1
|
Hormozi Jangi SR. Developing a label-free full-range highly selective pH nanobiosensor using a novel high quantum yield pH-responsive activated-protein-protected gold nanocluster prepared by a novel ultrasonication-protein-assisted procedure. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124829. [PMID: 39018671 DOI: 10.1016/j.saa.2024.124829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
A novel, label-free, ultra-selective, reproducible, and reversible pH nanobiosensor was developed for analyzing biofluids, food samples, and real water media utilizing a novel activated-protein-protected gold nanocluster with an ultra-narrow emission band, termed as ABSA-AuNCs. The ABSA-AuNCs were synthesized via a novel ultrasonication-protein-assisted procedure, for the first time, using activated bovine serum albumin as both capping and reducing agents. The ABSA-AuNCs revealed a highly narrow symmetric emission spectrum (λmax = 330.0 nm upon excitation at 312-317 nm), and a highly narrow size distribution of 2.9-3.7 nm along with an enhanced quantum yield of 28.3 %. At present, with a full width at half maximum (FWHM) of 14.0 nm, ABSA-AuNCs have the narrowest bandwidth of fluorescent nanomaterials reported to date. The ABSA-AuNCs were characterized for their stability, size, morphology, crystallinity, structural, and optical properties. The ABSA-AuNCs were found to be appropriate for constructing a label-free ultraselective pH nanobiosensor. A linear range over 2.0-11.0, fast response time of less than 5 s, and long-term stability of 99.7 % after 500 min were achieved. The %RSD for repeatability, intra-day reproducibility, and inter-day reproducibility was found to be 1.4 %, 1.7 %, and 2.3 %, in order, to reveal high repeatable and reproducible results. The selectivity of the pH biosensor was evaluated upon the addition of different interferents, indicating an excellent pH selectivity for the ABSA-AuNCs. Real sample analysis proved the feasibility of the ABSA-AuNCs for accurate, precise, and reliable pH sensing in biofluids (undiluted blood and urine), a variety of food samples, and several real water samples.
Collapse
|
2
|
Lin Y, Lu N, Ma J, Cheng JH, Sun DW. High sensitive Ratiometric fluorescent Aptasensor with AIE properties for Deoxynivalenol (DON) detection. Food Chem 2024; 460:140550. [PMID: 39142026 DOI: 10.1016/j.foodchem.2024.140550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
An emerging fluorescent ratiometric aptasensor based on gold nanoclusters (AuNCs) with aggregation-induced emission (AIE) properties was prepared and studied for deoxynivalenol (DON) detection. The ratiometric aptasensor used red fluorescent AuNCs620 labelled with DON aptamer (Apt-AuNCs620) as an indicator and green fluorescent AuNCs519 modified by complementary DNA (cDNA) and magnetic beads (MBs) as internal reference, namely MBs-cDNA-AuNCs519. Under the optimal conditions, the aptasensor exhibited two good linear ranges of 0.1-50 and 50-5000 pg/mL for DON detection with coefficient of determination (R2) of 0.9937 and 0.9928, respectively, and the low detection limit (LOD) of 4.09 pg/mL was achieved. Furthermore, this aptasensor was feasible to detect DON in positive wheat samples, and the results were in line with those from HPLC and ELISA, thus providing a promising route to detect DON with high sensitivity in cereals, even for other mycotoxins by replacing the suitable aptamer and cDNA.
Collapse
Affiliation(s)
- Yuandong Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Nian Lu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
3
|
Lu N, Ma J, Lin Y, Cheng JH, Sun DW. A fluorescent Aptasensor based on magnetic-separation strategy with gold nanoclusters for Deoxynivalenol (DON) detection. Food Chem 2024; 459:140341. [PMID: 39121528 DOI: 10.1016/j.foodchem.2024.140341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/15/2024] [Accepted: 07/03/2024] [Indexed: 08/12/2024]
Abstract
A highly sensitive method based on MBs-cDNA@Apt-AuNCs519 was developed for deoxynivalenol (DON) detection in wheat. The MBs-cDNA@Apt-AuNCs519 was established using green emission gold nanoclusters (AuNCs519) with aggregation-induced emission properties as signal probes and combining amino-modified DON-aptamer (Apt), biotin-modified DNA strand (the partially complementary to Apt (cDNA)), and streptavidin-modified magnetic beads (MBs). The Apt-AuNCs519 were well connected with MBs-cDNA without DON but dissociated from MBs-cDNA@Apt-AuNCs519 with the addition of DON, leading to a noticeable reduction in the fluorescent intensity of the aptasensor. Moreover, this fluorescence aptasensor showed two linear relationships in the concentration range of 0.1-50 ng/mL and 50-5000 ng/mL with a limit of detection of 3.73 pg/mL with good stability, reproducibility and specificity. The results were consistent with high-performance liquid chromatography and enzyme-linked immunosorbent assay methods, further indicating the potential of this method for accurate trace detection of DON in wheat.
Collapse
Affiliation(s)
- Nian Lu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yuandong Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
4
|
Hormozi Jangi SR. Developing a novel ultraselective and ultrasensitive label-free direct spectrofluorimetric nanobiosensor for direct highly fast field detection of explosive triacetone triperoxide. Anal Chim Acta 2024; 1320:343016. [PMID: 39142787 DOI: 10.1016/j.aca.2024.343016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Direct detection of the notorious explosive triacetone triperoxide (TATP) is very difficult because it lacks facile ionization and UV absorbance or fluorescence. Besides, the current indirect methods are time-consuming and need a pre-step for TATP cleavage to hydrogen peroxide. Moreover, they commonly show significant false-positive results in the presence of some camouflage which limits their field applications. Herein, for the first time, a novel label-free field-applicable spectrofluorimetric nanobiosensor was developed for direct TATP detection using a novel activated-protein protected gold nanocluster (ABSA-AuNCs; QY = 28.3 %) synthesized by a combined protein-assisted-ultrasonication procedure. RESULTS The ABSA-AuNCs revealed a fluorescence spectrum centered at 330.0 nm which was significantly quenched by TATP (binding constant = 154.06 M-1; ΔG = -12.5 kJ mol-1; E(%) = 88.5 %). This phenomenon was used as a basis for direct TATP quantification, providing a working range of 0.01-40.0 mg L-1 and a detection limit of 6.7 μg L-1 which is the lowest LOD provided for TATP detection up to now. A %RSD of 0.9 % and 1.56 % was obtained for repeatability and inter-day reproducibility, respectively. The selectivity was checked against a variety of camouflages, revealing ultra-selectivity. Several synthetic samples prepared by several camouflages and real samples (clay soil and real water media) were analyzed, revealing quantitative recoveries of TATP. SIGNIFICANCE During the production of the notorious explosive TATP, it can be discharged into water and soil. This novel method eliminated the false-positive results of traditional methods and is applicable for direct quantitative detection of camouflaged TATP and its residues in real soil and water samples in a highly short response time (2 min). The camouflaged TATP analysis is important for tracking the terrorist attacks in field conditions and analysis of soil and water can provide a first indication of the location of the production site.
Collapse
|
5
|
Buglak AA, Nguyen MT. Interactions of coinage metal nanoclusters with low-molecular-weight biocompounds. Biophys Rev 2024; 16:441-477. [PMID: 39309127 PMCID: PMC11415565 DOI: 10.1007/s12551-024-01200-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/21/2024] [Indexed: 09/25/2024] Open
Abstract
Nowadays, coinage metal nanoclusters (NCs) are largely presented in diagnostics, bioimaging, and biocatalysis due to their high biocompatibility, chemical stability, and sensitivity to surrounding biomolecules. Silver and gold NCs are usually characterized by intense luminescence and photostability, which is in great demand in the detection of organic compounds, ions, pH, temperature, etc. The experimental synthesis of metal NCs often occurs on biopolymer templates, mostly DNA and proteins. However, this review mainly focuses on the interactions with small biomolecules (SBMs) of a molecular weight less than 1000 Da: amino acids, nucleobases, thiolates, oligopeptides, etc. Such molecules can serve as the templates for an eco-friendly facile one-pot synthesis of biocompatible luminescent NCs. The latter aspect makes NCs suitable for diagnostics and intracellular bioimaging. Another important aspect is the interaction of clusters with biomarkers, which is largely exploited by nanosensors: biomarker detection often occurs through either fluorescence emission "turn-on" or "turn-off" mechanisms. Moreover, as theoretical studies show, electronic absorption spectra and Raman spectra of the metal-organic complexes allow efficient detection of various analytes. In this regard, both theoretical and experimental studies of SBM complexes with metal NCs are in great demand. Therefore, this review aims to summarize up-to-date studies on the interaction of small biomolecules with coinage metal NCs from both theoretical and experimental viewpoints.
