1
|
Su M, Hu Z, Sun Y, Qi Y, Yu B, Xu FJ. Hydroxyl-rich branched polycations for nucleic acid delivery. Biomater Sci 2024; 12:581-595. [PMID: 38014423 DOI: 10.1039/d3bm01394d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Recently, nucleic acid delivery has become an amazing route for the treatment of various malignant diseases, and polycationic vectors are attracting more and more attention among gene vectors. However, conventional polycationic vectors still face many obstacles in nucleic acid delivery, such as significant cytotoxicity, high protein absorption behavior, and unsatisfactory blood compatibility caused by a high positive charge density. To solve these problems, the fabrication of hydroxyl-rich branched polycationic vectors has been proposed. For the synthesis of hydroxyl-rich branched polycations, a one-pot method is considered as the preferred method due to its simple preparation process. In this review, typical one-pot methods for fabricating hydroxyl-rich polycations are presented. In particular, amine-epoxide ring-opening polymerization as a novel approach is mainly introduced. In addition, various therapeutic scenarios of hydroxyl-rich branched polycations via one-pot fabrication are also generalized. We believe that this review will motivate the optimized design of hydroxyl-rich branched polycations for potential nucleic acid delivery and their bio-applications.
Collapse
Affiliation(s)
- Mengrui Su
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Zichen Hu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Yujie Sun
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Yu Qi
- China Meat Food Research Center, Beijing Academy of Food Sciences, Beijing 100068, PR China.
- Beijing Forestry University, Beijing, 100083, PR China
| | - Bingran Yu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
2
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Chang Z, Ye JH, Qi F, Fang H, Lin F, Wang S, Mu C, Zhang W, He W. A PEGylated photosensitizer-core pH-responsive polymeric nanocarrier for imaging-guided combination chemotherapy and photodynamic therapy. NEW J CHEM 2021. [DOI: 10.1039/d0nj04461j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel chemo-photodynamic combined therapeutic self-assembly polymeric platform (MPEG-Hyd-Br2-BODIPY) was constructed which can encapsulate DOX and exhibited an accelerated release rate with decreasing pH value which results in considerable time/dose-dependent cytotoxicity.
Collapse
Affiliation(s)
- Zhijian Chang
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- P. R. China
| | - Jia-Hai Ye
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- P. R. China
| | - Fen Qi
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- P. R. China
| | - Hongbao Fang
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- P. R. China
| | - Fuyan Lin
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- P. R. China
| | - Shuai Wang
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- P. R. China
| | - Cancan Mu
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- P. R. China
| | - Wenchao Zhang
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- P. R. China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- P. R. China
| |
Collapse
|
4
|
Ma LL, Tang Q, Liu MX, Liu XY, Liu JY, Lu ZL, Gao YG, Wang R. [12]aneN 3-Based Gemini-Type Amphiphiles with Two-Photon Absorption Properties for Enhanced Nonviral Gene Delivery and Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40094-40107. [PMID: 32805811 DOI: 10.1021/acsami.0c10718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although a plethora of nonviral gene vectors have been developed for potential gene therapy, imageable gemini surfactants with stimuli-responsiveness and high transfection efficiency are still scarce for gene delivery. Herein, three gemini amphiphiles (DEDPP-4/8/12) consisting of an aggregation-induced emission (AIE) central fluorophore: 5,6-diphenylpyrazine-2,3-diester (DEDPP), decorated with triazole-[12]aneN3 as the hydrophilic moiety and alkyl chains of various lengths as the hydrophobic moiety, were designed and synthesized for trackable gene delivery via optical imaging. All three amphiphiles exhibited ultralow critical micelle concentrations (CMCs) (up to 3.40 × 10-6 M), prominent two-photon absorption properties, and solvatochromic fluorescence. Gel electrophoresis assays demonstrated that the migration of plasmid DNA was completely retarded after condensation with these gemini amphiphiles at low concentrations (up to 10 μM). In addition, the ester bond in these amphiphiles may facilitate vector degradation and DNA release, in response to esterase and the acidic environment inside cells. Upon self-assembly with DOPE to form liposomes, DEDPP-8/DOPE achieved the best transfection efficiency in four cell lines, and the transfection efficiency of DEDPP-8/DOPE in HeLa cell lines was 23.5-fold higher than that of Lipo2000, which is unusually high for small organic molecule-based nonviral vectors. Furthermore, excellent transfection efficiency of DEDPP-8/DOPE was obtained in the presence of serum, and the red fluorescence protein (RFP) gene was successfully transfected in zebrafish embryos. Both one- and two-photon fluorescence imaging clearly demonstrated the delivery process of plasmid DNA. This study demonstrated that gemini-type amphiphiles composed of a two-photon fluorophore core conjugated with triazole-[12]aneN3 via an ester bond afforded an unprecedentedly high transfection efficiency with excellent biocompatibility, which may provide new insights for the design and development of multifunctional nonviral gene vectors for imageable gene delivery.
