1
|
Kargozar S, Moghanian A, Rashvand A, Miri AK, Hamzehlou S, Baino F, Mozafari M, Wang AZ. Nanostructured bioactive glasses: A bird's eye view on cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1905. [PMID: 37259946 DOI: 10.1002/wnan.1905] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023]
Abstract
Bioactive glasses (BGs) arewell known for their successful applications in tissue engineering and regenerative medicine. Recent experimental studies have shown their potential usability in oncology, either alone or in combination with other biocompatible materials, such as biopolymers. Direct contact with BG particles has been found to cause toxicity and death in specific cancer cells (bone-derived neoplastic stromal cells) in vitro. Nanostructured BGs (NBGs) can be doped with anticancer elements, such as gallium, to enhance their toxic effects against tumor cells. However, the molecular mechanisms and intracellular targets for anticancer compositions of NBGs require further clarification. NBGs have been successfully evaluated for use in various well-established cancer treatment strategies, including cancer hyperthermia, phototherapy, and anticancer drug delivery. Existing results indicate that NBGs not only enhance cancer cell death, but can also participate in the regeneration of lost healthy tissues. However, the application of NBGs in oncology is still in its early stages, and numerous unanswered questions must be addressed. For example, the impact of the composition, biodegradation, size, and morphology of NBGs on their anticancer efficacy should be defined for each type of cancer and treatment strategy. Moreover, it should be more clearly assessed whether NBGs can shrink tumors, slow/stop cancer progression, or cure cancer completely. In this regard, the use of computational studies (in silico methods) is highly recommended to design the most effective glass formulations for cancer therapy approaches and to predict, to some extent, the relevant properties, efficacy, and outcomes. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Saeid Kargozar
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas, USA
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Moghanian
- Department of Materials Engineering, Imam Khomeini International University, Qazvin, Iran
| | - Ali Rashvand
- Department of Materials Engineering, Imam Khomeini International University, Qazvin, Iran
| | - Amir K Miri
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Sepideh Hamzehlou
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Torino, Italy
| | - Masoud Mozafari
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Andrew Z Wang
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
2
|
Siribbal SM, Ilyas S, Renner AM, Iqbal S, Muñoz Vázquez S, Moawia A, Valldor M, Hussain MS, Schomäcker K, Mathur S. Click functionalized biocompatible gadolinium oxide core-shell nanocarriers for imaging of breast cancer cells. RSC Adv 2022; 12:31830-31845. [PMID: 36380928 PMCID: PMC9641724 DOI: 10.1039/d2ra00347c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/07/2022] [Indexed: 11/10/2022] Open
Abstract
Site-specific delivery using functionalized nanocarriers is in high demand in imaging applications of modern clinical research. To improve the imaging capabilities of conventionally used contrast agents and expand the targeting accuracy, functional gadolinium oxide based nanocarriers originated from homogeneous core shells structures (Gd2O3@SiO2@Fe3O4) were developed using a multilayer formation approach. The synthesis and chemical configuration for the covalent binding of macrocyclic chelating agents and estrogen targeting molecules on these nanocarriers were designed by a two-step chemical synthesis method. Initially, SiO2@Fe3O4 structures were prepared and encapsulated with a homogenous thin Gd2O3 overlayer. The exterior surface of the as-prepared carriers offered chemical binding with a breast cancer specific estrogen molecule, covalently grafted through a Click-Chemistry protocol. In the next step, to enhance the diagnostic imaging capabilities of these carriers, thiocyanate-linked chelator molecule, DOTA, was attached to the surface of estrogen bound Gd2O3@SiO2@Fe3O4 using basic reaction conditions. The active amino groups before and after conjugation of estrogen molecules on the surface were quantified using a fluorescamine based approach. Due to the covalent binding of the macrocyclic chelator to the Gd2O3@SiO2@Fe3O4 surface, core shell carriers showed potential radiolabeling efficiency using positron emitter radionuclide, gallium-68 (68Ga). Intracellular uptake of estrogen-conjugated carriers was evaluated with MCF7 breast cancer cell lines using confocal laser scanning microscopy and fluorescent flow cytometry. In addition, in vitro cytotoxicity studies of functional nanocarriers as compared to bare nanoparticles showed reduced toxicity to HEK-293 cells demonstrating the role of surface attached molecules in preventing direct exposure of the Gd2O3 surface to the cells. The as-developed gadolinium based nanocarriers presented excellent capabilities as biocompatible target-specific imaging probes which indicates great potential in the field of dual-mode contrast agents.