Collapse
Affiliation(s)
- Andrey A. Buglak
- Faculty of Physics, St. Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Minh Tho Nguyen
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, 70000 Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, 70000 Vietnam
| |
Collapse
|
6
|
Chaudhary J, Tripathi A, Sahoo SK. Vitamin B 6 Cofactor Pyridoxal 5'-phosphate Conjugated Papain-Stabilized Fluorescent Gold Nanoclusters for Switch-on Detection of Zinc(II). J Fluoresc 2024:10.1007/s10895-024-03849-9. [PMID: 39042357 DOI: 10.1007/s10895-024-03849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
In this study, fluorescent gold nanoclusters (AuNCs) conjugated with pyridoxal-5-phosphate (PLP) were synthesized, characterized, and used for Zn2+ fluorescence turn-on sensing. PLP was conjugated over the surface of papain-stabilized fluorescent gold nanoclusters (pap-AuNCs; λex = 380 nm, λem = 670 nm) by forming imine linkage. Due to this modification, the red color emitting pap-AuNCs changed to orange color emitting nanoclusters PLP_pap-AuNCs. The nano-assembly PLP_pap-AuNCs detect Zn2+ selectively by showing a notable fluorescence enhancement at 477 nm. Zn2+ detection with PLP_pap-AuNCs was quick and easy, with an estimated detection limit of 0.14 µM. Further, paper strips and cotton buds coated with PLP_pap-AuNCs were developed for affordable on-site visual detection of Zn2+. Finally, the detection of Zn2+ in actual environmental water samples served as validation of the usefulness of PLP_pap-AuNCs.
Collapse
Affiliation(s)
- Jayant Chaudhary
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat, Gujarat, 395007, India
| | - Aditi Tripathi
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat, Gujarat, 395007, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat, Gujarat, 395007, India.
| |
Collapse
|
7
|
Chen J, Tian R, Li D, Sun X, Li H, Zhang Y. Ratiometric fluorescence detection of Hg 2+ based on gold nanocluster/carbon quantum dots nanohybrids. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:884-891. [PMID: 38240525 DOI: 10.1039/d3ay01966g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Ratiometric fluorescence sensing methods are widely used in analysis and detection due to their high sensitivity and stability. In this work, a ratiometric fluorescence method for sensitive detection of Hg2+ was established using a gold nanoclusters/carbon quantum dots (AuNCs/CQDs) nanohybrid probe. The AuNCs/CQDs nanohybrids probe were simply constructed by mixing blue-light-emitting gold nanoclusters (AuNCs) with an orange-emissive carbon quantum dots (CQDs). The probe had two fluorescence emission peaks at 434 nm and 561 nm when the excitation wavelength was 375 nm. With the addition of Hg2+, the fluorescence at 434 nm decreased and the fluorescence at 561 nm remained unchanged; the fluorescence intensity ratio Δ(F434/F561) and Hg2+ concentration have a good linear relationship in the range of 8.32 × 10-7 to 7.69 × 10-5 mol L-1, and the limit of detection (LOD) is 3.58 × 10-7 mol L-1. The method was applied in the detection of Hg2+ in cosmetics and wastewater, and has potential applications for detecting Hg2+ in other samples.
Collapse
Affiliation(s)
- Junyu Chen
- Collage of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shannxi 716000, PR China.
| | - Rui Tian
- Collage of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shannxi 716000, PR China.
| | - Duo Li
- Collage of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shannxi 716000, PR China.
| | - Xuehua Sun
- Collage of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shannxi 716000, PR China.
| | - Haoyu Li
- Collage of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shannxi 716000, PR China.
| | - Yuecheng Zhang
- Collage of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shannxi 716000, PR China.
| |
Collapse
|
8
|
Tripathi A, Bhardwaj V, Sahoo SK. Fluorescent Switch-on Detection of Cadmium(II) Using Salicylaldehyde-Decorated Gold Nanoclusters. J Fluoresc 2023:10.1007/s10895-023-03497-5. [PMID: 37976022 DOI: 10.1007/s10895-023-03497-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
In this study, salicylaldehyde (SA) conjugated gold nanoclusters were synthesized, characterized, and applied for the fluorescent turn-on sensing of Cd2+. The trypsin-stabilized fluorescent gold nanocluster (Tryp-AuNCs, λem = 680 nm) was modified with SA to form the spherical-shaped SA_Tryp-AuNCs. After modification, the red-emitting Tryp-AuNCs turned to green-emitting SA_Tryp-AuNCs because of the formation of imine linkage between the -CHO group of SA with the -NH2 group of functionalized trypsin. The modified SA_Tryp-AuNCs selectively interacted with Cd2+ and exhibited a fluorescence enhancement at 660 nm. The Cd2+ detection with SA_Tryp-AuNCs is simple and rapid with an estimated nanomolar detection limit of 98.1 nM. The practical utility of SA_Tryp-AuNCs was validated by quantifying Cd2+ in real environmental water samples.
Collapse
Affiliation(s)
- Aditi Tripathi
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, 395007, Surat, Gujarat, India
| | - Vinita Bhardwaj
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, 395007, Surat, Gujarat, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, 395007, Surat, Gujarat, India.
| |
Collapse
|
9
|
Evstigneeva SS, Chumakov DS, Tumskiy RS, Khlebtsov BN, Khlebtsov NG. Detection and imaging of bacterial biofilms with glutathione-stabilized gold nanoclusters. Talanta 2023; 264:124773. [PMID: 37320983 DOI: 10.1016/j.talanta.2023.124773] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Bacterial biofilms colonize chronic wounds and surfaces of medical devices, thus making the development of reliable methods for imaging and detection of biofilms crucial. Although fluorescent identification of bacteria is sensitive and non-destructive, the lack of biofilm-specific fluorescent dyes limits the application of this technique to biofilm detection. Here, we demonstrate, for the first time, that fluorescent glutathione-stabilized gold nanoclusters (GSH-AuNCs) without targeting ligands can specifically interact with extracellular matrix components of Gram-negative and Gram-positive bacterial biofilms resulting in fluorescent staining of bacterial biofilms. By contrast, fluorescent bovine serum albumin-stabilized gold nanoclusters and 11-mercaptoundecanoic acid - stabilized gold nanoclusters do not stain the extracellular matrix of biofilms. According to molecular docking studies, GSH-AuNCs show affinity to several targets in extracellular matrix, including amyloid-anchoring proteins, matrix proteins and polysaccharides. Some experimental evidence was obtained for the interaction of GSH-AuNCs with the lipopolysaccharide (LPS) that was isolated from the matrix of Azospirillum baldaniorum biofilms. Based on GSH-AuNCs properties, we propose a new fluorescent method for the measurement of biofilm biomass with a limit of detection 1.7 × 105 CFU/mL. The sensitivity of the method is 10-fold higher than the standard biofilm quantification with the crystal violet assay. There is a good linear relationship between the fluorescence intensity from the biofilms and the number of CFU from the biofilms in the range from 2.6 × 105 to 6.7 × 107 CFU/mL. The developed nanocluster-mediated method of biofilm staining was successfully applied for quantitative detection of biofilm formation on urinary catheter surface. The presented data suggest that fluorescent GSH-AuNCs can be used to diagnose medical device-associated infections.
Collapse
Affiliation(s)
- S S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 13 Prospekt Entuziastov, Saratov, 410049, Russia.
| | - D S Chumakov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - R S Tumskiy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - B N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 13 Prospekt Entuziastov, Saratov, 410049, Russia; Institute of Physics, Saratov State University, 410012, Saratov, Russia
| | - N G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 13 Prospekt Entuziastov, Saratov, 410049, Russia; Institute of Physics, Saratov State University, 410012, Saratov, Russia
| |
Collapse
|
10
|
Zhang Q, Lv J, Xia J, Wang L, Qu G, Yang Y, Yang Y, Liu S. Rapid detection of carbamate nerve agent analogues using dually functionalized gold nanoclusters. Anal Bioanal Chem 2023:10.1007/s00216-023-04707-6. [PMID: 37266687 DOI: 10.1007/s00216-023-04707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/08/2023] [Accepted: 04/19/2023] [Indexed: 06/03/2023]
Abstract
Carbamate nerve agents (CMNAs) are a type of lethal cholinesterase inhibitor with one or more quaternary amine centres and aromatic rings. CMNAs have been recently added to the Annex on Chemicals of the Chemical Weapons Convention (CWC) and Schedules of Controlled Chemicals of China. In this study, a rapid, sensitive and selective method was developed for the fluorescence detection of ambenonium chloride (AC) through host-guest and electrostatic dual interactions between AC and cyclodextrin/11-mercaptoundecanoic acid (CD/MUA) dually functionalized gold nanoclusters (AuNCs). Through this method, AC was detected with a limit of detection of 10.0 ng/mL. Method evaluation showed high selectivity towards AC over other related compounds. The practical applicability was verified, as satisfactory recoveries were obtained for AC spiked in river water and urine, as well as Proficiency Test samples from Organisation for the Prohibition of Chemical Weapons (OPCW). In addition, a fluorescence sensing array comprising four AuNCs was designed to distinguish six carbamates and structurally similar compounds. This method provides a potential approach for the rapid, sensitive and selective recognition and detection of CMNAs.
