1
|
Chen J, Wang Y, Wang L, Lin FR, Han C, Ma X, Zheng J, Li Z, Zapien JA, Gao H, Jen AKY. Highly Efficient and Stable Organic Solar Cells Enabled by a Commercialized Simple Thieno[3,2-b]thiophene Additive. SMALL METHODS 2024; 8:e2400172. [PMID: 38807542 DOI: 10.1002/smtd.202400172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/10/2024] [Indexed: 05/30/2024]
Abstract
Delicately manipulating nanomorphology is recognized as a vital and effective approach to enhancing the performance and stability of organic solar cells (OSCs). However, the complete removal of solvent additives with high boiling points is typically necessary to maintain the operational stability of the device. In this study, two commercially available organic intermediates, namely thieno[3,2-b]thiophene (TT) and 3,6-dibromothieno[3,2-b]thiophene (TTB) are introduced, as solid additives in OSCs. The theoretical simulations and experimental results indicate that TT and TTB may exhibit stronger intermolecular interactions with the acceptor Y6 and donor PM6, respectively. This suggests that the solid additives (SAs) can selectively intercalate between Y6 and PM6 molecules, thereby improving the packing order and crystallinity. As a result, the TT-treated PM6:Y6 system exhibits a favorable morphology, improved charge carrier mobility, and minimal charge recombination loss. These characteristics contribute to an impressive efficiency of 17.75%. Furthermore, the system demonstrates exceptional thermal stability (T80 > 2800 h at 65 °C) and outstanding photostability. The universal applicability of TT treatment is confirmed in OSCs employing D18:L8-BO, achieving a significantly higher PCE of 18.3%. These findings underscore the importance of using appropriate solid additives to optimize the blend morphology of OSCs, thereby improving photovoltaic performance and thermal stability.
Collapse
Affiliation(s)
- Jinwei Chen
- College of New Energy, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, China
| | - Yiwen Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 99907, China
- Institute of New Energy Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Lei Wang
- College of New Energy, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, China
| | - Francis R Lin
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 99907, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Chenyang Han
- College of New Energy, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, China
| | - Xiao Ma
- College of New Energy, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, China
| | - Jialu Zheng
- College of New Energy, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, China
| | - Zhao Li
- College of New Energy, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, China
| | - Juan Antonio Zapien
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 99907, China
| | - Huanhuan Gao
- College of New Energy, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 99907, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 99907, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
2
|
Nakatani H, Uchiyama T, Motokucho S, Dao ATN, Kim HJ, Yagi M, Kyozuka Y. Differences in the Residual Behavior of a Bumetrizole-Type Ultraviolet Light Absorber during the Degradation of Various Polymers. Polymers (Basel) 2024; 16:293. [PMID: 38276701 PMCID: PMC10819654 DOI: 10.3390/polym16020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The alteration of an ultraviolet light absorber (UVA: UV-326) in polymers (PP, HDPE, LDPE, PLA, and PS) over time during degradation was studied using an enhanced degradation method (EDM) involving sulfate ion radicals in seawater. The EDM was employed to homogeneously degrade the entire polymer samples containing the UVA. The PP and PS samples containing 5-phr (phr: per hundred resin) UVA films underwent rapid whitening, characterized by the formation of numerous grooves or crushed particles. Notably, the UVA loss rate in PS, with the higher glass transition temperature (Tg), was considerably slower. The behavior of crystalline polymers, with the exception of PS, was analogous in terms of the change in UVA loss rate over the course of degradation. The significant increase in the initial loss rate observed during EDM degradation was due to microplasticization. A similar increase in microplasticization rate occurred with PS; however, the intermolecular interaction between UVA and PS did not result in as pronounced an increase in loss rate as observed in other polymers. Importantly, the chemical structure of UVA remained unaltered during EDM degradation. These findings revealed that the primary cause of UVA loss was leaching from the polymer matrix.
Collapse
Affiliation(s)
- Hisayuki Nakatani
- Polymeri Materials Laboratory, Chemistry and Materials Engineering Program, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (T.U.); (S.M.); (A.T.N.D.)