Collapse
Affiliation(s)
- Le-Le Ma
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Quan Tang
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ming-Xuan Liu
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xu-Ying Liu
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jin-Yu Liu
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhong-Lin Lu
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yong-Guang Gao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 9990078, China
| |
Collapse
|
5
|
Zohreh N, Rastegaran Z, Hosseini SH, Akhlaghi M, Istrate C, Busuioc C. pH-triggered intracellular release of doxorubicin by a poly(glycidyl methacrylate)-based double-shell magnetic nanocarrier. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111498. [PMID: 33255062 DOI: 10.1016/j.msec.2020.111498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/25/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022]
Abstract
Two core-double-shell pH-sensitive nanocarriers were fabricated using Fe3O4 as magnetic core, poly(glycidyl methacrylate-PEG) and salep dialdehyde as the first and the second shell, and doxorubicin as the hydrophobic anticancer drug. Two nanocarriers were different in the drug loading steps. The interaction between the first and the second shell assumed to be pH-sensitive via acetal cross linkages. The structure of nanocarriers, organic shell loading, magnetic responsibility, morphology, size, dispersibility, and drug loading content were investigated by IR, NMR, TG, VSM, XRD, DLS, HRTEM and UV-Vis analyses. The long-term drug release profiles of both nanocarriers showed that the drug loading before cross-linking between the first and second shell led to a more pH-sensitive nanocarrier exhibiting higher control on DOX release. Cellular toxicity assay (MTT) showed that DOX-free nanocarrier is biocompatible having cell viability greater than 80% for HEK-293 and MCF-7 cell lines. Besides, high cytotoxic effect observed for drug-loaded nanocarrier on MCF-7 cancer cells. Cellular uptake analysis showed that the nanocarrier is able to transport DOX into the cytoplasm and perinuclear regions of MCF-7 cells. In vitro hemolysis and coagulation assays demonstrated high blood compatibility of nanocarrier. The results also suggested that low concentration of nanocarrier have a great potential as a contrast agent in magnetic resonance imaging (MRI).
Collapse
Affiliation(s)
- Nasrin Zohreh
- Department of Chemistry, Faculty of Science, University of Qom, P. O. Box: 37185-359, Qom, Iran.
| | - Zahra Rastegaran
- Department of Chemistry, Faculty of Science, University of Qom, P. O. Box: 37185-359, Qom, Iran
| | - Seyed Hassan Hosseini
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran.
| | - Mehdi Akhlaghi
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran 1414713135, Iran
| | - Cosmin Istrate
- Laboratory of Atomic Structures and Defects in Advanced Materials, National Institute of Materials Physics, Magurele, Romania
| | - Cristina Busuioc
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Bucharest, Romania
| |
Collapse
|
6
|
Krawczyk H. The stilbene derivatives, nucleosides, and nucleosides modified by stilbene derivatives. Bioorg Chem 2019; 90:103073. [PMID: 31234131 DOI: 10.1016/j.bioorg.2019.103073] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/23/2019] [Accepted: 06/15/2019] [Indexed: 12/31/2022]
Abstract
In this short review, including 187 references, the issues of biological activity of stilbene derivatives and nucleosides and the biological and medicinal potential of fusion of these two classes are discussed. The stilbenes, especially the stilbenoids, and nucleosides are both biologically active. Hybrids formed from binding of these compounds have not yet been broadly studied. However, those that have been investigated exhibit desirable medicinal properties. The review is divided in such parts: I. Derivative of stilbene (biomedical investigations, biological activities in cells, enzymes and hazard), parts II. naturally occurred nucleoside and its derivatives: uridine, thymidine and 5-methyluridine, cytidine, adenosine, guanosine and part III. hybrid molecules- drugs and hybrid molecules- nucleoside - stilbene and its derivative.
Collapse
Affiliation(s)
- Hanna Krawczyk
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
7
|
Wang Y, Yang M, Qian J, Xu W, Wang J, Hou G, Ji L, Suo A. Sequentially self-assembled polysaccharide-based nanocomplexes for combined chemotherapy and photodynamic therapy of breast cancer. Carbohydr Polym 2018; 203:203-213. [PMID: 30318205 DOI: 10.1016/j.carbpol.2018.09.035] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/25/2018] [Accepted: 09/17/2018] [Indexed: 11/30/2022]
Abstract
Combination of chemotherapy and photodynamic therapy has emerged as a promising anticancer strategy. Polysaccharide-based nanoparticles are being intensively explored as drug carriers for different forms of combination therapy. In this study, novel multifunctional polysaccharide-based nanocomplexes were prepared from aldehyde-functionalized hyaluronic acid and hydroxyethyl chitosan via sequential self-assembly method. Stable nanocomplexes were obtained through both Schiff's base bond and electrostatic interactions. Chemotherapeutics doxorubicin and pro-photosensitizer 5-aminolevulinic acid were chemically conjugated onto the nanocomplexes via Schiff base linkage. Anti-HER2 antibody as targeting moiety was decorated onto the surface of nanocomplexes. The obtained near-spherical shaped nanocomplexes had an average size of 140 nm and a zeta potential of -24.6 mV, and displayed pH-responsive surface charge reversal and drug release. Active targeting strategy significantly enhanced the cellular uptake of nanocomplexes and combined anticancer efficiency of chemo-photodynamic dual therapy in breast cancer MCF-7 cells. These results suggested that the nanocomplexes had great potential for targeted combination therapy of breast cancer.