Collapse
Affiliation(s)
- Qiaoli Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jiale Lv
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Junmei Xia
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Liangliang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Gang Qu
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Yuntao Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Shilei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
11
|
Lin Y, Yong S, Scholtz CR, Du C, Sun S, Steinkruger JD, Zhou X, Zhou C, Yang S. Exploration of surface chemistry effects on the biodistribution and pharmacokinetics of dual-ligand luminescent gold nanoparticles. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
12
|
Wang T, Liu W, Tian S, Tian D. Copper nanoclusters stabilized by D-penicillamine for ultrasensitive and visual detection of oxytetracycline. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122286. [PMID: 36592593 DOI: 10.1016/j.saa.2022.122286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Copper nanoclusters (DPA@CuNCs) with red fluorescence were successfully synthesized by a one-step method based on D-penicillamine (DPA), which acted not only as a reducing agent but also as a stabilizer. The products were characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, particle-size analysis, ultraviolet-visible spectrophotometry, and fluorescence spectrometry. When the excitation wavelength was 280 nm, DPA@CuNCs emitted bright red fluorescence at 640 nm with a fluorescence quantum yield of 5.8 %. Due to the inner filter effect, oxytetracycline (OTC) effectively quenched the fluorescence of DPA@CuNCs, and then DPA@CuNCs were applied to the trace detection of OTC. The method showed a good linear range for OTC from 5 to 60 μmol/L, with a detection limit of 0.026 μmol/L and a correlation coefficient R2 of 0.9983. Moreover, a paper-based sensor for the visual detection of OTC has been developed, which can conveniently and rapidly distinguish the concentration ranges of OTC through the color changes of the test papers.
Collapse
Affiliation(s)
- Tengfei Wang
- School of Chemical and Environmental Engineering, Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, People's Republic of China
| | - Wei Liu
- School of Chemical and Environmental Engineering, Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, People's Republic of China
| | - Shiyao Tian
- School of Chemical and Environmental Engineering, Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, People's Republic of China
| | - Dating Tian
- School of Chemical and Environmental Engineering, Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, People's Republic of China.
| |
Collapse
|
13
|
Bera N, Kiran Nandi P, Hazra R, Sarkar N. Aggregation induced emission of surface ligand controlled gold nanoclusters employing imidazolium surface active ionic liquid and pH sensitivity. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Chang H, Bootharaju MS, Lee S, Kim JH, Kim BH, Hyeon T. To inorganic nanoparticles via nanoclusters: Nonclassical nucleation and growth pathway. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hogeun Chang
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Megalamane S. Bootharaju
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Sanghwa Lee
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Byung Hyo Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul Republic of Korea
- Department of Organic Materials and Fiber Engineering Soongsil University Seoul Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| |
Collapse
|
15
|
Bera D, Goswami N. Driving Forces and Routes for Aggregation-Induced Emission-Based Highly Luminescent Metal Nanocluster Assembly. J Phys Chem Lett 2021; 12:9033-9046. [PMID: 34516135 DOI: 10.1021/acs.jpclett.1c02406] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of ultrasmall, luminescent metal nanoclusters (MNCs) with aggregation-induced emission (AIE) characteristics is a relatively new research area that has gained significant attention in various multidisciplinary applications such as optoelectronics, sensing, imaging, and therapy. The numerous scientific breakthroughs in the AIE field provide many tools that, if incorporated into MNCs design strategies, could help realize various new and exciting MNC-based avenues that maximize the utilization of the AIE phenomenon. Indeed, leveraging the aggregation strategies from the AIE community with the judicious use of various covalent and noncovalent interactions has been demonstrated to be effective for constructing several MNC-based hybrid assemblies with enhanced AIE characteristics. In this Perspective, we summarize the key driving forces and routes of MNC assembly together with their impact on deciphering the working mechanism behind the AIE process. These strategies can inspire the design of highly luminescent MNC-based hierarchical functional materials across multiple length scales.
Collapse
Affiliation(s)
- Debkumar Bera
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar 751013, India
- Academy of Scientific & Innovative Research, Ghaziabad 201 002, India
| | - Nirmal Goswami
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar 751013, India
- Academy of Scientific & Innovative Research, Ghaziabad 201 002, India
| |
Collapse
|
16
|
Sheini A, Taherpour AA, Farajmand-Amirabadi S, Karampour F, Maghsudi M, Rahbar N. Recovered fluorescence of the Cd-nanocluster-Hg(II) system based on experimental results and computational methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119701. [PMID: 33794422 DOI: 10.1016/j.saa.2021.119701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/23/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Human Serum Albumin, a plasma protein existing in abundance, was selected as a template and reducing agent for the formation of CdNCs due to two factors: its stability and low cost. In the presence of human serum albumin (HSA), a selective and sensitive, low-cost, environmental friendly, and label-free off-on fluorescent sensor was synthesized and characterized for a bioaccumulating and toxic heavy metal, Hg2+ and biothiols. HSA - CdNCs can specifically recognize Hg2+ through aggregating NCs and causing fluorescence quenching. Subsequently, with increase in the concentration of biothiols, Hg2+ was eliminated from the surface of NC, while the fluorescence was restored. The calculated limits of detection (LOD) were 55 pM for Hg(II) and 14 nM for GSH, respectively. The assay was capable of detecting Hg2+ ions and GHS at different concentrations in the range of 0.008 to 8530 nM and 7.5-5157 nM, respectively. Furthermore, the appropriate molecular mechanics (MM) as well as quantum mechanical (QM) methods were performed to optimize and the theoretical investigation of the discussed HSA-profile structures and its interactions with the Cd-NCs (one atom of Cd), Hg2+ and glutathione (G).
Collapse
Affiliation(s)
- Azarmidokht Sheini
- Department of Mechanical Engineering, Shohadaye Hoveizeh University of Technology, Susangerd 78986, Iran.
| | - Avat Arman Taherpour
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Iran; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Fatemeh Karampour
- Department of Chemistry Engineering, Faculty of Shariati, Tehran Branch, Technical and Vocational University (TVU), Kermanshah, Iran
| | - Maryam Maghsudi
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nadereh Rahbar
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
17
|
Zhang S, Zhang C, Shao X, Guan R, Hu Y, Zhang K, Liu W, Hong M, Yue Q. Dual-emission ratio fluorescence for selective and sensitive detection of ferric ions and ascorbic acid based on one-pot synthesis of glutathione protected gold nanoclusters. RSC Adv 2021; 11:17283-17290. [PMID: 35479669 PMCID: PMC9032689 DOI: 10.1039/d0ra10281d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/04/2021] [Indexed: 01/22/2023] Open
Abstract
A fluorometric method was proposed for the determination of Fe3+ and ascorbic acid (AA) based on blue and red dual fluorescence emissions of glutathione (GSH) stabilized-gold nanoclusters (AuNCs). AuNCs were synthesized from GSH and tetrachloroauric acid. The fluorescence peaks of AuNCs were at 425 nm and 585 nm, respectively. In the presence of Fe3+, the fluorescence peak at 425 nm can be enhanced and that at 585 nm can be quenched. There is a good linear relationship between the fluorescence intensity ratio for the 425 and 585 nm peaks (F 425/F 585) and the concentration of Fe3+ in the range of 0.75-125 μM. However, when AA was added to the AuNCs-Fe3+ system, the value of F 425/F 585 decreased consistently with the concentration of AA in the range of 0.25-35 μM. The limit of detection for Fe3+ and AA was 227 and 75.8 nM, respectively. The interaction between AuNCs and Fe3+ can induce the ligand-metal charge transfer (LMCT) effect leading to the fluorescence increment at 425 nm, while AA can reduce Fe3+ to Fe2+. The production of Fe2+ can not enhance or quench the fluorescence of AuNCs. By comparison with previous literature, the AuNCs prepared here show two fluorescence peaks without additional fluorescence labels. Furthermore, the method was successfully applied in the determination of Fe3+ and AA in some real samples, such as water, human serum and tablets.