Collapse
Affiliation(s)
- Shifaa M Siribbal
- Institute of Inorganic Chemistry, University of Cologne Greinstrasse 6 50939 Cologne Germany +49 221 470 5627
| | - Shaista Ilyas
- Institute of Inorganic Chemistry, University of Cologne Greinstrasse 6 50939 Cologne Germany +49 221 470 5627
| | - Alexander M Renner
- Institute of Inorganic Chemistry, University of Cologne Greinstrasse 6 50939 Cologne Germany +49 221 470 5627
| | - Sumiya Iqbal
- Institute of Inorganic Chemistry, University of Cologne Greinstrasse 6 50939 Cologne Germany +49 221 470 5627
| | - Sergio Muñoz Vázquez
- Clinic and Polyclinic for Nuclear Medicine, University of Cologne Kerpenerstrasse 62 50937 Cologne Germany
| | - Abubakar Moawia
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne 50931 Cologne Germany
- Center for Biochemistry, Medical Faculty, University of Cologne 50931 Cologne Germany
| | - Martin Valldor
- Max-Planck-Institut für Chemische Physik fester Stoffe Nöthnitzer Strasse 40 01187 Dresden Germany
- Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo Blindern 0315 Oslo Norway
| | - Muhammad S Hussain
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne 50931 Cologne Germany
- Center for Biochemistry, Medical Faculty, University of Cologne 50931 Cologne Germany
| | - Klaus Schomäcker
- Clinic and Polyclinic for Nuclear Medicine, University of Cologne Kerpenerstrasse 62 50937 Cologne Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne Greinstrasse 6 50939 Cologne Germany +49 221 470 5627
| |
Collapse
|
3
|
Renner AM, Derichsweiler C, Ilyas S, Gessner I, Fries JWU, Mathur S. High efficiency capture of biomarker miRNA15a for noninvasive diagnosis of malignant kidney tumors. Biomater Sci 2022; 10:1113-1122. [PMID: 35048092 DOI: 10.1039/d1bm01737c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To date, there are no preoperative and quantitative dynamics in clinical practice that can reliably differentiate between a benign and malignant renal cell carcinoma (RCC). For monitoring different analytes in body fluids, more than 40 different molecular biomarkers have been identified, however, they are associated with limited clinical sensitivity and/or non-optimal specificity due to their leaky nature. Previous work on RCC demonstrated the miRNA15a to be reliable and novel biomarker with 98.1% specificity and 100% sensitivity. Despite the high potential of miRNA15a biomarker, its clinical application is considerably hampered by the insensitive nature of the detection methods and low concentration of biomarker in samples that is aggravated by the high level of contamination due to other solutes present in body fluids. In this work, a non-invasive quantitative approach is demonstrated to overcome such diagnostics issues through biotin-streptavidin binding and fluorescence active magnetic nanocarriers that ensured prompt isolation, enrichment and purification of the biomarker miRNA15a from urine. The study demonstrates that detectable low levels of these miRNAs through miRNA capturing nanocarriers can potentially function as advanced diagnostic markers for the non-invasive investigation and early detection of renal cancer.
Collapse
Affiliation(s)
- Alexander M Renner
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany.
| | - Christina Derichsweiler
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany.
| | - Shaista Ilyas
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany.
| | - Isabel Gessner
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany.
| | - Jochen W U Fries
- Institute of Urology/Pathology, University Hospital of Cologne, Kerpenerstr. 62, 50924 Cologne, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany.
| |
Collapse
|
4
|
Schütz MB, Renner AM, Ilyas S, Lê K, Guliyev M, Krapf P, Neumaier B, Mathur S. 18F-Labeled magnetic nanovectors for bimodal cellular imaging. Biomater Sci 2021; 9:4717-4727. [PMID: 34032225 DOI: 10.1039/d1bm00616a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Surface modification of nanocarriers enables selective attachment to specific molecular targets within a complex biological environment. Besides the enhanced uptake due to specific interactions, the surface ligands can be utilized for radiolabeling applications for bimodal imaging ensured by positron emission topography (PET) and magnetic resonance imaging (MRI) functions in one source. Herein, we describe the surface functionalization of magnetite (Fe3O4) with folic acid as a target vector. Additionally, the magnetic nanocarriers were conjugated with appropriate ligands for subsequent copper-catalyzed azide-alkyne cycloaddition or carbodiimide coupling reactions to successfully achieve radiolabeling with the PET-emitter 18F. The phase composition (XRD) and size analysis (TEM) confirmed the formation of Fe3O4 nanoparticles (6.82 nm ± 0.52 nm). The quantification of various surface functionalities was performed by Fourier-transform infrared spectroscopy (FT-IR) and ultraviolet-visible microscopy (UV-Vis). An innovative magnetic-HPLC method was developed in this work for the determination of the radiochemical yield of the 18F-labeled NPs. The as-prepared Fe3O4 particles demonstrated high radiochemical yields and showed high cellular uptake in a folate receptor overexpressing MCF-7 cell line, validating bimodal imaging chemical design and a magnetic HPLC system. This novel approach, combining folic acid-capped Fe3O4 nanocarriers as a targeting vector with 18F labeling, is promising to apply this probe for bimodal PET/MR-studies.
Collapse
Affiliation(s)
- Markus B Schütz
- Institute of Inorganic Chemistry, University of Cologne, D-50939 Cologne, Germany.
| | - Alexander M Renner
- Institute of Inorganic Chemistry, University of Cologne, D-50939 Cologne, Germany.
| | - Shaista Ilyas
- Institute of Inorganic Chemistry, University of Cologne, D-50939 Cologne, Germany.
| | - Khan Lê
- Institute of Inorganic Chemistry, University of Cologne, D-50939 Cologne, Germany.
| | - Mehrab Guliyev
- Institute of Neuroscience and Medicine-Nuclear Chemistry (INM-5), Forschungszentrum Jülich, D-52428 Jülich, Germany
| | - Philipp Krapf
- Institute of Neuroscience and Medicine-Nuclear Chemistry (INM-5), Forschungszentrum Jülich, D-52428 Jülich, Germany
| | - Bernd Neumaier
- Institute of Neuroscience and Medicine-Nuclear Chemistry (INM-5), Forschungszentrum Jülich, D-52428 Jülich, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne, D-50939 Cologne, Germany.