Collapse
Affiliation(s)
- Yaping Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ming Yang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jinlei Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guanghui Hou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lijie Ji
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Aili Suo
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
8
|
Constructing advanced dielectric elastomer based on copolymer of acrylate and polyurethane with large actuation strain at low electric field. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.06.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
PEGylated mBPEI-rGO nanocomposites facilitate hepotocarcinoma treatment combining photothermal therapy and chemotherapy. Sci Bull (Beijing) 2018; 63:935-946. [PMID: 36658975 DOI: 10.1016/j.scib.2018.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/06/2018] [Accepted: 05/23/2018] [Indexed: 01/21/2023]
Abstract
Despite chemotherapy has been widely used for tumor therapy, the serious side effect is still a major challenge. Recently, two dimensional nanomaterial-based drug delivery systems have attracted wide concern due to their high drug loading and low side effect. In addition, some kinds of nanomaterials can directly act as a photosensitizer to induce cancer destruction. In this study, we developed a drug delivery system of mixture of high/low molecular weight branched polyethylenimine-polyethylene glycol-reduced graphene oxide (mBPEI-PEG-rGO) using reduced graphene oxide as matrix. A model drug of doxorubicin (DOX) was loaded on the nanocomposites with the efficiency of 81% and the release rate of more than 50% at acidic environment. In vitro experiments indicated that mBPEI-PEG-rGO-DOX with enhanced stability and biocompatibility efficiently delivered and released DOX into cells mainly through micropinocytosis and killed SMMC-7721 cells by inducing reactive oxygen species (ROS) and cell apoptosis. Furthermore, in vivo experiments indicated that the combination of intratumoral injection of mBPEI-PEG-rGO-DOX and local laser irradiation nearly ablated hepatocarcinoma. In conclusion, this new drug delivery system provided an alternative for combinational photothermal and chemotherapy against hepatocarcinoma.
Collapse
|
10
|
Hao X, Li Q, Wang H, Muhammad K, Guo J, Ren X, Shi C, Xia S, Zhang W, Feng Y. CAGW Modified Polymeric Micelles with Different Hydrophobic Cores for Efficient Gene Delivery and Capillary-like Tube Formation. ACS Biomater Sci Eng 2018; 4:2870-2878. [DOI: 10.1021/acsbiomaterials.8b00529] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuefang Hao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Qian Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Huaning Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Khan Muhammad
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China
| | - Xiangkui Ren
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Changcan Shi
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325011, China
- Wenzhou Institute of Biomaterials and Engineering, CNITECH, Chinese Academy of Science, Wenzhou, Zhejiang 325011, China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People’s Armed Police Force, 220 Chenglin Road, Tianjin 300162, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of Chinese People’s Armed Police Force, Tianjin 300309, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Wang H, Miao W, Wang F, Cheng Y. A Self-Assembled Coumarin-Anchored Dendrimer for Efficient Gene Delivery and Light-Responsive Drug Delivery. Biomacromolecules 2018; 19:2194-2201. [PMID: 29684275 DOI: 10.1021/acs.biomac.8b00246] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The assembly of low molecular weight polymers into highly efficient and nontoxic nanostructures has broad applicability in gene delivery. In this study, we reported the assembly of coumarin-anchored low generation dendrimers in aqueous solution via hydrophobic interactions. The synthesized material showed significantly improved DNA binding and gene delivery, and minimal toxicity on the transfected cells. Moreover, the coumarin moieties in the assembled nanostructures endow the materials with light-responsive drug delivery behaviors. The coumarin substitutes in the assembled nanostructures were cross-linked with each other upon irradiation at 365 nm, and the cross-linked assemblies were degraded upon further irradiation at 254 nm. As a result, the drug-loaded nanoparticle showed a light-responsive drug release behavior and light-enhanced anticancer activity. The assembled nanoparticle also exhibited a complementary anticancer activity through the codelivery of 5-fluorouracil and a therapeutic gene encoding tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). This study provided a facile strategy to develop light-responsive polymers for the codelivery of therapeutic genes and anticancer drugs.
Collapse
Affiliation(s)
- Hui Wang
- Shanghai Key Laboratory of Regulatory Biology , East China Normal University , Shanghai , 200241 , P. R. China
| | - Wujun Miao
- Changzheng Hospital , Department of Orthopedic Oncology , Shanghai , P. R. China
| | - Fei Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics , Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology , East China Normal University , Shanghai , 200241 , P. R. China
| |
Collapse
|
12
|
Xu FJ. Versatile types of hydroxyl-rich polycationic systems via O-heterocyclic ring-opening reactions: From strategic design to nucleic acid delivery applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Tobiasz P, Poterała M, Jaśkowska E, Krawczyk H. Synthesis and investigation of new cyclic molecules using the stilbene scaffold. RSC Adv 2018; 8:30678-30682. [PMID: 35548740 PMCID: PMC9085490 DOI: 10.1039/c8ra04249g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/16/2018] [Indexed: 12/24/2022] Open
Abstract
A new approach to the synthesis of asymmetrical cyclic compounds using a stilbene scaffold has been developed. The use of boron trifluoride diethyl etherate as the catalyst, both with and without paraformaldehyde, allows us to obtain new substituted dioxanes, oxanes, cyclic compounds or dimer. The analysis of products was run using experimental and theoretical methods. A new approach to the synthesis of asymmetrical cyclic compounds using a stilbene scaffold has been developed.![]()
Collapse
Affiliation(s)
- Piotr Tobiasz
- Department of Organic Chemistry
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Marcin Poterała
- Department of Organic Chemistry
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Eliza Jaśkowska
- Department of Organic Chemistry
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Hanna Krawczyk
- Department of Organic Chemistry
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| |
Collapse
|
14
|
Song HQ, Qi Y, Li RQ, Cheng G, Zhao N, Xu FJ. High-performance cationic polyrotaxanes terminated with polypeptides as promising nucleic acid delivery systems. Polym Chem 2018. [DOI: 10.1039/c8py00333e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel cationic polyrotaxane consisting of hydroxyl-rich polycationic units and degradable end-capping polypeptides was prepared for promising nucleic acid delivery.