- Organization for Marine Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan;
| | - Taishi Uchiyama
- Polymeri Materials Laboratory, Chemistry and Materials Engineering Program, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (T.U.); (S.M.); (A.T.N.D.)
| | - Suguru Motokucho
- Polymeri Materials Laboratory, Chemistry and Materials Engineering Program, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (T.U.); (S.M.); (A.T.N.D.)
- Organization for Marine Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan;
| | - Anh Thi Ngoc Dao
- Polymeri Materials Laboratory, Chemistry and Materials Engineering Program, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (T.U.); (S.M.); (A.T.N.D.)
| | - Hee-Jin Kim
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (H.-J.K.); (M.Y.)
| | - Mitsuharu Yagi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (H.-J.K.); (M.Y.)
| | - Yusaku Kyozuka
- Organization for Marine Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan;
| |
Collapse
|
3
|
Zhu C, Chung S, Zhao J, Sun Y, Zhao B, Zhao Z, Kim S, Cho K, Kan Z. Vertical Phase Regulation with 1,3,5-Tribromobenzene Leads to 18.5% Efficiency Binary Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303150. [PMID: 37424039 PMCID: PMC10502666 DOI: 10.1002/advs.202303150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Indexed: 07/11/2023]
Abstract
The sequential deposition method assists the vertical phase distribution in the photoactive layer of organic solar cells, enhancing power conversion efficiencies. With this film coating approach, the morphology of both layers can be fine-tuned with high boiling solvent additives, as frequently applied in one-step casting films. However, introducing liquid additives can compromise the morphological stability of the devices due to the solvent residuals. Herein, 1,3,5-tribromobenzene (TBB) with high volatility and low cost, is used as a solid additive in the acceptor solution and combined thermal annealing to regulate the vertical phase in organic solar cells composed of D18-Cl/L8-BO. Compared to the control cells, the devices treated with TBB and those that underwent additional thermal processing exhibit increased exciton generation rate, charge carrier mobility, charge carrier lifetime, and reduced bimolecular charge recombination. As a result, the TBB-treated organic solar cells achieve a champion power conversion efficiency of 18.5% (18.1% averaged), one of the highest efficiencies in binary organic solar cells with open circuit voltage exceeding 900 mV. This study ascribes the advanced device performance to the gradient-distributed donor-acceptor concentrations in the vertical direction. The findings provide guidelines for optimizing the morphology of the sequentially deposited top layer to achieve high-performance organic solar cells.
Collapse
Affiliation(s)
- Chaofeng Zhu
- Center on Nanoenergy ResearchGuangxi Colleges and Universities Key Laboratory of Blue Energy and Systems IntegrationCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Sein Chung
- Department of Chemical EngineeringPohang University of Science and Technology77 Cheongam‐ro, Nam‐guPohang‐si37673South Korea
| | - Jingjing Zhao
- Center on Nanoenergy ResearchGuangxi Colleges and Universities Key Laboratory of Blue Energy and Systems IntegrationCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Yuqing Sun
- Center on Nanoenergy ResearchGuangxi Colleges and Universities Key Laboratory of Blue Energy and Systems IntegrationCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Bin Zhao
- Center on Nanoenergy ResearchGuangxi Colleges and Universities Key Laboratory of Blue Energy and Systems IntegrationCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Zhenmin Zhao
- Center on Nanoenergy ResearchGuangxi Colleges and Universities Key Laboratory of Blue Energy and Systems IntegrationCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Seunghyun Kim
- Department of Chemical EngineeringPohang University of Science and Technology77 Cheongam‐ro, Nam‐guPohang‐si37673South Korea
| | - Kilwon Cho
- Department of Chemical EngineeringPohang University of Science and Technology77 Cheongam‐ro, Nam‐guPohang‐si37673South Korea
| | - Zhipeng Kan
- Center on Nanoenergy ResearchGuangxi Colleges and Universities Key Laboratory of Blue Energy and Systems IntegrationCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
- State Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresNanning530004China
| |
Collapse
|
4
|
Balasubramanian S, León-Luna MÁ, Romero B, Madsen M, Turkovic V. Vitamin C for Photo-Stable Non-fullerene-acceptor-Based Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39647-39656. [PMID: 37552771 DOI: 10.1021/acsami.3c06321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The recent advent of the new class of organic molecules, the so-called non-fullerene acceptors, has resulted in skyrocketing power conversion efficiencies of organic solar cells. However, rapid degradation occurs under illumination, particularly when photocatalytic metal oxide electron transport layers are used in these devices. We introduced vitamin C (ascorbic acid) into the organic solar cells as a photostabilizer and systematically studied its photostabilizing effect on inverted PBDB-T:IT-4F devices. The presence of vitamin C as an antioxidant layer between the ZnO electron transport layer and the photoactive layer strongly suppressed the photocatalytic effect of ZnO that induces NFA photodegradation. Upon 96 h of exposure to AM 1.5G 1 Sun irradiation, the reference devices lost 64% of their initial efficiency, while those containing vitamin C lost only 38%. The UV-visible absorption, impedance spectroscopy, and light-dependent voltage and current measurements reveal that vitamin C reduces the photobleaching of NFA molecules and suppresses the charge recombination. This simple approach using a low-cost, naturally occurring antioxidant, provides an efficient strategy for improving photostability of organic semiconductor-based devices.