| |
Collapse
|
5
|
Costa LSD, Khan LU, Franqui LS, Delite FDS, Muraca D, Martinez DST, Knobel M. Hybrid magneto-luminescent iron oxide nanocubes functionalized with europium complexes: synthesis, hemolytic properties and protein corona formation. J Mater Chem B 2021; 9:428-439. [PMID: 33367419 DOI: 10.1039/d0tb02454f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The use of hybrid nanostructures based on magneto-luminescent properties is a promising strategy for nano-bio applications and theranostics platforms. In this work, we carried out the synthesis and functionalization of iron oxide nanocubes (IONCs) to obtain multifunctional hybrid nanostructures towards biomedical applications. The IONCs were functionalized with tetraethylorthosilicate, thenoyltrifluoroacetone-propyl-triethoxysilane and europium(iii)-dibenzoylmethane complexes to obtain the materials termed as IOCNCs@SiO2, IONCs@SiO2TTA, IONCs@SiO2TTA-Eu and IONCs@SiO2-TTA-Eu-DBM, respectively. Then, the biological interactions of these nanostructures with red blood cells - RBCs (hemolysis) and human blood plasma (protein corona formation) were evaluated. The XPS spectrocopy and EDS chemical mapping analysis showed that each domain is homogeneously occupied in the hybrid material, with the magnetic core at the center and the luminescent domain on the surface of the hybrid nanomaterial with a core@shell like structure. Futhermore, after each functionalization step, the nanomaterial surface charge drastically changed, with critical impact on RBC lysis and corona formation. While IONCs@SiO2 and IONCs@SiO2-TTA-Eu-DBM showed hemolytic properties in a dose-dependent manner, the IONCs@SiO2TTA-Eu did not present any hemolytic effect up to 300 μg mL-1. Protein corona results showed a pattern of selective adsorption of proteins with each surface of the synthesized hybrid materials. However, as a general result, a suppression of hemolysis after protein corona formation in all tests was verified. Finally, this study provides a solid background for further applications of these hybrid magneto-luminescent materials containing new surface functionalities in the emerging field of medical nanobiotechnology.
Collapse
Affiliation(s)
- Luelc Souza da Costa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil. and "Gleb Wataghim" Institute of Physics (IFGW), University of Campinas (Unicamp), Campinas, Sao Paulo, Brazil.
| | - Latif Ullah Khan
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil. and Synchrotron-Light for Experimental Science and Applications in the Middle East (SESAME), Allan, Jordan
| | - Lidiane Silva Franqui
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil.
| | - Fabrício de Souza Delite
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil.
| | - Diego Muraca
- "Gleb Wataghim" Institute of Physics (IFGW), University of Campinas (Unicamp), Campinas, Sao Paulo, Brazil.
| | - Diego Stéfani Teodoro Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil.
| | - Marcelo Knobel
- "Gleb Wataghim" Institute of Physics (IFGW), University of Campinas (Unicamp), Campinas, Sao Paulo, Brazil.
| |
Collapse
|
6
|
Renner AM, Ilyas S, Schlößer HA, Szymura A, Roitsch S, Wennhold K, Mathur S. Receptor-Mediated In Vivo Targeting of Breast Cancer Cells with 17α-Ethynylestradiol-Conjugated Silica-Coated Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14819-14828. [PMID: 33210924 DOI: 10.1021/acs.langmuir.0c02820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Efficient therapies for breast cancer remain elusive because of the lack of strategies for targeted transport and receptor-mediated uptake of synthetic drug molecules by cancer cells. Conjugation of nanoparticles (NPs) with active targeting ligands enabling selective molecular recognition of antigens expressed on the surface of cancer cells is promising for localization and treatment of malignant cells. In this study, covalent attachment of synthetic estrogen 17α-ethynylestradiol on the silica (SiO2) shell of silica-gold NPs (SiO2@Au) was undertaken to improve the cancer-targeting ability of the nano-biotags. Chemical and structural analysis of the bioconjugates examined in solution (UV-vis and ξ-potential) and solid state (Fourier transform infrared spectroscopy, X-ray diffractometry, and transmission electron microscopy) confirmed the identity of the carrier particles and surface-bound ligands. The mesoporous silica shell served as a reservoir for anticancer drugs (doxorubicin and quercetin) and to facilitate covalent attachment of receptor molecules by click chemistry protocols. The chemoselective recognition between the nanoconjugates and cell membranes was successfully demonstrated by the accumulation of nanoprobes in the tumor tissue of mice with subcutaneous breast cancer, whereas healthy cells were unaffected. The drug release studies showed sustained release kinetics over several weeks. These findings elaborate the exceptional selectivity and potential of estrogen-coated nano-biolabels in efficient diagnosis and detection of breast cancer cells.