Collapse
Affiliation(s)
- Hai-Qing Song
- State Key Laboratory of Chemical Resource Engineering
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology)
- Ministry of Education
- Beijing Laboratory of Biomedical Materials
- and Beijing Advanced Innovation Center for Soft Matter Science and Engineering
| | - Yu Qi
- State Key Laboratory of Chemical Resource Engineering
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology)
- Ministry of Education
- Beijing Laboratory of Biomedical Materials
- and Beijing Advanced Innovation Center for Soft Matter Science and Engineering
| | - Rui-Quan Li
- State Key Laboratory of Chemical Resource Engineering
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology)
- Ministry of Education
- Beijing Laboratory of Biomedical Materials
- and Beijing Advanced Innovation Center for Soft Matter Science and Engineering
| | - Gang Cheng
- Department of Chemical Engineering
- University of Illinois at Chicago
- Chicago
- USA
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology)
- Ministry of Education
- Beijing Laboratory of Biomedical Materials
- and Beijing Advanced Innovation Center for Soft Matter Science and Engineering
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology)
- Ministry of Education
- Beijing Laboratory of Biomedical Materials
- and Beijing Advanced Innovation Center for Soft Matter Science and Engineering
| |
Collapse
|
15
|
Sun P, Wang N, Jin X, Zhu X. "Bottom-Up" Construction of Hyperbranched Poly(prodrug-co-photosensitizer) Amphiphiles Unimolecular Micelles for Chemo-Photodynamic Dual Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36675-36687. [PMID: 28968057 DOI: 10.1021/acsami.7b13055] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite the great advantages of chemo-photodynamic combination therapy, tedious synthesis steps and laborious purification procedures make the fabrication of chemo-photodynamic combined therapeutic platforms rather difficult. In this study, we develop a facile "bottom-up" strategy to fabricate hyperbranched poly(prodrug-co-photosensitizer) amphiphiles, h-P(CPTMA-co-BYMAI)-b-POEGMA (hPCBE), for chemo-photodynamic dual therapy. The easily prepared hPCBE possess a bottom-up-constructed hydrophobic core h-P(CPTMA-co-BYMAI) (hPCB) direct copolymerized from reduction-responsive CPT prodrug monomer (CPTMA) and boron dipyrromethene-based photosensitizer monomer (BYMAI), as well as a biocompatible shell polymerized from hydrophilic monomers. Because of the covalently interconnected core-shell structure, hPCBE exists as unimolecular micelles in aqueous solution and exhibits excellent structural stability under dilution condition. The hPCBE micelles can be effectively internalized by MCF-7 cells and release CPT triggered by the reductive milieu. In addition, photosensitizer moieties embedded in the hPCB core could generate singlet oxygen (1O2) effectively under irradiation, endowing hPCBE with the boosting of chemotherapeutic efficacy. As compared to the single chemotherapy of hyperbranched polyprodrug amphiphiles h-PCPTMA-b-POEGMA (hPCE) and photodynamic therapy of hyperbranched polyphotosensitizer amphiphiles h-PBYMAI-b-POEGMA (hPBE), hPCBE shows higher in vitro cytotoxicity. We expect that our approach will further boost research on the design of multifunctional drug delivery systems via the facile "bottom-up" strategy.
Collapse
Affiliation(s)
- Pei Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Nan Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xin Jin
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
16
|
Shih Y, Venault A, Tayo LL, Chen SH, Higuchi A, Deratani A, Chinnathambi A, Alharbi SA, Quemener D, Chang Y. A Zwitterionic-Shielded Carrier with pH-Modulated Reversible Self-Assembly for Gene Transfection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1914-1926. [PMID: 28147481 DOI: 10.1021/acs.langmuir.6b03685] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cationic vectors are ideal candidates for gene delivery thanks to their capability to carry large gene inserts and their scalable production. However, their cationic density gives rise to high cytotoxicity. We present the proper designed core-shell polyplexes made of either poly(ethylene imine) (PEI) or poly(2-dimethylamino ethyl methacrylate) (PDMAEMA) as the core and zwitterionic poly(acrylic acid)-block-poly(sulfobetaine methacrylate) (PAA-b-PSBMA) diblock copolymer as the shell. Gel retardation and ethidium bromide displacement assays were used to determine the PEI/DNA or PDMAEMA/DNA complexation. At neutral pH, the copolymer serves as a protective shell of the complex. As PSBMA is a nonfouling block, the shell reduced the cytotoxicity and enhanced the hemocompatibility (lower hemolysis activity, longer plasma clotting time) of the gene carriers. PAA segments in the copolymer impart pH sensitivity by allowing deshielding of the core in acidic solution. Therefore, the transfection efficiency of polyplexes at pH 6.5 was better than at pH 7.0, from β-galactosidase assay, and for all PAA-b-PSBMA tested. These results were supported by more favorable physicochemical properties in acidic solution (zeta potential, particle size, and interactions between the polymer and DNA). Thus, the results of this study offer a potential route to the development of efficient and nontoxic pH-sensitive gene carriers.