Collapse
Affiliation(s)
- Sambathkumar Balasubramanian
- SDU Centre for Advanced Photovoltaics and Thin-film Energy Devices─CAPE, Mads Clausen Institute (MCI), Alsion 2, Sønderborg 6400, Denmark
- SDU Climate Cluster, University of Southern Denmark, Odense 5230, Denmark
| | - Miguel Ángel León-Luna
- SDU Centre for Advanced Photovoltaics and Thin-film Energy Devices─CAPE, Mads Clausen Institute (MCI), Alsion 2, Sønderborg 6400, Denmark
- SDU Climate Cluster, University of Southern Denmark, Odense 5230, Denmark
| | - Beatriz Romero
- Electronic Technology Area, Universidad Rey Juan Carlos, Mostoles 28933, Spain
| | - Morten Madsen
- SDU Centre for Advanced Photovoltaics and Thin-film Energy Devices─CAPE, Mads Clausen Institute (MCI), Alsion 2, Sønderborg 6400, Denmark
- SDU Climate Cluster, University of Southern Denmark, Odense 5230, Denmark
| | - Vida Turkovic
- SDU Centre for Advanced Photovoltaics and Thin-film Energy Devices─CAPE, Mads Clausen Institute (MCI), Alsion 2, Sønderborg 6400, Denmark
- SDU Climate Cluster, University of Southern Denmark, Odense 5230, Denmark
| |
Collapse
|
5
|
Zhang C, Song A, Huang Q, Cao Y, Zhong Z, Liang Y, Zhang K, Liu C, Huang F, Cao Y. All-Polymer Solar Cells and Photodetectors with Improved Stability Enabled by Terpolymers Containing Antioxidant Side Chains. NANO-MICRO LETTERS 2023; 15:140. [PMID: 37247165 PMCID: PMC10226943 DOI: 10.1007/s40820-023-01114-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/25/2023] [Indexed: 05/30/2023]
Abstract
It is of vital importance to improve the long-term and photostability of organic photovoltaics, including organic solar cells (OSCs) and organic photodetectors (OPDs), for their ultimate industrialization. Herein, two series of terpolymers featuring with an antioxidant butylated hydroxytoluene (BHT)-terminated side chain, PTzBI-EHp-BTBHTx and N2200-BTBHTx (x = 0.05, 0.1, 0.2), are designed and synthesized. It was found that incorporating appropriate ratio of benzothiadiazole (BT) with BHT side chains on the conjugated backbone would induce negligible effect on the molecular weight, absorption spectra and energy levels of polymers, however, which would obviously enhance the photostability of these polymers. Consequently, all-polymer solar cells (all-PSCs) and photodetectors were fabricated, and the all-PSC based on PTzBI-EHp-BTBHT0.05: N2200 realized an optimal power conversion efficiency (PCE) approaching ~ 10%, outperforming the device based on pristine PTzBI-EHp: N2200. Impressively, the all-PSCs based on BHT-featuring terpolymers displayed alleviated PCEs degradation under continuous irradiation for 300 h due to the improved morphological and photostability of active layers. The OPDs based on BHT-featuring terpolymers achieved a lower dark current at - 0.1 bias, which could be stabilized even after irradiation over 400 h. This study provides a feasible approach to develop terpolymers with antioxidant efficacy for improving the lifetime of OSCs and OPDs.