Collapse
Affiliation(s)
- Alexander M Renner
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany
| | - Shaista Ilyas
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany
| | - Hans A Schlößer
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - Annika Szymura
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany
| | - Stefan Roitsch
- Institute of Physical Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany
| | - Kerstin Wennhold
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany
| |
Collapse
|
7
|
Ilyas S, Ullah NK, Ilyas M, Wennhold K, Iqbal M, Schlößer HA, Hussain MS, Mathur S. Mediating the Fate of Cancer Cell Uptake: Dual-Targeted Magnetic Nanovectors with Biotin and Folate Surface Ligands. ACS Biomater Sci Eng 2020; 6:6138-6147. [DOI: 10.1021/acsbiomaterials.0c00771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shaista Ilyas
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| | - Nighat K. Ullah
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| | - Muhammad Ilyas
- Professorship for Population Genetics, Department of Life Science Systems, Technical University of Munich, Liesel-Beckmann Straße 2, 85354 Freising, Germany
| | - Kerstin Wennhold
- Center for Molecular Medicine Cologne and Translational Immunology, University Hospital Cologne, 50931 Cologne, Germany
- Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
| | - Maria Iqbal
- Institute of Biochemistry I, Center for Molecular Medicine, University of Cologne, Joseph-Stelzmann-Straße 52, 50931 Cologne, Germany
- Cologne Center for Genomics (CCG), University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Hans A. Schlößer
- Center for Molecular Medicine Cologne and Translational Immunology, University Hospital Cologne, 50931 Cologne, Germany
- Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
| | - Muhammad S. Hussain
- Institute of Biochemistry I, Center for Molecular Medicine, University of Cologne, Joseph-Stelzmann-Straße 52, 50931 Cologne, Germany
- Cologne Center for Genomics (CCG), University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| |
Collapse
|
8
|
Renner AM, Schütz MB, Moog D, Fischer T, Mathur S. Electroacoustic Quantification of Surface Bound Ligands in Functionalized Silica and Iron Oxide Nanoparticles. ChemistrySelect 2019. [DOI: 10.1002/slct.201902710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexander M. Renner
- Institute of Inorganic ChemistryUniversity of Cologne Greinstr. 6 50939 Cologne Germany
| | - Markus B. Schütz
- Institute of Inorganic ChemistryUniversity of Cologne Greinstr. 6 50939 Cologne Germany
| | - Daniel Moog
- Institute of Inorganic ChemistryUniversity of Cologne Greinstr. 6 50939 Cologne Germany
| | - Thomas Fischer
- Institute of Inorganic ChemistryUniversity of Cologne Greinstr. 6 50939 Cologne Germany
| | - Sanjay Mathur
- Institute of Inorganic ChemistryUniversity of Cologne Greinstr. 6 50939 Cologne Germany
| |
Collapse
|
9
|
Zamolo VA, Modugno G, Lubian E, Cazzolaro A, Mancin F, Giotta L, Mastrogiacomo D, Valli L, Saccani A, Krol S, Bonchio M, Carraro M. Selective Targeting of Proteins by Hybrid Polyoxometalates: Interaction Between a Bis-Biotinylated Hybrid Conjugate and Avidin. Front Chem 2018; 6:278. [PMID: 30050897 PMCID: PMC6050359 DOI: 10.3389/fchem.2018.00278] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/20/2018] [Indexed: 01/05/2023] Open
Abstract
The Keggin-type polyoxometalate [γ-SiW10O36]8- was covalently modified to obtain a bis-biotinylated conjugate able to bind avidin. Spectroscopic studies such as UV-vis, fluorimetry, circular dichroism, coupled to surface plasmon resonance technique were used to highlight the unique interplay of supramolecular interactions between the homotetrameric protein and the bis-functionalized polyanion. In particular, the dual recognition mechanism of the avidin encompasses (i) a complementary electrostatic association between the anionic surface of the polyoxotungstate and each positively charged avidin subunit and (ii) specific host-guest interactions between each biotinylated arm and a corresponding pocket on the tetramer subunits. The assembly exhibits peroxidase-like reactivity and it was used in aqueous solution for L-methionine methyl ester oxidation by H2O2. The recognition phenomenon was then exploited for the preparation of layer-by-layer films, whose structural evolution was monitored in situ by ATR-FTIR spectroscopy. Finally, cell tracking studies were performed by exploiting the specific interactions with a labeled streptavidin.