Collapse
Affiliation(s)
- Yuju Shih
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University , Chung-Li, Taoyuan 320, Taiwan
| | - Antoine Venault
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University , Chung-Li, Taoyuan 320, Taiwan
| | - Lemmuel L Tayo
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University , Chung-Li, Taoyuan 320, Taiwan
- School of Chemical Engineering and Chemistry, Mapúa Institute of Technology , Intramuros, Manila 1002, Philippines
| | - Sheng-Han Chen
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University , Chung-Li, Taoyuan 320, Taiwan
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University , Jhong-Li, Taoyuan 320, Taiwan
- Department of Botany and Microbiology, College of Science, King Saud University , P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Andre Deratani
- IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM2), Universite Montpellier 2, Place E. Bataillon, F-34095, Montpellier, France
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University , P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University , P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Damien Quemener
- IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM2), Universite Montpellier 2, Place E. Bataillon, F-34095, Montpellier, France
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University , Chung-Li, Taoyuan 320, Taiwan
- Department of Botany and Microbiology, College of Science, King Saud University , P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Yang J, Hao X, Li Q, Akpanyung M, Nejjari A, Neve AL, Ren X, Guo J, Feng Y, Shi C, Zhang W. CAGW Peptide- and PEG-Modified Gene Carrier for Selective Gene Delivery and Promotion of Angiogenesis in HUVECs in Vivo. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4485-4497. [PMID: 28117580 DOI: 10.1021/acsami.6b14769] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gene therapy is a promising strategy for angiogenesis, but developing gene carriers with low cytotoxicity and high gene delivery efficiency in vivo is a key issue. In the present study, we synthesized the CAGW peptide- and poly(ethylene glycol) (PEG)-modified amphiphilic copolymers. CAGW peptide serves as a targeting ligand for endothelial cells (ECs). Different amounts of CAGW peptide were effectively conjugated to the amphiphilic copolymer via heterofunctional poly(ethylene glycol). These CAG- and PEG-modified copolymers could form nanoparticles (NPs) by self-assembly method and were used as gene carriers for the pEGFP-ZNF580 (pZNF580) plasmid. CAGW and PEG modification coordinately improved the hemocompatibility and cytocompatibility of NPs. The results of cellular uptake showed significantly enhanced internalization efficiency of pZNF580 after CAGW modification. Gene expression at mRNA and protein levels demonstrated that EC-targeted NPs possessed high gene delivery efficiency, especially the NPs with higher content of CAGW peptide (1.16 wt %). Furthermore, in vitro and in vivo vascularization assays also showed outstanding vascularization ability of human umbilical vein endothelial cells treated by the NP/pZNF580 complexes. This study demonstrates that the CAGW peptide-modified NP is a promising candidate for gene therapy in angiogenesis.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
| | - Xuefang Hao
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
| | - Qian Li
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
| | - Mary Akpanyung
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
| | - Abdelilah Nejjari
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
| | - Agnaldo Luis Neve
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
| | - Xiangkui Ren
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Tianjin University-Helmholtz-Zentrum Geesthacht , Joint Laboratory for Biomaterials and Regenerative Medicine, Yaguan Road 135, Tianjin 300350, China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Tianjin University-Helmholtz-Zentrum Geesthacht , Joint Laboratory for Biomaterials and Regenerative Medicine, Yaguan Road 135, Tianjin 300350, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
- Tianjin University-Helmholtz-Zentrum Geesthacht , Joint Laboratory for Biomaterials and Regenerative Medicine, Yaguan Road 135, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Weijin Road 92, Tianjin 300072, China
| | - Changcan Shi
- Institute of Biomaterials and Engineering, Wenzhou Medical University , Wenzhou, Zhejiang 325011, China
- Wenzhou Institute of Biomaterials and Engineering, CNITECH, CAS , Wenzhou, Zhejiang 325011, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of Chinese People's Armed Police Force , Tianjin 300162, China
| |
Collapse
|
18
|
Multifunctional polycationic photosensitizer conjugates with rich hydroxyl groups for versatile water-soluble photodynamic therapy nanoplatforms. Biomaterials 2017; 117:77-91. [DOI: 10.1016/j.biomaterials.2016.11.055] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 02/02/2023]
|
19
|
Duan S, Yu B, Gao C, Yuan W, Ma J, Xu FJ. A Facile Strategy to Prepare Hyperbranched Hydroxyl-Rich Polycations for Effective Gene Therapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29334-29342. [PMID: 27726331 DOI: 10.1021/acsami.6b11029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
For effective gene therapy, nonviral gene carriers with low toxicity and high transfection efficiency are of much importance. In this work, we developed a facile strategy to prepare hyperbranched hydroxyl-rich polycations (denoted by TE) by the one-pot method involving ring-opening reactions between two commonly used reagents, ethylenediamine (ED) with two amino groups and 1,3,5-triglycidyl isocyanurate (TGIC) with three epoxy groups. The hyperbranched TEs with different molecular weights were investigated on their DNA condensation ability, protein absorption property, biocompatibility, transfection efficiency, and in vivo cancer therapy and toxicity. TE exhibited low cytotoxicity and protein absorption property due to the plentiful hydroxyl groups. The optimal transfection efficiency of TE was significantly higher than that of the gold standard polycationic gene carrier branched polyethylenimine (PEI, 25 kDa). Furthermore, TE was applied for in vivo tumor inhibition by the delivery of antioncogene p53, which showed good antitumor efficiency with low adverse effects. The present work provides a new concept for the facile preparation of hyperbranched hydroxyl-rich polycationic carriers with good transfection performances.