Collapse
Affiliation(s)
- Chunyang Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Ao Song
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Qiri Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Yunhao Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Zuiyi Zhong
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Youcai Liang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Kai Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Chunchen Liu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China
| |
Collapse
|
6
|
Henke P, Rindom C, Kanta Aryal U, Frydenlund Jespersen M, Broløs L, Mansø M, Turkovic V, Madsen M, Mikkelsen KV, Ogilby PR, Brøndsted Nielsen M. Imparting Stability to Organic Photovoltaic Components through Molecular Engineering: Mitigating Reactions with Singlet Oxygen. CHEMSUSCHEM 2023:e202202320. [PMID: 36897647 DOI: 10.1002/cssc.202202320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/08/2023] [Indexed: 06/18/2023]
Abstract
One key challenge in the development of viable organic photovoltaic devices is to design component molecules that do not degrade during combined exposure to oxygen and light. Such molecules should thus remain comparatively unreactive towards singlet molecular oxygen and not act as photosensitizers for the generation of this undesirable species. Here, novel redox-active chromophores that combine these two properties are presented. By functionalizing indenofluorene-extended tetrathiafulvalenes (IF-TTFs) with cyano groups at the indenofluorene core using Pd-catalyzed cyanation reactions, we find that the reactivity of the exocyclic fulvene carbon-carbon double bonds towards singlet oxygen is considerably reduced. The new cyano-functionalized IF-TTFs were tested in non-fullerene acceptor based organic photovoltaic proof-of-principle devices, revealing enhanced device stability.
Collapse
Affiliation(s)
- Petr Henke
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000, Aarhus C, Denmark
| | - Cecilie Rindom
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Um Kanta Aryal
- Centre for Advanced Photovoltaics and Thin Film Energy Devices (SDU CAPE), Mads Clausen Institute, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark
| | | | - Line Broløs
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Mads Mansø
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Vida Turkovic
- Centre for Advanced Photovoltaics and Thin Film Energy Devices (SDU CAPE), Mads Clausen Institute, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark
| | - Morten Madsen
- Centre for Advanced Photovoltaics and Thin Film Energy Devices (SDU CAPE), Mads Clausen Institute, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Peter R Ogilby
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000, Aarhus C, Denmark
| | - Mogens Brøndsted Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| |
Collapse
|
7
|
Liu Y, Li S, Jing Y, Xiao L, Zhou H. Research Progress in Degradation Mechanism of Organic Solar Cells. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Kim M, Choi Y, Hwan Lee D, Min J, Pu YJ, Park T. Roles and Impacts of Ancillary Materials for Multi-Component Blend Organic Photovoltaics towards High Efficiency and Stability. CHEMSUSCHEM 2021; 14:3475-3487. [PMID: 34164933 DOI: 10.1002/cssc.202100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Organic photovoltaics (OPVs) are a promising next-generation photovoltaic technology with great potential for wearable and transparent device applications. Over the past decades, remarkable advances in device efficiency close to 20 % have been made for bulk heterojunction (BHJ)-based OPV devices with long-term stability, and room for further improvements still exists. In recent years, ancillary components have been demonstrated as effective in improving the photovoltaic performance of OPVs by controlling the optoelectronic and morphological properties of BHJ blends. Herein, an updated understanding of polymer-based blend OPVs is provided, and the role and impact of ancillary components in various blend systems are categorized and discussed. Lastly, a strategic perspective on the ancillary components of blend-based OPVs for commercialization is provided.