Collapse
Affiliation(s)
- Valeria A Zamolo
- Department of Chemical Sciences, University of Padova and ITM-CNR, Padova, Italy
| | - Gloria Modugno
- Department of Chemical Sciences, University of Padova and ITM-CNR, Padova, Italy
| | - Elisa Lubian
- Department of Chemical Sciences, University of Padova and ITM-CNR, Padova, Italy
| | - Alessandro Cazzolaro
- Department of Chemical Sciences, University of Padova and ITM-CNR, Padova, Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova and ITM-CNR, Padova, Italy
| | - Livia Giotta
- Department of Biological and Environmental Sciences and Technologies - DiSTeBA, University of Salento, Lecce, Italy
| | - Disma Mastrogiacomo
- Department of Biological and Environmental Sciences and Technologies - DiSTeBA, University of Salento, Lecce, Italy
| | - Ludovico Valli
- Department of Biological and Environmental Sciences and Technologies - DiSTeBA, University of Salento, Lecce, Italy
| | - Alessandra Saccani
- NanoMed Lab, Fondazione IRCCS Institute of Neurology "Carlo Besta," Milan, Italy
| | - Silke Krol
- NanoMed Lab, Fondazione IRCCS Institute of Neurology "Carlo Besta," Milan, Italy.,Laboratory of Translational Nanotechnology, IRCCS Oncologic Institute "Giovanni Paolo II," Bari, Italy
| | - Marcella Bonchio
- Department of Chemical Sciences, University of Padova and ITM-CNR, Padova, Italy
| | - Mauro Carraro
- Department of Chemical Sciences, University of Padova and ITM-CNR, Padova, Italy
| |
Collapse
|
10
|
Gessner I, Krakor E, Jurewicz A, Wulff V, Kling L, Christiansen S, Brodusch N, Gauvin R, Wortmann L, Wolke M, Plum G, Schauss A, Krautwurst J, Ruschewitz U, Ilyas S, Mathur S. Hollow silica capsules for amphiphilic transport and sustained delivery of antibiotic and anticancer drugs. RSC Adv 2018; 8:24883-24892. [PMID: 35542120 PMCID: PMC9082457 DOI: 10.1039/c8ra03716g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/21/2018] [Indexed: 11/21/2022] Open
Abstract
Hollow mesoporous silica capsules (HMSC) are potential drug transport vehicles due to their biocompatibility, high loading capacity and sufficient stability in biological milieu. Herein, we report the synthesis of ellipsoid-shaped HMSC (aspect ratio ∼2) performed using hematite particles as solid templates that were coated with a conformal silica shell through cross-condensation reactions. For obtaining hollow silica capsules, the iron oxide core was removed by acidic leaching. Gas sorption studies on HMSC revealed mesoscopic pores (main pore width ∼38 Å) and a high surface area of 308.8 m2 g-1. Cell uptake of dye-labeled HMSC was confirmed by incubating them with human cervical cancer (HeLa) cells and analyzing the internalization through confocal microscopy. The amphiphilic nature of HMSC for drug delivery applications was tested by loading antibiotic (ciprofloxacin) and anticancer (curcumin) compounds as model drugs for hydrophilic and hydrophobic therapeutics, respectively. The versatility of HMSC in transporting hydrophilic as well as hydrophobic drugs and a pH dependent drug release over several days under physiological conditions was demonstrated in both cases by UV-vis spectroscopy. Ciprofloxacin-loaded HMSC were additionally evaluated towards Gram negative (E. coli) bacteria and demonstrated their efficacy even at low concentrations (10 μg ml-1) in inhibiting complete bacterial growth over 18 hours.
Collapse
Affiliation(s)
- Isabel Gessner
- Institute of Inorganic Chemistry, University of Cologne Greinstr. 6 50939 Cologne Germany
| | - Eva Krakor
- Institute of Inorganic Chemistry, University of Cologne Greinstr. 6 50939 Cologne Germany
| | - Anna Jurewicz
- Institute of Inorganic Chemistry, University of Cologne Greinstr. 6 50939 Cologne Germany
| | - Veronika Wulff
- Cluster of Excellence - Cellular Stress Responses in Aging-Associated Diseases (CECAD), Imaging Facility, University of Cologne Joseph-Stelzmann-Str. 26 50931 Cologne Germany
| | - Lasse Kling
- Max Planck Institute for the Science of Light Günther-Scharowsky-Straße 1 Bau 26 91058 Erlangen Germany
| | - Silke Christiansen
- Max Planck Institute for the Science of Light Günther-Scharowsky-Straße 1 Bau 26 91058 Erlangen Germany
- Helmholtz Institut Berlin für Materialien und Energie (HZB) Hahn-Meitnerplatz 1 14109 Berlin Germany
| | - Nicolas Brodusch
- Department of Mining and Materials Engineering, McGill University Montreal Quebec Canada
| | - Raynald Gauvin
- Department of Mining and Materials Engineering, McGill University Montreal Quebec Canada
| | - Laura Wortmann
- Institute of Inorganic Chemistry, University of Cologne Greinstr. 6 50939 Cologne Germany
| | - Martina Wolke
- Institute for Medical Microbiology, Immunology and Hygiene Goldenfelsstraße 19-21 50935 Cologne Germany
| | - Georg Plum
- Institute for Medical Microbiology, Immunology and Hygiene Goldenfelsstraße 19-21 50935 Cologne Germany
| | - Astrid Schauss
- Cluster of Excellence - Cellular Stress Responses in Aging-Associated Diseases (CECAD), Imaging Facility, University of Cologne Joseph-Stelzmann-Str. 26 50931 Cologne Germany
| | - John Krautwurst
- Institute of Inorganic Chemistry, University of Cologne Greinstr. 6 50939 Cologne Germany
| | - Uwe Ruschewitz
- Institute of Inorganic Chemistry, University of Cologne Greinstr. 6 50939 Cologne Germany
| | - Shaista Ilyas
- Institute of Inorganic Chemistry, University of Cologne Greinstr. 6 50939 Cologne Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne Greinstr. 6 50939 Cologne Germany
| |
Collapse
|
11
|
Kumar SSD, Mahesh A, Antoniraj MG, Rathore HS, Houreld N, Kandasamy R. Cellular imaging and folate receptor targeting delivery of gum kondagogu capped gold nanoparticles in cancer cells. Int J Biol Macromol 2018; 109:220-230. [DOI: 10.1016/j.ijbiomac.2017.12.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/29/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
|
12
|
Ren W, Iqbal MZ, Zeng L, Chen T, Pan Y, Zhao J, Yin H, Zhang L, Zhang J, Li A, Wu A. Black TiO 2 based core-shell nanocomposites as doxorubicin carriers for thermal imaging guided synergistic therapy of breast cancer. NANOSCALE 2017; 9:11195-11204. [PMID: 28749498 DOI: 10.1039/c7nr04039c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
TiO2 nanomaterials have been widely used for anticancer drug carriers and UV/980 nm NIR triggered cancer synergistic platforms. However, traditional pure TiO2 nanocarriers encounter some serious drawbacks, such as low drug loading ability, limited tissue penetration of UV light, and heating effect of 980 nm NIR on normal tissue, which obstruct their further application in cancer treatment. To overcome those challenges, novel mesoporous silica (mSiO2) coated black TiO2 core-shell nanocomposites are designed and constructed as doxorubicin carriers for 808 nm NIR triggered thermal imaging guided photothermal therapy combined chemotherapy of breast cancer. Properties of the nanocomposites such as micro-morphology, size, drug loading ability and release, targeting performance, and therapy efficiency in vitro and in vivo were evaluated. The results indicated the core-shell nanocomposites with dramatically increased loading ability were pH-responsive/NIR-accelerated doxorubicin release nanocarriers and showed synergistic breast cancer treatment in vitro and in vivo. This study verifies that the newly prepared mSiO2 coated black TiO2 core-shell nanocarriers can overcome the limitations of traditional TiO2 nanocarriers and thus improve and broaden usage of TiO2 nanoparticles in nanomedicine.