Collapse
Affiliation(s)
| | | | - Chunxiao Gao
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences , Beijing 100021, China
| | - Wei Yuan
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences , Beijing 100021, China
| | - Jie Ma
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences , Beijing 100021, China
| | | |
Collapse
|
20
|
Sun Y, Hu H, Yu B, Xu FJ. PGMA-Based Cationic Nanoparticles with Polyhydric Iodine Units for Advanced Gene Vectors. Bioconjug Chem 2016; 27:2744-2754. [PMID: 27709899 DOI: 10.1021/acs.bioconjchem.6b00509] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It is crucial for successful gene delivery to develop safe, effective, and multifunctional polycations. Iodine-based small molecules are widely used as contrast agents for CT imaging. Herein, a series of star-like poly(glycidyl methacrylate) (PGMA)-based cationic vectors (II-PGEA/II) with abundant flanking polyhydric iodine units are prepared for multifunctional gene delivery systems. The proposed II-PGEA/II star vector is composed of one iohexol intermediate (II) core and five ethanolamine (EA) and II-difunctionalized PGMA arms. The amphipathic II-PGEA/II vectors readily self-assemble into well-defined cationic nanoparticles, where massive hydroxyl groups can establish a hydration shell to stabilize the nanoparticles. The II introduction improves cell viabilities of polycations. Moreover, by controlling the suitable amount of introduced II units, the resultant II-PGEA/II nanoparticles can produce fairly good transfection performances in different cell lines. Particularly, the II-PGEA/II nanoparticles induce much better in vitro CT imaging abilities in tumor cells than iohexol (one commonly used commercial CT contrast agent). The present design of amphipathic PGMA-based nanoparticles with CT contrast agents would provide useful information for the development of new multifunctional gene delivery systems.
Collapse
Affiliation(s)
- Yue Sun
- State Key Laboratory of Chemical Resource Engineering, ‡Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, and §Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029 China
| | - Hao Hu
- State Key Laboratory of Chemical Resource Engineering, ‡Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, and §Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029 China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, ‡Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, and §Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029 China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, ‡Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, and §Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029 China
| |
Collapse
|
21
|
Kim MS, Lee EJ, Kim JW, Chung US, Koh WG, Keum KC, Koom WS. Gold nanoparticles enhance anti-tumor effect of radiotherapy to hypoxic tumor. Radiat Oncol J 2016; 34:230-238. [PMID: 27730800 PMCID: PMC5066449 DOI: 10.3857/roj.2016.01788] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/13/2016] [Accepted: 08/02/2016] [Indexed: 01/23/2023] Open
Abstract
Purpose Hypoxia can impair the therapeutic efficacy of radiotherapy (RT). Therefore, a new strategy is necessary for enhancing the response to RT. In this study, we investigated whether the combination of nanoparticles and RT is effective in eliminating the radioresistance of hypoxic tumors. Materials and Methods Gold nanoparticles (GNPs) consisting of a silica core with a gold shell were used. CT26 colon cancer mouse model was developed to study whether the combination of RT and GNPs reduced hypoxia-induced radioresistance. Hypoxia inducible factor-1α (HIF-1α) was used as a hypoxia marker. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were conducted to evaluate cell death. Results Hypoxic tumor cells had an impaired response to RT. GNPs combined with RT enhanced anti-tumor effect in hypoxic tumor compared with RT alone. The combination of GNPs and RT decreased tumor cell viability compare to RT alone in vitro. Under hypoxia, tumors treated with GNPs + RT showed a higher response than that shown by tumors treated with RT alone. When a reactive oxygen species (ROS) scavenger was added, the enhanced antitumor effect of GNPs + RT was diminished. Conclusion In the present study, hypoxic tumors treated with GNPs + RT showed favorable responses, which might be attributable to the ROS production induced by GNPs + RT. Taken together, GNPs combined with RT seems to be potential modality for enhancing the response to RT in hypoxic tumors.