Collapse
Affiliation(s)
- Minjun Kim
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Saitama, Japan
| | - Yelim Choi
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, 37673, Pohang, Kyoungbuk, Korea
| | - Dae Hwan Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, 37673, Pohang, Kyoungbuk, Korea
| | - Jihyun Min
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, 37673, Pohang, Kyoungbuk, Korea
| | - Yong-Jin Pu
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Saitama, Japan
| | - Taiho Park
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, 37673, Pohang, Kyoungbuk, Korea
| |
Collapse
|
9
|
Kuei B, Gomez ED. Pushing the limits of high-resolution polymer microscopy using antioxidants. Nat Commun 2021; 12:153. [PMID: 33420049 PMCID: PMC7794589 DOI: 10.1038/s41467-020-20363-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 11/26/2020] [Indexed: 01/29/2023] Open
Abstract
High-resolution transmission electron microscopy (HRTEM) has been transformative to the field of polymer science, enabling the direct imaging of molecular structures. Although some materials have remarkable stability under electron beams, most HRTEM studies are limited by the electron dose the sample can handle. Beam damage of conjugated polymers is not yet fully understood, but it has been suggested that the diffusion of secondary reacting species may play a role. As such, we examine the effect of the addition of antioxidants to a series of solution-processable conjugated polymers as an approach to mitigating beam damage. Characterizing the effects of beam damage by calculating critical dose DC values from the decay of electron diffraction peaks shows that beam damage of conjugated polymers in the TEM can be minimized by using antioxidants at room temperature, even if the antioxidant does not alter or incorporate into polymer crystals. As a consequence, the addition of antioxidants pushes the resolution limit of polymer microscopy, enabling imaging of a 3.6 Å lattice spacing in poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3″'-di(2-octyldodecyl)-2,2';5',2″;5″,2″'-quaterthiophene-5,5″'-diyl)] (PffBT4T-2OD).
Collapse
Affiliation(s)
- Brooke Kuei
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Enrique D Gomez
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.
| |
Collapse
|
10
|
Prete M, Ogliani E, Bregnhøj M, Lissau JS, Dastidar S, Rubahn HG, Engmann S, Skov AL, Brook MA, Ogilby PR, Printz A, Turkovic V, Madsen M. Synergistic effect of carotenoid and silicone-based additives for photooxidatively stable organic solar cells with enhanced elasticity. JOURNAL OF MATERIALS CHEMISTRY. C 2021; 35:10.1039/D1TC01544C. [PMID: 37056473 PMCID: PMC10091296 DOI: 10.1039/d1tc01544c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Photochemical and mechanical stability are critical in the production and application of organic solar cells. While these factors can individually be improved using different additives, there is no example of studies on the combined effects of such additive-assisted stabilization. In this study, the properties of PTB7:[70]PCBM organic solar cells are studied upon implementation of two additives: the carotenoid astaxanthin (AX) for photochemical stability and the silicone polydimethylsiloxane (PDMS) for improved mechanical properties. A newly designed additive, AXcPDMS, based on astaxanthin covalently bonded to PDMS was also examined. Lifetime tests, produced in ISOS-L-2 conditions, reveal an improvement in the accumulated power generation (APG) of 10% with pure AX, of 90% when AX is paired with PDMS, and of 140% when AXcPDMS is added in the active layer blend, as compared to the control devices. Singlet oxygen phosphorescence measurements are utilized to study the ability of AX and AXcPDMS to quench singlet oxygen and its precursors in the films. The data are consistent with the strong stabilization effect of the carotenoids. While AX and AXcPDMS are both efficient photochemical stabilizers, the improvement in device stability observed in the presence of AXcPDMS is likely due to a more favorable localization of the stabilizer within the blend. The mechanical properties of the active layers were investigated by tensile testing and cohesive fracture measurements, showing a joint improvement of the photooxidative stability and the mechanical properties, thus yielding organic solar cell devices that are promising for flexible photovoltaic applications.