Collapse
Affiliation(s)
- Shuai Zhang
- Shandong Provincial Key Laboratory of Chrmical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University China
| | - Cong Zhang
- Shandong Provincial Key Laboratory of Chrmical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University China
| | - Xiaodong Shao
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University Miami FL 33174 USA
| | - Rentian Guan
- Shandong Provincial Key Laboratory of Chrmical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University China
| | - Yingying Hu
- Shandong Provincial Key Laboratory of Chrmical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University China
| | - Keying Zhang
- Shandong Provincial Key Laboratory of Chrmical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University China
| | - Wenjing Liu
- Shandong Provincial Key Laboratory of Chrmical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University China
| | - Min Hong
- Shandong Provincial Key Laboratory of Chrmical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University China
| | - Qiaoli Yue
- Shandong Provincial Key Laboratory of Chrmical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University China
| |
Collapse
|
18
|
Toxicological evaluation of fluorescent 11-mercaptoundecanoic gold nanoclusters as promising label-free bioimaging probes in different cancer cell lines. Toxicol In Vitro 2021; 73:105140. [PMID: 33705896 DOI: 10.1016/j.tiv.2021.105140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 01/06/2023]
Abstract
Due to advancement in nanomaterials and increasing use of functionalized gold nanoclusters (AuNCs) in different biomedical applications, better understanding of their potential cytotoxicity is necessary. Interactions of ultra-small fluorescent AuNCs with mammalian cells remains up to this day poorly understood, therefore, cytotoxic evaluation of thoroughly characterized ca. 2.5 nm spherical water-soluble 11-mercaptoundecanoic acid coated AuNCs (AuNC@M) with diverse fluorescent properties in variety of mammalian cancer cell lines was performed. Cell viability was assessed by traditional MTT assay and xCELLigence real time cell analyzer. Cell apoptosis was evaluated via an Annexin V-FITC/propidium iodide (PI) assay. Confocal fluorescence imaging confirmed that tested AuNC@M entered live cells and were homogeneously distributed in their cytoplasm. The results suggested that the cytotoxicity of tested nanoclusters was very low, or near the control level at concentrations 0.1 and 0.5 mg/mL in the cell lines after 24 h exposition. The purity of tested AuNC@M had no relevant effect on cell viability and no differences were observed after 24 h in our study. The low toxicity toward cancer cells further strengthens our view that AuNC@M are promising label-free fluorescent probes for bio-labelling and bio-imaging, or they can even serve as platforms for antitumor drug delivery systems.
Collapse
|
19
|
|
20
|
Li Y, Wu Y, Wu J, Lun W, Zeng H, Fan X. A near-infrared phosphorescent iridium(iii) complex for fast and time-resolved detection of cysteine and homocysteine. Analyst 2020; 145:2238-2244. [PMID: 32077868 DOI: 10.1039/c9an02469g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Thiol-containing amino acids, cysteine (Cys) and homocysteine (Hcy), play crucial roles in the biosystem; their abnormal contents in the cells are linked to many diseases. Herein, we designed and synthesized a novel near-infrared (NIR) phosphorescent iridium(iii) complex-based probe (FNO1) that can detect Cys and Hcy in real-time in the biosystem. Due to the advantages of the iridium complex, the FNO1 probe had excellent chemical stability and photostability, high luminescence efficiency, and long luminescence lifetime. In addition, the probe showed a fast response, high sensitivity, and low cytotoxicity. As verified by high resolution mass spectra (HR-MS) and density functional theory (DFT) calculations, the detection was achieved through the addition of the α,β-unsaturated ketone group in FNO1 by the nucleophilic thiol group in Cys and Hcy. Through time-resolved emission spectroscopy (TRES) and in the presence of a strongly fluorescent dye rhodamine B, the FNO1 probe could detect Cys and Hcy due to its long luminescence lifetime (260/197 ns). Finally, owing to its NIR-emitting properties, the FNO1 probe was successfully applied in the imaging of Cys and Hcy in living cells, zebrafish, and mice.
Collapse
Affiliation(s)
- Yuanyan Li
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, P. R. China. and School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Yongquan Wu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Jie Wu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Weican Lun
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Hong Zeng
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xiaolin Fan
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, P. R. China. and School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| |
Collapse
|
21
|
Kailasa SK, Kateshiya MR, Malek NI. Introduction of cellulose-cysteine Schiff base as a new ligand for the fabrication of blue fluorescent gold nanoclusters for the detection of indapamide drug. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114305] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Liu W, Tian L, Du J, Wu J, Liu Y, Wu G, Lu X. Triggered peroxidase-like activity of Au decorated carbon dots for colorimetric monitoring of Hg 2+ enrichment in Chlorella vulgaris. Analyst 2020; 145:5500-5507. [PMID: 32597429 DOI: 10.1039/d0an00930j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Developing a rapid, low-cost, and multimode detection method for heavy metal ions remains a compelling goal for many applications, including food safety, environmental and biological analysis. This study investigated the influence of Hg2+ on the peroxidase-like activity of gold nanoparticles (GNPs) decorated on carbon dots (CDs) from lysine (denoted as GNP@CDs). A new type of Hg2+-triggered peroxidase-like activity of GNP@CDs was discovered, which could catalyze the oxidation of the colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue TMB. Based on the regulation of the catalytically triggered activity, a sensitive colorimetric method for the detection of Hg2+ was developed, with a linear range of 7-150 nM, providing a limit of detection as low as 3.7 nM. The sensor is simple and rapid, and was successfully applied to the detection of Hg2+ enrichment in chlorella, suggesting a promising application in biological analysis.
Collapse
Affiliation(s)
- Wene Liu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Pan M, Yang J, Liu K, Yin Z, Ma T, Liu S, Xu L, Wang S. Noble Metal Nanostructured Materials for Chemical and Biosensing Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E209. [PMID: 31991797 PMCID: PMC7074850 DOI: 10.3390/nano10020209] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/26/2022]
Abstract
Nanomaterials with unique physical and chemical properties have attracted extensive attention of scientific research and will play an increasingly important role in the future development of science and technology. With the gradual deepening of research, noble metal nanomaterials have been applied in the fields of new energy materials, photoelectric information storage, and nano-enhanced catalysis due to their unique optical, electrical and catalytic properties. Nanostructured materials formed by noble metal elements (Au, Ag, etc.) exhibit remarkable photoelectric properties, good stability and low biotoxicity, which received extensive attention in chemical and biological sensing field and achieved significant research progress. In this paper, the research on the synthesis, modification and sensing application of the existing noble metal nanomaterials is reviewed in detail, which provides a theoretical guidance for further research on the functional properties of such nanostructured materials and their applications of other nanofields.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zongjia Yin
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tianyu Ma
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shengmiao Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Longhua Xu
- School of Food Science and Engineering, Shandong Agricultural University, Shandong 271018, China;
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
24
|
Wu H, Qiao J, Hwang YH, Xu C, Yu T, Zhang R, Cai H, Kim DP, Qi L. Synthesis of ficin-protected AuNCs in a droplet-based microreactor for sensing serum ferric ions. Talanta 2019; 200:547-552. [DOI: 10.1016/j.talanta.2019.03.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 11/15/2022]
|
25
|
Kojic acid capped gold nanoclusters with aggregation-induced emission for fluorometric screening of the activity of alkaline phosphatase. Mikrochim Acta 2019; 186:577. [PMID: 31346718 DOI: 10.1007/s00604-019-3681-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/07/2019] [Indexed: 10/26/2022]
Abstract
The authors describe the preparation of gold nanoclusters (AuNCs) capped with kojic acid. The capped AuNCs exhibit bright green fluorescence (peaking at 500 nm upon excitation at 375 nm), a nanosecond lifetime (0.37 ns), and a quantum yield (QY) of 22% in aqueous solution. This is higher than most of the previously reported AuNCs. The QY increases to 58% due to aggregation-induced emission in ethanol solution, and the lifetime is prolonged to 1.3 ns. The fluorescence of the KA-AuNCs is quenched by Eu(III) ion but is recovered by addition of phosphate due to its stronger affinity for Eu(III). Under the catalytic action of alkaline phosphatase (ALP), ascorbic acid phosphate (AAP) is transformed to free phosphate. On this basis, a fluorogenic assay for ALP was established. Response is linear in the 0.2 to 20 U·L-1 activity range, and the detection limit is 0.04 U·L-1 (at S/N = 3). The assay was successfully applied to the determination of the activity of ALP in spiked human serum and also to screen for its inhibitors. Graphical abstractHighly luminescent and stable gold nanoclusters (AuNCs) with aggregation-induced emission property were synthesized through non-thiolate ligand kojic acid (KA) and demonstrated as an efficient probe for screening for alkaline phosphatase (ALP) activity and its inhibitors.