Collapse
Affiliation(s)
- Mi Sun Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Eun-Jung Lee
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Won Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Ui Seok Chung
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Korea
| | - Ki Chang Keum
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Woong Sub Koom
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Well-defined reducible cationic nanogels based on functionalized low-molecular-weight PGMA for effective pDNA and siRNA delivery. Acta Biomater 2016; 41:282-92. [PMID: 27267781 DOI: 10.1016/j.actbio.2016.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/28/2016] [Accepted: 06/02/2016] [Indexed: 01/05/2023]
Abstract
UNLABELLED Nucleic acid-based gene therapy is a promising treatment option to cure numerous intractable diseases. For non-viral gene carriers, low-molecular-weight polymeric vectors generally demonstrate poor transfection performance, but benefit their final removals from the body. Recently, it was reported that aminated poly(glycidyl methacrylate) (PGMA) is one potential gene vector. Based on ethylenediamine (ED)-functionalized low-molecular-weight PGMA (denoted by PGED), a flexible strategy was herein proposed to design new well-defined reducible cationic nanogels (denoted by PGED-NGs) with friendly crosslinking reagents for highly efficient nucleic acid delivery. α-Lipoic acid (LA), one natural antioxidant in human body, was readily introduced into ED-functionalized PGMA and crosslinked to produce cationic PGED-NGs with plentiful reducible lipoyl groups. PGED-NGs could effectively complex plasmid DNA (pDNA) and short interfering RNA (siRNA). Compared with pristine PGED, PGED-NGs exhibited much better performance of pDNA transfection. PGED-NGs also could efficiently transport MALAT1 siRNA (siR-M) into hepatoma cells and significantly suppressed the cancer cell proliferation and migration. The present work indicated that reducible cationic nanogels involving LA crosslinking reagents are one kind of competitive candidates for high-performance nucleic acid delivery systems. STATEMENT OF SIGNIFICANCE Recently, the design of new types of high-performance nanoparticles is of great significance in delivering therapeutics. Nucleic acid-based therapy is a promising treatment option to cure numerous intractable diseases. A facile and straightforward strategy to fabricate safe nucleic acid delivery nanovectors is highly desirable. In this work, based on ethylenediamine-functionalized low-molecular-weight poly(glycidyl methacrylate), a flexible strategy was proposed to design new well-defined reducible cationic nanogels (denoted by PGED-NGs) with α-Lipoic acid, one friendly crosslinking reagent, for highly efficient nucleic acid delivery. Such PGED-NGs possess plentiful reducible lipoyl groups, effectively encapsulated pDNA and siRNA and exhibited excellent abilities of nucleic acid delivery. The present work indicated that reducible cationic nanogels involving α-lipoic acid crosslinking reagents are one kind of competitive candidates for high-performance nucleic acid delivery systems.
Collapse
|
23
|
Hu Y, Zhou Y, Zhao N, Liu F, Xu FJ. Multifunctional pDNA-Conjugated Polycationic Au Nanorod-Coated Fe3 O4 Hierarchical Nanocomposites for Trimodal Imaging and Combined Photothermal/Gene Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2459-68. [PMID: 26996155 DOI: 10.1002/smll.201600271] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/10/2016] [Indexed: 05/23/2023]
Abstract
It is very desirable to design multifunctional nanocomposites for theranostic applications via flexible strategies. The synthesis of one new multifunctional polycationic Au nanorod (NR)-coated Fe3 O4 nanosphere (NS) hierarchical nanocomposite (Au@pDM/Fe3 O4 ) based on the ternary assemblies of negatively charged Fe3 O4 cores (Fe3 O4 -PDA), polycation-modified Au nanorods (Au NR-pDM), and polycations is proposed. For such nanocomposites, the combined near-infrared absorbance properties of Fe3 O4 -PDA and Au NR-pDM are applied to photoacoustic imaging and photothermal therapy. Besides, Fe3 O4 and Au NR components allow the nanocomposites to serve as MRI and CT contrast agents. The prepared positively charged Au@pDM/Fe3 O4 also can complex plasmid DNA into pDNA/Au@pDM/Fe3 O4 and efficiently mediated gene therapy. The multifunctional applications of pDNA/Au@pDM/Fe3 O4 nanocomposites in trimodal imaging and combined photothermal/gene therapy are demonstrated using a xenografted rat glioma nude mouse model. The present study demonstrates that the proper assembly of different inorganic nanoparticles and polycations is an effective strategy to construct new multifunctional theranostic systems.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yiqiang Zhou
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing, 100050, China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing, 100050, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
24
|
Cong Y, Shi B, Lu Y, Wen S, Chung R, Jin D. One-step Conjugation of Glycyrrhetinic Acid to Cationic Polymers for High-performance Gene Delivery to Cultured Liver Cell. Sci Rep 2016; 6:21891. [PMID: 26902258 PMCID: PMC4763221 DOI: 10.1038/srep21891] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 09/24/2015] [Indexed: 12/15/2022] Open
Abstract
Gene therapies represent a promising therapeutic route for liver cancers, but major challenges remain in the design of safe and efficient gene-targeting delivery systems. For example, cationic polymers show good transfection efficiency as gene carriers, but are hindered by cytotoxicity and non-specific targeting. Here we report a versatile method of one-step conjugation of glycyrrhetinic acid (GA) to reduce cytotoxicity and improve the cultured liver cell -targeting capability of cationic polymers. We have explored a series of cationic polymer derivatives by coupling different ratios of GA to polypropylenimine (PPI) dendrimer. These new gene carriers (GA-PPI dendrimer) were systematically characterized by UV-vis,(1)H NMR titration, electron microscopy, zeta potential, dynamic light-scattering, gel electrophoresis, confocal microscopy and flow cytometry. We demonstrate that GA-PPI dendrimers can efficiently load and protect pDNA, via formation of nanostructured GA-PPI/pDNA polyplexes. With optimal GA substitution degree (6.31%), GA-PPI dendrimers deliver higher liver cell transfection efficiency (43.5% vs 22.3%) and lower cytotoxicity (94.3% vs 62.5%, cell viability) than the commercial bench-mark DNA carrier bPEI (25 kDa) with cultured liver model cells (HepG2). There results suggest that our new GA-PPI dendrimer are a promising candidate gene carrier for targeted liver cancer therapy.
