. Remodeling the Tumor Microenvironment with Emerging Nanotherapeutics. Trends Pharmacol Sci 2018; 39:59-74. [DOI: 10.1016/j.tips.2017.10.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 01/29/2023]
|
18
|
Ma D, Zhou N, Zhang T, Hu K, Ma X, Gu N. Photoresponsive smart hydrogel microsphere via host-guest interaction for 3D cell culture. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Tang S, Hu K, Sun J, Li Y, Guo Z, Liu M, Liu Q, Zhang F, Gu N. High Quality Multicellular Tumor Spheroid Induction Platform Based on Anisotropic Magnetic Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10446-10452. [PMID: 28247762 DOI: 10.1021/acsami.6b15918] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In recent years, multicellular spheroid (MCS) culture has been extensively studied both in fundamental research and application fields since it inherits much more characteristics from in vivo solid tumor than conventional two-dimensional (2D) cell culture. However, anticell adhesive MCS culture systems such as hanging drop allow certain cell lines only to form loose, irregular aggregates rather than MCS with physiological barriers and pathophysiological gradients, which failed to mimic in vivo solid tumor in these aspects. To address this issue, we improved our previously established anisotropic magnetic hydrogel platform, enabling it to generate multicellular spheroids with higher efficiency. The qualities of multicellular tumor spheroids (MCTSs) obtained on our platform and from classic 3D culture systems were compared in terms of morphology, biological molecule expression profiles, and drug resistance. In this novel platform, mature MCTSs with necrotic cores could be observed in 1 week. And results of molecular biological assays with real time-PCR and western-blot confirmed that MCTSs obtained from our platform performed higher cell pluripotency than those obtained from the hanging drop system. Moreover, a lower cell apoptosis ratio and better viability of cancer cells were observed on our platform both under culturing and drug treatment. In conclusion, higher quality of MCTSs obtained from this anisotropic magnetic hydrogel than classic hanging drop system validate its potential to be an in vitro platform of inducing tumor MCTS formation and drug efficacy evaluation.
Collapse
Affiliation(s)
| | - Ke Hu
- State Key Lab of Bioelectronics, Jiangsu Laboratory for Biomaterials and Device, School of Biological Sciences and Medical Engineering, Southeast University , Nanjing 210029, China
| | - Jianfei Sun
- State Key Lab of Bioelectronics, Jiangsu Laboratory for Biomaterials and Device, School of Biological Sciences and Medical Engineering, Southeast University , Nanjing 210029, China
| | - Yang Li
- State Key Lab of Bioelectronics, Jiangsu Laboratory for Biomaterials and Device, School of Biological Sciences and Medical Engineering, Southeast University , Nanjing 210029, China
| | - Zhaobin Guo
- State Key Lab of Bioelectronics, Jiangsu Laboratory for Biomaterials and Device, School of Biological Sciences and Medical Engineering, Southeast University , Nanjing 210029, China
| | | | | | | | - Ning Gu
- State Key Lab of Bioelectronics, Jiangsu Laboratory for Biomaterials and Device, School of Biological Sciences and Medical Engineering, Southeast University , Nanjing 210029, China
| |
Collapse
|
20
|
Peng SW, Li CW, Chiu IM, Wang GJ. Nerve guidance conduit with a hybrid structure of a PLGA microfibrous bundle wrapped in a micro/nanostructured membrane. Int J Nanomedicine 2017; 12:421-432. [PMID: 28138239 PMCID: PMC5238773 DOI: 10.2147/ijn.s122017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nerve repair in tissue engineering involves the precise construction of a scaffold to guide nerve cell regeneration in the desired direction. However, improvements are needed to facilitate the cell migration/growth rate of nerves in the center of a nerve conduit. In this paper, we propose a nerve guidance conduit with a hybrid structure comprising a microfibrous poly(lactic-co-glycolic acid) (PLGA) bundle wrapped in a micro/nanostructured PLGA membrane. We applied sequential fabrication processes, including photolithography, nano-electroforming, and polydimethylsiloxane casting to manufacture master molds for the repeated production of the PLGA subelements. After demolding it from the master molds, we rolled the microfibrous membrane into a bundle and then wrapped it in the micro/nanostructured membrane to form a nerve-guiding conduit. We used KT98/F1B-GFP cells to estimate the migration rate and guidance ability of the fabricated nerve conduit and found that both elements increased the migration rate 1.6-fold compared with a flat PLGA membrane. We also found that 90% of the cells in the hybrid nano/microstructured membrane grew in the direction of the designed patterns. After 3 days of culturing, the interior of the nerve conduit was filled with cells, and the microfiber bundle was also surrounded by cells. Our conduit cell culture results also demonstrate that the proposed micro/nanohybrid and microfibrous structures can retain their shapes. The proposed hybrid-structured conduit demonstrates a high capability for guiding nerve cells and promoting cell migration, and, as such, is feasible for use in clinical applications.