Collapse
Affiliation(s)
- Wenzhi Ren
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, 315201, Ningbo, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Salili SM, Worden M, Nemati A, Miller DW, Hegmann T. Synthesis of Distinct Iron Oxide Nanomaterial Shapes Using Lyotropic Liquid Crystal Solvents. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E211. [PMID: 28767058 PMCID: PMC5575693 DOI: 10.3390/nano7080211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 12/20/2022]
Abstract
A room temperature reduction-hydrolysis of Fe(III) precursors such as FeCl₃ or Fe(acac)₃ in various lyotropic liquid crystal phases (lamellar, hexagonal columnar, or micellar) formed by a range of ionic or neutral surfactants in H₂O is shown to be an effective and mild approach for the preparation of iron oxide (IO) nanomaterials with several morphologies (shapes and dimensions), such as extended thin nanosheets with lateral dimensions of several hundred nanometers as well as smaller nanoflakes and nanodiscs in the tens of nanometers size regime. We will discuss the role of the used surfactants and lyotropic liquid crystal phases as well as the shape and size differences depending upon when and how the resulting nanomaterials were isolated from the reaction mixture. The presented synthetic methodology using lyotropic liquid crystal solvents should be widely applicable to several other transition metal oxides for which the described reduction-hydrolysis reaction sequence is a suitable pathway to obtain nanoscale particles.
Collapse
Affiliation(s)
- Seyyed Muhammad Salili
- Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH 44242-0001, USA.
| | - Matthew Worden
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242-0001, USA.
| | - Ahlam Nemati
- Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH 44242-0001, USA.
| | - Donald W Miller
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada.
| | - Torsten Hegmann
- Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH 44242-0001, USA.
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242-0001, USA.
| |
Collapse
|
14
|
|
15
|
Abbas M, RamuluTorati S, Iqbal SA, Kim C. A novel and rapid approach for the synthesis of biocompatible and highly stable Fe3O4/SiO2 and Fe3O4/C core/shell nanocubes and nanorods. NEW J CHEM 2017. [DOI: 10.1039/c6nj03697j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Core/shell nanostructures of MNPs/inorganic materials have attracted enormous research interest due to their promising applications in bio-medicine, energy, electronics, the environment, etc.
Collapse
Affiliation(s)
- Mohamed Abbas
- Department of Emerging Materials Science
- DGIST
- Daegu
- South Korea
- Ceramics Department
| | | | - Shawl Asif Iqbal
- Catholic Institute for Visual Science
- Seoul St. Mary's Hospital
- The Catholic University of Korea
- Seoul
- South Korea
| | - CheolGi Kim
- Department of Emerging Materials Science
- DGIST
- Daegu
- South Korea
| |
Collapse
|
16
|
Bonvin D, Bastiaansen JAM, Stuber M, Hofmann H, Mionić Ebersold M. Folic acid on iron oxide nanoparticles: platform with high potential for simultaneous targeting, MRI detection and hyperthermia treatment of lymph node metastases of prostate cancer. Dalton Trans 2017; 46:12692-12704. [DOI: 10.1039/c7dt02139a] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Folic acid directly bound to the surface of iron oxide nanoparticles with simultaneously high targeting, MRI relaxivity and heating efficacy.