Collapse
|
26
|
You JG, Tseng WL. Peptide-induced aggregation of glutathione-capped gold nanoclusters: A new strategy for designing aggregation-induced enhanced emission probes. Anal Chim Acta 2019; 1078:101-111. [PMID: 31358207 DOI: 10.1016/j.aca.2019.05.069] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/27/2022]
Abstract
A series of polymers and metal ions have been observed to be useful in triggering aggregation-induced emission (AIE) and AIE enhancement (AIEE) of thiolated gold nanoclusters (AuNCs). However, peptide-induced AIEE of thiolated AuNCs and their applications in biosensors have rarely been investigated. In this study, we showed that positively charged peptides induced efficient AIEE of negatively charged glutathione-capped AuNCs (GSH-AuNCs) through electrostatic attraction. In contrast to GSH-AuNCs, polyarginine (polyArg), a cationic peptide, stimulated the AIEE of the GSH-AuNCs, resulting in a 3.5-fold luminescence enhancement, 10-fold enhancement in quantum yield, 8-nm blueshift in the luminescence maximum, and a 2.1-fold increase in the mean luminescence lifetime. Four different AIEE-based biosensors with excellent selectivity and acceptable sensitivity were fabricated using cationic peptides as an AIEE-active trigger and as a biorecognition element. A heparin biosensor with a limit of detection (LOD) of 3 nM was constructed by combining AG73 peptide-mediated AIEE of the GSH-AuNCs and the specific interaction of AG73 peptides with heparin macromolecules. The concentration of human trypsin was selectively detected at a concentration as low as 1 nM using an arginine-glycine repeat peptide as an enzymatic substrate and as an AIEE-active trigger. Alkaline phosphatase (ALP)-catalyzed dephosphorylation of phosphopeptides paired with the corresponding product-mediated AIEE of the GSH-AuNCs was used for ALP sensing with an LOD of 0.3 U L-1. A peptide consisting of a cyclic RGD unit and an AIEE-active unit was designed to synthesize RGD-modified GSH-AuNC aggregates that can target αvβ3 integrin receptors. These AIEE-based sensors were practically applied for the quantitative determination of heparin in human plasma, trypsin in human urine, and ALP in human plasma as well as for luminescent imaging of αvβ3 integrin-overexpressing HeLa cells.
Collapse
Affiliation(s)
- Jyun-Guo You
- Department of Chemistry, National Sun Yat-sen University, Taiwan, ROC
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, Taiwan, ROC; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan, ROC; Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Taiwan, ROC.
| |
Collapse
|
27
|
Huang HY, Cai KB, Talite MJ, Chou WC, Chen PW, Yuan CT. Coordination-induced emission enhancement in gold-nanoclusters with solid-state quantum yields up to 40% for eco-friendly, low-reabsorption nano-phosphors. Sci Rep 2019; 9:4053. [PMID: 30858497 PMCID: PMC6411768 DOI: 10.1038/s41598-019-40706-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/21/2019] [Indexed: 12/17/2022] Open
Abstract
Colloidal quantum dots (CQDs) have gained much attention as light-emitting materials for light-conversion nano-phosphors and luminescent solar concentrators. Unfortunately, those CQDs involve toxic heavy metals and frequently need to be synthesized in the hazardous organic solvent. In addition, they suffer from severe solid-state aggregation-induced self-quenching and reabsorption losses. To address these issues, here we prepare Zn-coordinated glutathione-stabilized gold-nanocluster (Zn-GSH-AuNCs) assemblies without involving heavy metals and organic solvent. Unlike GSH-AuNCs dispersed in an aqueous solution with poor photoluminescence quantum yields (PL-QYs, typically ~1%), those Zn-GSH-AuNCs powders hold high solid-state PL-QYs up to 40 ± 5% in the aggregated state. Such Zn-induced coordination-enhanced emission (CEE) is attributed to the combined effects of suppressed non-radiative relaxation and enhanced charge-transfer interaction. In addition, they also exhibit a large Stokes shift, thus mitigating both aggregation-induced self-quenching and reabsorption losses. Motivated by these photophysical properties, we demonstrated white-light emission from all non-toxic, aqueous-synthesis nano-materials.
Collapse
Affiliation(s)
- Hsiu-Ying Huang
- Department of Physics, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Kun-Bin Cai
- Department of Physics, Chung Yuan Christian University, Taoyuan, Taiwan
- Physics Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | | | - Wu-Ching Chou
- Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan
| | - Po-Wen Chen
- Physics Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan.
| | - Chi-Tsu Yuan
- Department of Physics, Chung Yuan Christian University, Taoyuan, Taiwan.
- R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, Taiwan.
| |
Collapse
|
28
|
Ratiometric fluorescent sensor for visual determination of copper ions and alkaline phosphatase based on carbon quantum dots and gold nanoclusters. Anal Bioanal Chem 2019; 411:2531-2543. [PMID: 30828757 DOI: 10.1007/s00216-019-01693-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/29/2019] [Accepted: 02/14/2019] [Indexed: 02/07/2023]
Abstract
In this work, a novel ratiometric fluorescent sensor, based on carbon dots (CDs) and gold nanoclusters (AuNCs), is developed for highly sensitive and selective visual colorimetric detection of Cu2+ and alkaline phosphatase (ALP). The ratiometric fluorescent sensor was synthesized by covalently linking 11-mercaptoundecanoic acid (11-MUA)-stabilized AuNCs to the surface of amino-functionalized CD/SiO2 nanoparticles. The red fluorescence of the AuNCs can be quenched by Cu2+ owing to coordination between Cu2+ and 11-MUA; however, the blue emission of the CDs was insensitive to Cu2+ owing to the protective silica shell. The quenching of the AuNCs' fluorescence returned when PPi was added because of the higher affinity between Cu2+ and PPi than that between Cu2+ and 11-MUA. In the presence of ALP, PPi was catalytically hydrolyzed into phosphate (Pi), which showed a much weaker affinity for Cu2+. Thus, Cu2+ ions were released, and the fluorescence of the AuNCs was quenched once more. Based on this principle, Cu2+ and ALP could be simultaneously detected. The developed ratiometric fluorescent sensor could detect Cu2+ over a range from 0.025 to 4 μM with a detection limit of 0.013 μM and ALP over a range from 0.12 to 15 U/L with a detection limit of 0.05 U/L. The present method was successfully applied for the detection of Cu2+ and ALP in real water samples and in human serum samples, respectively. This ratiometric fluorescent approach may provide a highly sensitive and accurate platform for visual Cu2+ and ALP sensing in environmental monitoring and medical diagnosis.
Collapse
|
29
|
Feng T, Chen Y, Feng B, Yan J, Di J. Fluorescence red-shift of gold-silver nanoclusters upon interaction with cysteine and its application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:97-103. [PMID: 30086452 DOI: 10.1016/j.saa.2018.07.087] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
In this work, gold-silver alloy nanoclusters (AuAg NCs) were demonstrated as a novel probe for fluorescent detection of cysteine (Cys). The alloy nanoclusters were fabricated by bovine serum albumin as a template and NaBH4 as a reducer. They showed a red emission at 650 nm. The interaction between AuAg NCs and Cys was investigated. The thiol group in Cys molecules has strong affinity on the surface of metals, which results in variation of fluorescence peak wavelength. It was further demonstrated that this red-shift of fluorescence had a good linear relationship with the concentration of Cys in the range of 2-100 μM. The method was successfully applied for human plasma analysis with satisfactory results. This novel strategy was expected to provide a potential opportunity for extending the application of novel metal nanoclusters in fluorescence.