Collapse
Affiliation(s)
- Michela Prete
- SDU NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark
| | - Elisa Ogliani
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, 2800, Kgs. Lyngby, Denmark
| | - Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Jonas Sandby Lissau
- SDU NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark
| | - Subham Dastidar
- Department of Chemical and Environmental Engineering, The University of Arizona, 1133 E. James E. Rogers, Tucson, Arizona, 85721, USA
| | - Horst-Günter Rubahn
- SDU NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark
| | - Sebastian Engmann
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland, 20899, USA
- Theiss Research, La Jolla, California, 92037, USA
| | - Anne Ladegaard Skov
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, 2800, Kgs. Lyngby, Denmark
| | - Michael A Brook
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4M1, Canada
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Adam Printz
- Department of Chemical and Environmental Engineering, The University of Arizona, 1133 E. James E. Rogers, Tucson, Arizona, 85721, USA
| | - Vida Turkovic
- SDU NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark
| | - Morten Madsen
- SDU NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark
| |
Collapse
|
11
|
Li Z, Shan J, Yan L, Gu H, Lin Y, Tan H, Ma CQ. The Role of the Hydrogen Bond between Piperazine and Fullerene Molecules in Stabilizing Polymer:Fullerene Solar Cell Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15472-15481. [PMID: 32138508 DOI: 10.1021/acsami.9b23366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Piperazine has been recently reported as a stabilizer for polymer:fullerene solar cells that can minimize the "burn-in" degradation of the cell. In this paper, the influence of N-substituents on the stabilization effect of piperazine in P3HT:PC61BM cells was investigated. Results confirmed that only piperazine derivatives (PZs) with N-H bonds showed the stabilization effect, whereas the bis-alkyl-substituted piperazine compounds cannot improve the stability. An efficient photon-induced electron transfer (PET) process between PZ and PC61BM was only detected for the N-H-containing PZ:PC61BM blends, corresponding very well to the stabilization effect of the PZs, which indicates that the PET process between PZ and PC61BM stabilizes the cell performance, and the N-H bond plays a critical role ensuring the PET process and the consequent stabilization effect. Both 1H-NMR spectroscopy and theoretical calculations confirmed the formation of N-H···O-C and N-H···π bonds for the PC61BM:piperazine adduct, which was considered as the driving force that promotes the PET process between these two components. In addition, comparison of the calculated electron affinity energy (EA) and excitation energy (EEx) of PC61BM with/without piperazine confirmed that piperazine doping is able to promote the electron transfer (which leads to the formation of PC61BM anions) than the energy transfer (leads to the formation of PC61BM excitons) between P3HT and PC61BM, which is beneficial for the performance and stability improvement.
Collapse
Affiliation(s)
- Zerui Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 398 Jinzhai Road, Hefei 230026, P. R. China
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Ruoshui Road 398, SEID, SIP, Suzhou 215123, P. R. China
| | - Jiankai Shan
- College of Chemistry, Beijing Normal University, 19 Waida Street, Xinjie Kou, Beijing 100875, P. R. China
| | - Lingpeng Yan
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Ruoshui Road 398, SEID, SIP, Suzhou 215123, P. R. China
- Institute of New Carbon Materials, Taiyuan University of Technology, 79 Yingze Street, Taiyuan 030024, P. R. China
| | - Huimin Gu
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Ruoshui Road 398, SEID, SIP, Suzhou 215123, P. R. China
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, 79 Yingze Street, Taiyuan 030024, P. R. China
| | - Yi Lin
- Department of Chemistry, Xi'an Jiaotong Liverpool University, Renai Road 11, SEID, SIP, Suzhou 215123, P. R. China
| | - Hongwei Tan
- College of Chemistry, Beijing Normal University, 19 Waida Street, Xinjie Kou, Beijing 100875, P. R. China
| | - Chang-Qi Ma
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 398 Jinzhai Road, Hefei 230026, P. R. China
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Ruoshui Road 398, SEID, SIP, Suzhou 215123, P. R. China
| |
Collapse
|
12
|
Voronin VV, Ledovskaya MS, Rodygin KS, Ananikov VP. Examining the vinyl moiety as a protecting group for hydroxyl (–OH) functionality under basic conditions. Org Chem Front 2020. [DOI: 10.1039/d0qo00202j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A method for the protection and deprotection of alcohols via vinylation and devinylation reactions is proposed. Stability of the vinyl protecting group under various conditions is studied and synthetic applicability is demonstrated.