Collapse
Affiliation(s)
- Debora Bonvin
- Powder Technology Laboratory
- Insitute of Materials
- Ecole polytechnique fédérale de Lausanne
- Switzerland
| | - Jessica A. M. Bastiaansen
- Department of Radiology
- University Hospital (CHUV) and University of Lausanne (UNIL)
- Switzerland
- Center of Biomedical Imaging (CIBM)
- Lausanne
| | - Matthias Stuber
- Department of Radiology
- University Hospital (CHUV) and University of Lausanne (UNIL)
- Switzerland
- Center of Biomedical Imaging (CIBM)
- Lausanne
| | - Heinrich Hofmann
- Powder Technology Laboratory
- Insitute of Materials
- Ecole polytechnique fédérale de Lausanne
- Switzerland
| | - Marijana Mionić Ebersold
- Powder Technology Laboratory
- Insitute of Materials
- Ecole polytechnique fédérale de Lausanne
- Switzerland
- Department of Radiology
| |
Collapse
|
17
|
Ravichandran M, Oza G, Velumani S, Ramirez JT, Garcia-Sierra F, Andrade NB, Vera A, Leija L, Garza-Navarro MA. Plasmonic/Magnetic Multifunctional nanoplatform for Cancer Theranostics. Sci Rep 2016; 6:34874. [PMID: 27721391 PMCID: PMC5056510 DOI: 10.1038/srep34874] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/09/2016] [Indexed: 12/18/2022] Open
Abstract
A multifunctional magneto-plasmonic CoFe2O4@Au core-shell nanoparticle was developed by iterative-seeding based method. This nanocargo consists of a cobalt ferrite kernel as a core (Nk) and multiple layers of gold as a functionalizable active stratum, (named as Nk@A after fifth iteration). Nk@A helps in augmenting the physiological stability and enhancing surface plasmon resonance (SPR) property. The targeted delivery of Doxorubicin using Nk@A as a nanopayload is demonstrated in this report. The drug release profile followed first order rate kinetics optimally at pH 5.4, which is considered as an endosomal pH of cells. The cellular MR imaging showed that Nk@A is an efficient T2 contrast agent for both L6 (r2-118.08 mM-1s-1) and Hep2 (r2-217.24 mM-1s-1) cells. Microwave based magnetic hyperthermia studies exhibited an augmentation in the temperature due to the transformation of radiation energy into heat at 2.45 GHz. There was an enhancement in cancer cell cytotoxicity when hyperthermia combined with chemotherapy. Hence, this single nanoplatform can deliver 3-pronged theranostic applications viz., targeted drug-delivery, T2 MR imaging and hyperthermia.
Collapse
Affiliation(s)
- M. Ravichandran
- Program on Nanoscience and Nanotechnology, Av. 2508 National Polytechnic Institute, Gustavo A. Madero, San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - Goldie Oza
- Department of Genetics and Molecular Biology, Av. 2508 National Polytechnic Institute, Gustavo A. Madero, San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - S. Velumani
- Department of Electrical Engineering, Av. 2508 National Polytechnic Institute, Gustavo A. Madero, San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - Jose Tapia Ramirez
- Department of Genetics and Molecular Biology, Av. 2508 National Polytechnic Institute, Gustavo A. Madero, San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - Francisco Garcia-Sierra
- Department of Cell Biology, Av. 2508 National Polytechnic Institute, Gustavo A. Madero, San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - Norma Barragan Andrade
- Department of Cell Biology, Av. 2508 National Polytechnic Institute, Gustavo A. Madero, San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - A. Vera
- Department of Electrical Engineering - Bioelectronics Section, CINVESTAV-IPN, Av. 2508 National Polytechnic Institute, Gustavo A. Madero, San Pedro Zacatenco, 07360 Mexico City
| | - L. Leija
- Department of Electrical Engineering - Bioelectronics Section, CINVESTAV-IPN, Av. 2508 National Polytechnic Institute, Gustavo A. Madero, San Pedro Zacatenco, 07360 Mexico City
| | - Marco A. Garza-Navarro
- Department of Mechanical and Electrical Engineering, Universidad Autonoma de Nuevo Leon, San Nicolás de Los Garza, Nuevo León, 66451 Mexico City, Mexico
| |
Collapse
|
18
|
Moradi-Shoeili Z, Zare M, Bagherzadeh M, Özkar S, Akbayrak S. Synthesis, characterization, and catalytic activity of supported molybdenum Schiff base complex as a magnetically recoverable nanocatalyst in epoxidation reaction. J COORD CHEM 2016. [DOI: 10.1080/00958972.2015.1137290] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Maryam Zare
- Materials Science & Engineering Department, Golpayegan University of Technology, Golpayegan, Iran
| | | | - Saim Özkar
- Chemistry Department, Middle East Technical University, Ankara, Turkey
| | - Serdar Akbayrak
- Chemistry Department, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
19
|
Kandasamy G, Maity D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm 2015; 496:191-218. [PMID: 26520409 DOI: 10.1016/j.ijpharm.2015.10.058] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/15/2022]
Abstract
Recently superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively used in cancer therapy and diagnosis (theranostics) via magnetic targeting, magnetic resonance imaging, etc. due to their remarkable magnetic properties, chemical stability, and biocompatibility. However, the magnetic properties of SPIONs are influenced by various physicochemical and synthesis parameters. So, this review mainly focuses on the influence of spin canting effects, introduced by the variations in size, shape, and organic/inorganic surface coatings, on the magnetic properties of SPIONs. This review also describes the several predominant chemical synthesis procedures and role of the synthesis parameters for monitoring the size, shape, crystallinity and composition of the SPIONs. Moreover, this review discusses about the latest developments of the inorganic materials and organic polymers for encapsulation of the SPIONs. Finally, the most recent advancements of the SPIONs and their nanopackages in combination with other imaging/therapeutic agents have been comprehensively discussed for their effective usage as in vitro and in vivo theranostic agents in cancer treatments.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Nanomaterials Lab, Department of Mechanical Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
| | - Dipak Maity
- Nanomaterials Lab, Department of Mechanical Engineering, Shiv Nadar University, Uttar Pradesh 201314, India.