Collapse
Affiliation(s)
| | | | - Ing-Ming Chiu
- PhD Program in Tissue Engineering and Regenerative Medicine, National Chung-Hsing University, Taichung
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Gou-Jen Wang
- Graduate Institute of Biomedical Engineering
- Department of Mechanical Engineering
- PhD Program in Tissue Engineering and Regenerative Medicine, National Chung-Hsing University, Taichung
| |
Collapse
|
21
|
Hu K, Zhou N, Li Y, Ma S, Guo Z, Cao M, Zhang Q, Sun J, Zhang T, Gu N. Sliced Magnetic Polyacrylamide Hydrogel with Cell-Adhesive Microarray Interface: A Novel Multicellular Spheroid Culturing Platform. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15113-15119. [PMID: 27258682 DOI: 10.1021/acsami.6b04112] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cell-adhesive properties are of great significance to materials serving as extracellular matrix mimics. Appropriate cell-adhesive property of material interface can balance the cell-matrix interaction and cell-cell interaction and can promote cells to form 3D structures. Herein, a novel magnetic polyacrylamide (PAM) hydrogel fabricated via combining magnetostatic field induced magnetic nanoparticles assembly and hydrogel gelation was applied as a multicellular spheroids culturing platform. When cultured on the cell-adhesive microarray interface of sliced magnetic hydrogel, normal and tumor cells from different cell lines could rapidly form multicellular spheroids spontaneously. Furthermore, cells which could only form loose cell aggregates in a classic 3D cell culture model (such as hanging drop system) were able to be promoted to form multicellular spheroids on this platform. In the light of its simplicity in fabricating as well as its effectiveness in promoting formation of multicellular spheroids which was considered as a prevailing tool in the study of the microenvironmental regulation of tumor cell physiology and therapeutic problems, this composite material holds promise in anticancer drugs or hyperthermia therapy evaluation in vitro in the future.
Collapse
Affiliation(s)
- Ke Hu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Naizhen Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Yang Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Siyu Ma
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Zhaobin Guo
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Meng Cao
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Qiying Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University , Nanjing 210096, China
- Collaborative Innovation Center of Suzhou Nano-Science and Technology, Suzhou Key Laboratory of Biomaterials and Technologies , Suzhou 215123, China
| | - Tianzhu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University , Nanjing 210096, China
- Collaborative Innovation Center of Suzhou Nano-Science and Technology, Suzhou Key Laboratory of Biomaterials and Technologies , Suzhou 215123, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University , Nanjing 210096, China
- Collaborative Innovation Center of Suzhou Nano-Science and Technology, Suzhou Key Laboratory of Biomaterials and Technologies , Suzhou 215123, China
| |
Collapse
|
22
|
Zhu F, Chen Y, Yang S, Wang Q, Liang F, Qu X, Hu Z. Surface patterned hydrogel film as a flexible scaffold for 2D and 3D cell co-culture. RSC Adv 2016. [DOI: 10.1039/c6ra11249h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cell adhesive magnetic silica nano-rods were aligned on glycol chitosan/benzaldehyde capped poly(ethylene oxide) hydrogel surface via dynamic interactions in magnetic field for 2D and 3D cell co-culture.