Collapse
Affiliation(s)
- Ting Feng
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, PR China
| | - Yu Chen
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, PR China
| | - Bingbing Feng
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, PR China
| | - Jilin Yan
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, PR China
| | - Junwei Di
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
30
|
Jiang P, Li S, Han M, Liu Y, Chen Z. Biocompatible Ag2S quantum dots for highly sensitive detection of copper ions. Analyst 2019; 144:2604-2610. [DOI: 10.1039/c9an00096h] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An Ag2S QD fluorescent sensor for highly selective and sensitive Cu2+ detection was developed and the quenching mechanism was investigated.
Collapse
Affiliation(s)
- Peng Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University)
- Ministry of Education
- and Wuhan University School of Pharmaceutical Sciences
- Wuhan 430071
- China
| | - Shulan Li
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P.R. China
| | - Minlu Han
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University)
- Ministry of Education
- and Wuhan University School of Pharmaceutical Sciences
- Wuhan 430071
- China
| | - Yi Liu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P.R. China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University)
- Ministry of Education
- and Wuhan University School of Pharmaceutical Sciences
- Wuhan 430071
- China
| |
Collapse
|
31
|
Zhao X, Lin X, Wang J, Chen X. Facile preparation of N,S-graphene oxide nanosheets as a fluorescence “off–on” sensing platform for sensitive detection of biothiols. NEW J CHEM 2019. [DOI: 10.1039/c8nj06024j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fluorescent N,S-graphene oxide was prepared via a one-step, solvent-free approach, and used as a probe for sensitive detection of biothiols.
Collapse
Affiliation(s)
- Xiuxiu Zhao
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang
- China
| | - Xin Lin
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang
- China
| | - Jianhua Wang
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang
- China
| | - Xuwei Chen
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang
- China
| |
Collapse
|
32
|
Zong L, Wang C, Song Y, Hu J, Li Q, Li Z. A fluorescent and colorimetric probe based on naphthalene diimide and its high sensitivity towards copper ions when used as test strips. RSC Adv 2019; 9:12675-12680. [PMID: 35515819 PMCID: PMC9063665 DOI: 10.1039/c9ra01122f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/08/2019] [Indexed: 01/08/2023] Open
Abstract
Herein, a red fluorescent and colorimetric probe (NDI-Py) based on naphthalene diimide was designed and synthesized, which exhibited rapid response, high sensitivity and selectivity towards copper ions, and the detection limit was as low as 0.97 μM in solution. Furthermore, NDI-Py demonstrated a strong red emission in the aggregated state because of its non-planar structure. Thus, it can act as a test strip to conveniently monitor copper ions with the detection limit as low as 2.0 μM. A red fluorescent and colorimetric probe (NDI-Py) exhibited high selectivity and sensitivity towards copper ions both in solution and on silica gel plates.![]()
Collapse
Affiliation(s)
- Luyi Zong
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
- College of Chemistry and Pharmaceutical Engineering
| | - Can Wang
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| | - Yuchen Song
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| | - Jie Hu
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| | - Qianqian Li
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| | - Zhen Li
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
33
|
Mutas M, Strelow C, Kipp T, Mews A. Specific binding and internalization: an investigation of fluorescent aptamer-gold nanoclusters and cells with fluorescence lifetime imaging microscopy. NANOSCALE 2018; 10:20453-20461. [PMID: 30379177 DOI: 10.1039/c8nr06639f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fluorescent gold nanoclusters show promising properties for biological applications. We biofunctionalized fluorescent 11-mercaptoundecanoic-acid stabilized gold nanoclusters (AuNCs) with an aptamer to target the interleukin-6-receptor expressed on BaF3 cells specifically. Although the fluorescence emission of the AuNCs (535 nm) is in the same wavelength region as the autofluorescence of the cell, we are able to distinguish between nanoclusters and cells using the fluorescence decay time, which is much longer for the AuNCs (100 ns) than for the autofluorescence. After a first short incubation period we detected AuNCs specifically bound to the cell membrane by using two fluorescence lifetime imaging microscopy (FLIM) methods: gated and direct FLIM. After a second incubation period the previously bound AuNCs are internalized by the cells, as could be resolved solely by the direct FLIM. This proves the superior sensitivity of this method compared to gated FLIM. We find that the optical properties of AuNCs do not change upon binding to the cells, but exhibit a change when internalized into the cells, induced by an interaction between the AuNCs and cells.
Collapse
Affiliation(s)
- Marina Mutas
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, Hamburg, Germany.
| | | | | | | |
Collapse
|
34
|
Wang M, Su D, Wang G, Su X. A fluorometric sensing method for sensitive detection of trypsin and its inhibitor based on gold nanoclusters and gold nanoparticles. Anal Bioanal Chem 2018; 410:6891-6900. [PMID: 30105625 DOI: 10.1007/s00216-018-1292-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/10/2018] [Accepted: 07/24/2018] [Indexed: 12/24/2022]
Abstract
In this work, a facile, label-free, and sensitive fluorometric strategy for detection of trypsin and its inhibitor was established on the basis of the fluorescence resonance energy transfer (FRET) between mercaptoundecanoic acid functionalized gold nanoclusters (AuNCs) and gold nanoparticles (AuNPs) via protamine as a bridge. Protamine can trigger the aggregation of AuNPs and link AuNCs with aggregated AuNPs through electrostatic interaction. Compared with monodisperse AuNPs, the UV-vis absorption band of aggregated AuNPs overlapped considerably with the emission spectrum of AuNCs. Thus, the fluorescence of AuNCs was obviously quenched by the aggregated AuNPs through FRET. In the presence of trypsin, protamine was hydrolyzed into small fragments, leading to the deaggregation of AuNPs and breaking of the short distance between AuNPs and AuNCs, so the FRET process was inhibited, and the fluorescence of AuNCs was recovered. The increase in the fluorescence intensity of AuNCs was directly related to the amount of trypsin. Hence trypsin can be determined on the basis of the variation of fluorescence intensity, with a linear range of 5-5000 ng mL-1 and a detection limit of 1.9 ng mL-1. In addition, this system was used for the detection of trypsin inhibitor by application of the inhibitor isolated from soybean as a model. The sensing method was applied for trypsin detection in human urine and commercial multienzyme tablet samples with satisfactory results. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Mengke Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, Jilin, China
| | - Dandan Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, Jilin, China
| | - Guannan Wang
- Department of Chemistry& The Key Laboratory for Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, Jilin, China.
| |
Collapse
|
35
|
You JG, Lu CY, Krishna Kumar AS, Tseng WL. Cerium(iii)-directed assembly of glutathione-capped gold nanoclusters for sensing and imaging of alkaline phosphatase-mediated hydrolysis of adenosine triphosphate. NANOSCALE 2018; 10:17691-17698. [PMID: 30206623 DOI: 10.1039/c8nr05050c] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aggregation-induced emission enhancement (AIEE) of thiolated gold nanoclusters (AuNCs) has emerged as an attractive and alternative strategy to improve their brightness. This study demonstrates Ce(iii)-triggered AIEE of glutathione-capped AuNCs (GSH-AuNCs) through the coordination between two carboxylic groups of GSH and Ce(iii). The cluster size and valence state of GSH-AuNCs are almost identical to those of a Ce(iii)-induced assembly of GSH-AuNCs (named Ce(iii)-GSH-AuNCs). More importantly, the as-prepared Ce(iii)-GSH-AuNCs exhibit a higher quantum yield (up to 13%), longer luminescence lifetime, and shorter maximum luminescence peak than GSH-AuNCs. Additionally, Ce(iii)-GSH-AuNCs possess redox-switchable luminescence, high salt stability, and long-term storage stability. These findings provide clear evidence that the Ce(iii)-triggered aggregation of GSH-AuNCs is a crucial factor to improve the luminescence property of GSH-AuNCs. Intriguingly, the presence of adenosine triphosphate (ATP) switches off the luminescence of Ce(iii)-GSH AuNCs through the significant formation of Ce(iii)-ATP complexes. Furthermore, the ATP-induced luminescence quenching of Ce(iii)-GSH-AuNCs can be paired with the alkaline phosphatase (ALP)-ATP system to design a turn-on luminescent probe for ALP; the limit of detection for ALP is estimated to be 0.03 U L-1. Also, the biocompatibility of Ce(iii)-GSH-AuNCs enables the proposed system to detect ALP in human serum and HeLa cells.