| |
Collapse
|
20
|
Sharma VK, Alipour A, Soran-Erdem Z, Aykut ZG, Demir HV. Highly monodisperse low-magnetization magnetite nanocubes as simultaneous T(1)-T(2) MRI contrast agents. NANOSCALE 2015; 7:10519-10526. [PMID: 26010145 DOI: 10.1039/c5nr00752f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report the first study of highly monodisperse and crystalline iron oxide nanocubes with sub-nm controlled size distribution (9.7 ± 0.5 nm in size) that achieve simultaneous contrast enhancement in both T1- and T2-weighted magnetic resonance imaging (MRI). Here, we confirmed the magnetite structure of iron oxide nanocubes by X-ray diffraction (XRD), selected area electron diffraction (SAED) pattern, optical absorption and Fourier transformed infrared (FT-IR) spectra. These magnetite nanocubes exhibit superparamagnetic and paramagnetic behavior simultaneously by virtue of their finely controlled shape and size. The magnetic measurements reveal that the magnetic moment values are favorably much lower because of the small size and cubic shape of the nanoparticles, which results in an enhanced spin canting effect. As a proof-of-concept demonstration, we showed their potential as dual contrast agents for both T1- and T2-weighted MRI via phantom studies, in vivo imaging and relaxivity measurements. Therefore, these low-magnetization magnetite nanocubes, while being non-toxic and bio-compatible, hold great promise as excellent dual-mode T1 and T2 contrast agents for MRI.
Collapse
Affiliation(s)
- V K Sharma
- UNAM-Institute of Materials Science and Nanotechnology, National Magnetic Resonance Research Center (UMRAM), Department of Electrical and Electronics Engineering, Department of Physics, Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey
| | | | | | | | | |
Collapse
|
21
|
Xiao L, Mertens M, Wortmann L, Kremer S, Valldor M, Lammers T, Kiessling F, Mathur S. Enhanced in vitro and in vivo cellular imaging with green tea coated water-soluble iron oxide nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2015; 7:6530-6540. [PMID: 25729881 DOI: 10.1021/am508404t] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fully green and facile redox chemistry involving reduction of colloidal iron hydroxide (Fe(OH)3) through green tea (GT) polyphenols produced water-soluble Fe3O4 nanocrystals coated with GT extracts namely epigallocatechin gallate (EGCG) and epicatechin (EC). Electron donating polyphenols stoichiometrically reduced Fe(3+) ions into Fe(2+) ions resulting in the formation of magnetite (Fe3O4) nanoparticles and corresponding oxidized products (semiquinones and quinones) that simultaneously served as efficient surface chelators for the Fe3O4 nanoparticles making them dispersible and stable in water, PBS, and cell culture medium for extended time periods. As-formed iron oxide nanoparticles (2.5-6 nm) displayed high crystallinity and saturation magnetization as well as high relaxivity ratios manifested in strong contrast enhancement observed in T2-weighted images. Potential of green tea-coated superparamagnetic iron oxide nanocrystals (SPIONs) as superior negative contrast agents was confirmed by in vitro and in vivo experiments. Primary human macrophages (J774A.1) and colon cancer cells (CT26) were chosen to assess cytotoxicity and cellular uptake of GT-, EGCGq-, and ECq-coated Fe3O4 nanoparticles, which showed high uptake efficiencies by J774A.1 and CT26 cells without any additional transfection agent. Furthermore, the in vivo accumulation characteristics of GT-coated Fe3O4 nanoparticles were similar to those observed in clinical studies of SPIONs with comparable accumulation in epidermoid cancer-xenograft bearing mice. Given their promising transport and uptake characteristics and new surface chemistry, GT-SPIONs conjugates can be applied for multimodal imaging and therapeutic applications by anchoring further functionalities.
Collapse
Affiliation(s)
- Lisong Xiao
- †Institute of Inorganic Chemistry, University of Cologne, D-50939 Cologne, Germany
| | - Marianne Mertens
- ‡Department of Experimental Molecular Imaging, RWTH Aachen University Hospital, D-52074 Aachen, Germany
| | - Laura Wortmann
- †Institute of Inorganic Chemistry, University of Cologne, D-50939 Cologne, Germany
| | - Silke Kremer
- †Institute of Inorganic Chemistry, University of Cologne, D-50939 Cologne, Germany
| | - Martin Valldor
- §Max-Planck-Institute for Chemical Physics and Solids, D-01187 Dresden, Germany
| | - Twan Lammers
- ‡Department of Experimental Molecular Imaging, RWTH Aachen University Hospital, D-52074 Aachen, Germany
| | - Fabian Kiessling
- ‡Department of Experimental Molecular Imaging, RWTH Aachen University Hospital, D-52074 Aachen, Germany
| | - Sanjay Mathur
- †Institute of Inorganic Chemistry, University of Cologne, D-50939 Cologne, Germany
| |
Collapse
|
22
|
Li Z, Fei HF, Tan Y, Zhang X, Xie Z, Zhang Z. Synthesis and characterization of self-assembled three-dimensional flower-like iron(iii) oxide–indium(iii) oxide binary nanocomposites. RSC Adv 2015. [DOI: 10.1039/c5ra05968b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Three-dimensional flower-like iron(iii) oxide–indium(iii) oxide binary metal oxide nanocomposites were successfully fabricated by a simple and economical route; and it can be used as fillers to significantly enhance the thermal resistance of silicone rubber under nitrogen.
Collapse
Affiliation(s)
- Zongqi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Hua-Feng Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Yongxia Tan
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Xuezhong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Zemin Xie
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Zhijie Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|