Collapse
Affiliation(s)
| | | | - Konstantin S. Rodygin
- Institute of Chemistry
- Saint Petersburg State University
- Peterhof
- Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences
| | - Valentine P. Ananikov
- Institute of Chemistry
- Saint Petersburg State University
- Peterhof
- Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences
| |
Collapse
|
13
|
Bregnhøj M, Prete M, Turkovic V, Petersen AU, Nielsen MB, Madsen M, Ogilby PR. Oxygen-dependent photophysics and photochemistry of prototypical compounds for organic photovoltaics: inhibiting degradation initiated by singlet oxygen at a molecular level. Methods Appl Fluoresc 2019; 8:014001. [DOI: 10.1088/2050-6120/ab4edc] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Turkovic V, Prete M, Bregnhøj M, Inasaridze L, Volyniuk D, Obrezkov FA, Grazulevicius JV, Engmann S, Rubahn HG, Troshin PA, Ogilby PR, Madsen M. Biomimetic Approach to Inhibition of Photooxidation in Organic Solar Cells Using Beta-Carotene as an Additive. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41570-41579. [PMID: 31609582 PMCID: PMC7899186 DOI: 10.1021/acsami.9b13085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent efficiency records of organic photovoltaics (OPV) highlight stability as a limiting weakness. Incorporation of stabilizers is a desirable approach for inhibiting degradation-it is inexpensive and readily up-scalable. However, to date, such additives have had limited success. We show that β-carotene (BC), an inexpensive and green, naturally occurring antioxidant, dramatically improves OPV stability. When compared to nonstabilized reference devices, the accumulated power generation of PTB7:[70]PCBM devices in the presence of BC increases by an impressive factor of 6, due to stabilization of both the burn-in and the lifetime, and by a factor of 21 for P3HT:[60]PCBM devices, owing to a longer lifetime. Using electron spin resonance and time-resolved near-IR emission spectroscopies, we probed radical and singlet oxygen concentrations. We demonstrate that singlet oxygen sensitized by [70]PCBM causes the "burn-in" of PTB7:[70]PCBM devices and that BC effectively mitigates it. Our results provide an effective solution to the problem that currently limits widespread use of OPV.
Collapse
Affiliation(s)
- Vida Turkovic
- SDU NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark
| | - Michela Prete
- SDU NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark
| | - Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Liana Inasaridze
- Semenov Prospect 1, Institute of Problems of Chemical Physics of Russian Academy of Sciences (IPCP RAS), Chernogolovka 141432P, Russia
| | - Dmytro Volyniuk
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania
| | - Filipp A. Obrezkov
- Skolkovo Institute of Science and Technology, Nobel Street 3, Moscow 143026, Russian Federation
| | - Juozas Vidas Grazulevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania
| | - Sebastian Engmann
- Theiss Research, La Jolla, California 92037, United States
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Horst-Günter Rubahn
- SDU NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark
| | - Pavel A. Troshin
- Semenov Prospect 1, Institute of Problems of Chemical Physics of Russian Academy of Sciences (IPCP RAS), Chernogolovka 141432P, Russia
- Skolkovo Institute of Science and Technology, Nobel Street 3, Moscow 143026, Russian Federation
| | - Peter R. Ogilby
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Morten Madsen
- SDU NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark
| |
Collapse
|
15
|
Yu R, Yao H, Hong L, Qin Y, Zhu J, Cui Y, Li S, Hou J. Design and application of volatilizable solid additives in non-fullerene organic solar cells. Nat Commun 2018; 9:4645. [PMID: 30405114 PMCID: PMC6220167 DOI: 10.1038/s41467-018-07017-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/03/2018] [Indexed: 11/08/2022] Open
Abstract
Most of the high-performance organic solar cells are fabricated with the assistance of high-boiling-point solvent additives to optimize their charge transport properties; this has adverse effects on the OSCs' stability and reproducibility in large-scale production. Here, we design volatilizable solid additives by considering the molecular structure feature of an acceptor-donor-acceptor-type non-fullerene acceptor. The application of solid additives can enhance the intermolecular π-π stacking of the non-fullerene acceptor and thus facilitate the charge transport properties in the active layers, leading to improved efficiencies of OSCs. Importantly, devices fabricated using volatilizable solid additives exhibit higher stability and reproducibility when compared with the OSCs processed with solvent additives. Our results not only demonstrate an approach of applying volatilizable solid additives to benefit the large-scale production of OSCs but also provide a potential direction for designing specific solid additives for different active layers.
Collapse
Affiliation(s)
- Runnan Yu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huifeng Yao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Ling Hong
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunpeng Qin
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Zhu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yong Cui
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Sunsun Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| |
Collapse
|