Collapse
Affiliation(s)
- Jyun-Guo You
- Department of Chemistry, National Sun Yat-sen University, 70, Lien-hai Road, Kaohsiung 80424, Taiwan.
| | | | | | | |
Collapse
|
36
|
Kaur N, Aditya RN, Singh A, Kuo TR. Biomedical Applications for Gold Nanoclusters: Recent Developments and Future Perspectives. NANOSCALE RESEARCH LETTERS 2018; 13:302. [PMID: 30259230 PMCID: PMC6158143 DOI: 10.1186/s11671-018-2725-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/18/2018] [Indexed: 05/30/2023]
Abstract
Gold nanoclusters (AuNCs) have been extensively applied as a fluorescent probe for biomedical applications in imaging, detection, and therapy due to their unique chemical and physical properties. Fluorescent probes of AuNCs have exhibited high compatibility, superior photostablility, and excellent water solubility which resulted in remarkable biomedical applications for long-term imaging, high-sensitivity detection, and target-specific treatment. Recently, great efforts have been made in the developments of AuNCs as the fluorescent probes for various biomedical applications. In this review, we have collected fluorescent AuNCs prepared by different ligands, including small molecules, polymers, and biomacromolecules, and highlighted current achievements of AuNCs in biomedical applications for imaging, detection, and therapy. According to these advances, we further provided conclusions of present challenges and future perspectives of AuNCs for fundamental investigations and practical biomedical applications.
Collapse
Affiliation(s)
- Navdeep Kaur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031 Taiwan
| | - Robby Nur Aditya
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031 Taiwan
| | - Arshdeep Singh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031 Taiwan
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031 Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031 Taiwan
| |
Collapse
|
37
|
Han A, Xiong L, Hao S, Yang Y, Li X, Fang G, Liu J, Pei Y, Wang S. Highly Bright Self-Assembled Copper Nanoclusters: A Novel Photoluminescent Probe for Sensitive Detection of Histamine. Anal Chem 2018; 90:9060-9067. [DOI: 10.1021/acs.analchem.8b01384] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ailing Han
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lin Xiong
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Department of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, PR China
| | - Sijia Hao
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yayu Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xia Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yong Pei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Department of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, PR China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
- Research Center of Food Science and Human Health, School of Medicine, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
38
|
Wang Z, Yang J, Li Y, Zhuang Q, Gu J. Zr-Based MOFs integrated with a chromophoric ruthenium complex for specific and reversible Hg 2+ sensing. Dalton Trans 2018; 47:5570-5574. [PMID: 29632925 DOI: 10.1039/c8dt00569a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A novel metal-organic framework of RuUiO-67 was successfully fabricated and exploited as a chemical sensor for the colorimetric detection of Hg2+. The chromophoric Ru complex in RuUiO-67 was designed as a Hg2+ recognition site and a signal reporter. The elaborated probe exhibited a rapid colorimetric response, high selectivity, and sub-micromolar sensitivity for Hg2+ detection.
Collapse
Affiliation(s)
- Zhe Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | |
Collapse
|
39
|
Hu H, He H, Zhang J, Hou X, Wu P. Optical sensing at the nanobiointerface of metal ion-optically-active nanocrystals. NANOSCALE 2018; 10:5035-5046. [PMID: 29504617 DOI: 10.1039/c8nr00350e] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Optically-active nanocrystals (such as quantum dots and plasmonic noble metal nanoparticles) have received great attention due to their size-tunable optical properties. The indicator displacement assay (IDA) with optically-active nanocrystals has become a common practice for optical sensor development, since no sophisticated surface functionalization of nanoparticles is required. Among the IDA-based optical sensors, the use of metal ions as receptors seems to be attractive. Therefore, in this review, the research progress of optical sensing at the nanobiointerface of metal ion-optically-active nanocrystals has been summarized. In particular, metal ion-mediated selective recognition has been summarized here based on the classical Hard-Soft-Acid-Base (HSAB) principle, which has been seldom mentioned before. Most of the references were therefore categorized according to their located place based on the HSAB theory. Besides, several metal ion modulation strategies that were not related to the HSAB theory (e.g., redox modulation) were also included. Finally, due to the cross-talk of metal ions in selective recognition, we have also summarized sensor array development based on multiple metal ion receptors in IDA sensing with optically-active nanocrystals. Several interesting applications of the IDA sensing with metal ions as receptors and optically-active nanocrystals as indicators are presented, with specific emphasis on the design principles and photophysical mechanisms of these probes.
Collapse
Affiliation(s)
- Hao Hu
- Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | | | | | | | | |
Collapse
|
40
|
Pramanik G, Humpolickova J, Valenta J, Kundu P, Bals S, Bour P, Dracinsky M, Cigler P. Gold nanoclusters with bright near-infrared photoluminescence. NANOSCALE 2018; 10:3792-3798. [PMID: 29412211 DOI: 10.1039/c7nr06050e] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The increase in nonradiative pathways with decreasing emission energy reduces the luminescence quantum yield (QY) of near-infrared photoluminescent (NIR PL) metal nanoclusters. Efficient surface ligand chemistry can significantly improve the luminescence QY of NIR PL metal nanoclusters. In contrast to the widely reported but modestly effective thiolate ligand-to-metal core charge transfer, we show that metal-to-ligand charge transfer (MLCT) can be used to greatly enhance the luminescence QY of NIR PL gold nanoclusters (AuNCs). We synthesized water-soluble and colloidally stable NIR PL AuNCs with unprecedentedly high QY (∼25%) upon introduction of triphenylphosphonium moieties into the surface capping layer. By using a combination of spectroscopic and theoretical methods, we provide evidence for gold core-to-ligand charge transfer occurring in AuNCs. We envision that this work can stimulate the development of these unusually bright AuNCs for promising optoelectronic, bioimaging, and other applications.
Collapse
Affiliation(s)
- Goutam Pramanik
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Fluorescent MUA-stabilized Au nanoclusters for sensitive and selective detection of penicillamine. Anal Bioanal Chem 2018; 410:2629-2636. [DOI: 10.1007/s00216-018-0936-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/28/2018] [Accepted: 02/01/2018] [Indexed: 01/09/2023]
|
42
|
Liu M, Li N, He Y, Ge Y, Song G. Dually emitting gold-silver nanoclusters as viable ratiometric fluorescent probes for cysteine and arginine. Mikrochim Acta 2018; 185:147. [PMID: 29594587 DOI: 10.1007/s00604-018-2674-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/11/2018] [Indexed: 11/28/2022]
Abstract
Glutathione coated gold and silver nanoclusters (GSH-Au/AgNCs) were synthesized by one-pot reduction methods and are found to be viable fluorescent nanoprobes for cysteine (Cys) and arginine (Arg), with good selectivity over other amino acids. The GSH-Au/AgNCs have two emissions at 616 nm and 412 nm when excited at 360 nm. With the increased concentration of Cys, the ratio of the emission intensities (I616/I412) linearly decreases with Cys in concentration ranging from 0.05 to 10 μM and from 10 to 50 μM, respectively. With increased concentrations of Arg, the ratio of I616/I412 linearly decreases with Arg concentration ranging from 0 to 50 μM and from 50 to 100 μM, respectively. The probe was applied to the determination of Cys and Arg in spiked samples of serum and urine where it gave good recoveries. Graphical abstract Glutathione-coated gold and silver nanoclusters (GSH-Au/AgNCs) were synthesized by one-pot reduction and are found to be viable fluorescent nanoprobes for cysteine (Cys) and arginine (Arg).
Collapse
Affiliation(s)
- Mingwang Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan, 430062, China
| | - Na Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan, 430062, China
| | - Yu He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan, 430062, China. .,Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China. .,Hubei Province Key Laboratory of Regional Development and Environment Response, Wuhan, 430062, China.
| | - Yili Ge
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan, 430062, China.,Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Gongwu Song
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan, 430062, China.,Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
43
|
Pettiwala AM, Singh PK. A molecular rotor based ratiometric sensor for basic amino acids. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:120-126. [PMID: 28704806 DOI: 10.1016/j.saa.2017.06.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/08/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
The inevitable importance of basic amino acids, arginine and lysine, in human health and metabolism demands construction of efficient sensor systems for them. However, there are only limited reports on the 'ratiometric' detection of basic amino acids which is further restricted by the use of chemically complex sensor molecules, which impedes their prospect for practical applications. Herein, we report a ratiometric sensor system build on simple mechanism of disassociation of novel emissive Thioflavin-T H-aggregates from heparin surface, when subjected to interaction with basic amino acids. The strong and selective electrostatic and hydrogen bonding interaction of basic amino acids with heparin leads to large alteration in photophysical attributes of heparin bound Thioflavin-T, which forms a highly sensitive sensor platform for detection of basic amino acids in aqueous solution. These selective interactions between basic amino acids and heparin allow our sensor system to discriminate arginine and lysine from other amino acids. This unique mechanism of dissociation of Thioflavin-T aggregates from heparin surface provides ratiometric response on both fluorimetric and colorimetric outputs for detection of arginine and lysine, and thus it holds a significant advantage over other developed sensor systems which are restricted to single wavelength detection. Apart from the sensitivity and selectivity, our system also provides the advantage of simplicity, dual mode of sensing, and more importantly, it employs an inexpensive commercially available probe molecule, which is a significant advantage over other developed sensor systems that uses tedious synthesis protocol for the employed probe in the detection scheme, an impediment for practical applications. Additionally, our sensor system also shows response in complex biological media of serum samples.