Collapse
Affiliation(s)
- Feiyan Zhu
- College of Materials Science and Opto-Electronic Technology
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Ying Chen
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Saina Yang
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Qian Wang
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Fuxin Liang
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Xiaozhong Qu
- College of Materials Science and Opto-Electronic Technology
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Zhongbo Hu
- College of Materials Science and Opto-Electronic Technology
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| |
Collapse
|
23
|
Hu K, Sun J, Guo Z, Wang P, Chen Q, Ma M, Gu N. A novel magnetic hydrogel with aligned magnetic colloidal assemblies showing controllable enhancement of magnetothermal effect in the presence of alternating magnetic field. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:2507-2514. [PMID: 25753892 DOI: 10.1002/adma.201405757] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/11/2015] [Indexed: 06/04/2023]
Abstract
A novel magnetic hydrogel is formed via the field-directed assembly of magnetic nanomaterials during the gelation process. The novel magnetic hydrogel exhibits direction-dependent thermogenesis in an alternating magnetic field. The specific absorption rate value in the direction along the assemblies can be 2.1-fold as much as that in the direction normal to the assemblies while the heating rate is 6-8-fold. Due to the anisotropic thermogenesis, the novel magnetic hydrogel also shows a direction-dependent release of drugs that has a 3.4-fold difference between the two directions.
Collapse
Affiliation(s)
- Ke Hu
- Department of Biologicl Science and Medical Engneering, Jiangsu Labortory for Biomaterials and Devices, State Key Laboratory of BioElectronics, Southeast University, Nanjing, 210096, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Yao F, Hu H, Xu S, Huo R, Zhao Z, Zhang F, Xu F. Preparation and regulating cell adhesion of anion-exchangeable layered double hydroxide micropatterned arrays. ACS APPLIED MATERIALS & INTERFACES 2015; 7:3882-3887. [PMID: 25654314 DOI: 10.1021/acsami.5b00145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We describe a reliable preparation of MgAl-layered double hydroxide (MgAl-LDH) micropatterned arrays on gold substrate by combining SO3(-)-terminated self-assembly monolayer and photolithography. The synthesis route is readily extended to prepare LDH arrays on the SO3(-)-terminated polymer-bonded glass substrate amenable for cell imaging. The anion-exchangeable MgAl-LDH micropattern can act both as bioadhesive region for selective cell adhesion and as nanocarrier for drug molecules to regulate cell behaviors. Quantitative analysis of cell adhesion shows that selective HepG2 cell adhesion and spreading are promoted by the micropatterned MgAl-LDH, and also suppressed by methotrexate drug released from the LDH interlayer galleries.
Collapse
Affiliation(s)
- Feng Yao
- State Key Laboratory of Chemical Resource Engineering, §Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, College of Materials Science & Engineering, and ⊥Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Kehr NS, Atay S, Ergün B. Self-assembled Monolayers and Nanocomposite Hydrogels of Functional Nanomaterials for Tissue Engineering Applications. Macromol Biosci 2014; 15:445-63. [DOI: 10.1002/mabi.201400363] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nermin Seda Kehr
- Physikalisches Institut and Center for Nanotechnology; Westfälische Wilhelms-Universität Münster; Heisenbergstrasse 11 D-48149 Münster Germany
| | - Seda Atay
- Department of Nanotechnology and Nanomedicine; Hacettepe University; 06800 Ankara Turkey
| | - Bahar Ergün
- Department of Chemistry; Biochemistry Division; Hacettepe University; 06800 Ankara Turkey
| |
Collapse
|