Collapse
Affiliation(s)
- Aafrin M Pettiwala
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| |
Collapse
|
44
|
Muthukumar P, Anthony SP. Gold doping induced strong enhancement of carbon quantum dots fluorescence and oxygen evolution reaction catalytic activity of amorphous cobalt hydroxide. NEW J CHEM 2018. [DOI: 10.1039/c8nj04429e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Au doping leads to tunable and strong enhancement of SCQDs fluorescence and OER activity of amorphous Co(OH)2.
Collapse
Affiliation(s)
- Pandi Muthukumar
- Department of Chemistry, School of Chemical & Biotechnology
- SASTRA University
- Thanjavur-613401
- India
| | | |
Collapse
|
45
|
Su D, Wang M, Liu Q, Qu Z, Su X. A novel fluorescence strategy for mercury ion and trypsin activity assay based on nitrogen-doped graphene quantum dots. NEW J CHEM 2018. [DOI: 10.1039/c8nj02790k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent detection of Hg2+ and trypsin based on trypsin-modulated competition between Hg2+, N-GQDs and HSA.
Collapse
Affiliation(s)
- Dandan Su
- Department of Analytical Chemistry, College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Mengke Wang
- Department of Analytical Chemistry, College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Qing Liu
- Department of Analytical Chemistry, College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Zhengyi Qu
- Department of Analytical Chemistry, College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
46
|
Feng J, Chen Y, Han Y, Liu J, Ma S, Zhang H, Chen X. pH-Regulated Synthesis of Trypsin-Templated Copper Nanoclusters with Blue and Yellow Fluorescent Emission. ACS OMEGA 2017; 2:9109-9117. [PMID: 30023601 PMCID: PMC6045342 DOI: 10.1021/acsomega.7b01052] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/30/2017] [Indexed: 05/24/2023]
Abstract
In this article, a simple protocol to prepare water-soluble fluorescent copper nanoclusters (CuNCs) using trypsin as a stabilizer and hydrazine hydrate as a reducing agent was reported. It was found that the pH of the reaction solution was critical in determining the fluorescence of CuNCs. CuNCs with blue and yellow fluorescent emission were obtained under basic and acidic conditions, respectively. Although the detailed formation mechanisms of these CuNCs required further analysis, the synthetic route was promising for preparing different fluorescent metal NCs for applications. With good water solubility and excellent photostability, the yellow-emitting CuNCs could serve as a fluorescence probe for detection of Hg2+ based on the aggregation-induced quenching mechanism. The fluorescence quenching efficiency had fantastic linearity to Hg2+ concentrations in the range of 0.1-100 μM, with a limit of detection of 30 nM. Additionally, the yellow-emitting CuNCs exhibited negligible cytotoxicity and were successfully applied to bioimaging of HeLa cells.
Collapse
Affiliation(s)
- Jie Feng
- State
Key Laboratory of Applied Organic Chemistry and Department
of Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Yonglei Chen
- State
Key Laboratory of Applied Organic Chemistry and Department
of Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Yangxia Han
- State
Key Laboratory of Applied Organic Chemistry and Department
of Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Juanjuan Liu
- State
Key Laboratory of Applied Organic Chemistry and Department
of Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Sudai Ma
- State
Key Laboratory of Applied Organic Chemistry and Department
of Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Huige Zhang
- State
Key Laboratory of Applied Organic Chemistry and Department
of Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Xingguo Chen
- State
Key Laboratory of Applied Organic Chemistry and Department
of Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
47
|
Pettiwala A, Singh PK. Supramolecular Dye Aggregate Assembly Enables Ratiometric Detection and Discrimination of Lysine and Arginine in Aqueous Solution. ACS OMEGA 2017; 2:8779-8787. [PMID: 30023591 PMCID: PMC6045403 DOI: 10.1021/acsomega.7b01546] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/23/2017] [Indexed: 05/28/2023]
Abstract
Constructing sensor systems for rapid and selective detection of small biomolecules such as amino acids is a major area of focus in bioanalytical chemistry. Considering the biological relevance of arginine and lysine, significant efforts have been directed to develop fluorescent sensors for their detection. However, these developed sensors suffer from certain disadvantages such as poor aqueous solubility, technically demanding and time-consuming synthetic protocols, and more importantly, most of them operate through single wavelength measurements, making their performance prone to small variations in experimental conditions. Herein, we report a ratiometric sensor that operates through lysine- and arginine-induced dissociation of a supramolecular assembly consisting of emissive H-aggregates of a molecular rotor dye, thioflavin-T (ThT), on the surface of a polyanionic supramolecular host, sulfated β-cyclodextrin. This disassembly brings out the modulation of monomer-aggregate equilibrium in the system which acts as an ideal scheme for the ratiometric detection of lysine and arginine in the aqueous solution. Besides facile framework of our sensor system, it employs a commercially available inexpensive probe molecule, ThT, which provides an added advantage over other sensor systems that employ synthetically demanding probe molecules. Importantly, the distinctive feature of the ratiometric detection of arginine and lysine provides an inherent advantage of increased accuracy in quantitative analysis. Interestingly, we have also demonstrated that arginine displays a multiwavelength distinctive recognition pattern which distinguishes it from lysine, using a single supramolecular ensemble. Furthermore, our sensor system also shows response in heterogeneous, biologically complex media of serum samples, thus extending its possible use in real-life applications.
Collapse
Affiliation(s)
- Aafrin
M. Pettiwala
- Radiation
& Photochemistry Division, Bhabha Atomic
Research Centre, Mumbai 400085, India
| | - Prabhat K. Singh
- Radiation
& Photochemistry Division, Bhabha Atomic
Research Centre, Mumbai 400085, India
- Homi
Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
48
|
11-Mercaptoundecanoic acid functionalized gold nanoclusters as fluorescent probes for the sensitive detection of Cu2+ and Fe3+ ions. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
49
|
Bhat S, Baksi A, Mudedla SK, Natarajan G, Subramanian V, Pradeep T. Au 22Ir 3(PET) 18: An Unusual Alloy Cluster through Intercluster Reaction. J Phys Chem Lett 2017; 8:2787-2793. [PMID: 28586224 DOI: 10.1021/acs.jpclett.7b01052] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
An intercluster reaction between Au25(PET)18 and Ir9(PET)6 producing the alloy cluster, Au22Ir3(PET)18 exclusively, is demonstrated where the ligand PET is 2-phenylethanethiol. Typical reactions of this kind between Au25(PET)18 and Ag25(SR)18, and other clusters reported previously, produce mixed cluster products. The cluster composition was confirmed by detailed high-resolution electrospray ionization mass spectrometry (ESI MS) and other spectroscopic techniques. This is the first example of Ir metal incorporation in a monolayer-protected noble metal cluster. The formation of a single product was confirmed by thin layer chromatography (TLC). Density functional theory (DFT) calculations suggest that the most favorable geometry of the Au22Ir3(PET)18 cluster is one wherein the three Ir atoms are arranged triangularly with one Ir atom at the icosahedral core and the other two on the icosahedral shell. Significant contraction of the metal core was observed due to strong Ir-Ir interactions.
Collapse
Affiliation(s)
- Shridevi Bhat
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras , Chennai 600036, India
| | - Ananya Baksi
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras , Chennai 600036, India
| | - Sathish Kumar Mudedla
- Chemical Laboratory, CSIR-Central Leather Research Institute , Adyar, Chennai 600020, India
| | - Ganapati Natarajan
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras , Chennai 600036, India
| | - V Subramanian
- Chemical Laboratory, CSIR-Central Leather Research Institute , Adyar, Chennai 600020, India
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras , Chennai 600036, India
| |
Collapse
|
50
|
Visualizing BPA by molecularly imprinted ratiometric fluorescence sensor based on dual emission nanoparticles. Biosens Bioelectron 2017; 92:147-153. [DOI: 10.1016/j.bios.2017.02.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 11/16/2022]
|