Collapse
Affiliation(s)
- Yue Cong
- Institute of Pharmacy, Pharmaceutical College, Henan University, Jin Ming Avenue, Kaifeng, Henan, 475004, China
| | - Bingyang Shi
- College of Life Sciences, Henan University, Jin Ming Avenue, Kaifeng, Henan, 475004, China
- Advanced Cytometry Labs, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW, 2109, Australia
- Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yiqing Lu
- Advanced Cytometry Labs, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW, 2109, Australia
| | - Shihui Wen
- Advanced Cytometry Labs, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW, 2109, Australia
| | - Roger Chung
- Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Dayong Jin
- Advanced Cytometry Labs, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
25
|
Qi Y, Xu C, Nizam MN, Li Y, Yu B, Xu FJ. Functionalized PGMA nanoparticles with aggregation-induced emission characteristics for gene delivery systems. Polym Chem 2016. [DOI: 10.1039/c6py00998k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AIE fluorogen conjugated cationic nanoparticles with excellent bioimaging abilities and stable morphologies were designed for multifunctional gene delivery systems.
Collapse
Affiliation(s)
- Yu Qi
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology)
| | - Chen Xu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology)
| | - Muhammad Naeem Nizam
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology)
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology)
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology)
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology)
| |
Collapse
|
26
|
Li J, Zhang L, Lin Y, Xiao H, Zuo M, Cheng D, Shuai X. A pH-sensitive prodrug micelle self-assembled from multi-doxorubicin-tailed polyethylene glycol for cancer therapy. RSC Adv 2016. [DOI: 10.1039/c5ra27293a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel tetra-doxorubicin-tailed polyethylene glycol via benzoic-imine bond linkage was synthesized and self-assembled to a pH-sensitive prodrug micelle.
Collapse
Affiliation(s)
- Jingguo Li
- PCFM Lab of Ministry of Education
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Lu Zhang
- PCFM Lab of Ministry of Education
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Yujie Lin
- PCFM Lab of Ministry of Education
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Hong Xiao
- PCFM Lab of Ministry of Education
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Mingxiang Zuo
- PCFM Lab of Ministry of Education
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Du Cheng
- PCFM Lab of Ministry of Education
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| |
Collapse
|
27
|
Zhao N, Lin X, Zhang Q, Ji Z, Xu FJ. Redox-Triggered Gatekeeper-Enveloped Starlike Hollow Silica Nanoparticles for Intelligent Delivery Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:6467-6479. [PMID: 26528765 DOI: 10.1002/smll.201502760] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 06/05/2023]
Abstract
The design and development of multifunctional carriers for drug delivery based on hollow nanoparticles (HNPs) have attracted intense interests. Ordinary spherical HNPs are demonstrated to be promising candidates. However, the application of HNPs with special morphologies has rarely been reported. HNPs with sharp horns are expected to own higher endocytosis efficiencies than spherical counterparts. In this work, novel starlike hollow silica nanoparticles (SHNPs) with different sizes are proposed as platforms for the fabrication of redox-triggered multifunctional systems for synergy of gene therapy and chemotherapy. The CD-PGEA gene vectors (consisting of β-CD cores and ethanolamine-functionalized poly(glycidyl methacrylate) (denoted BUCT-PGEA) arms) are introduced ingeniously onto the surfaces of SHNPs with plentiful disulfide bond-linked adamantine guests. The resulting supramolecular assemblies (SHNP-PGEAs) possess redox-responsive gatekeepers for loaded drugs in the cavities of SHNPs. Meanwhile, they also demonstrate excellent performances to deliver genes. The gene transfection efficiencies, controlled drug release behaviors, and synergistic antitumor effect of hollow silica-based carriers with different morphologies are investigated in detail. Compared with ordinary spherical HNP-based counterparts, SHNP-PGEA carriers with six sharp horns are proven to be superior gene vectors and possess better efficacy for cellular uptake and antitumor effects. The present multifunctional carriers based on SHNPs will have promising applications in drug/gene codelivery and cancer treatment.
Collapse
Affiliation(s)
- Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinyi Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qing Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhaoxia Ji
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
28
|
Yang B, Dong X, Lei Q, Zhuo R, Feng J, Zhang X. Host-Guest Interaction-Based Self-Engineering of Nano-Sized Vesicles for Co-Delivery of Genes and Anticancer Drugs. ACS APPLIED MATERIALS & INTERFACES 2015; 7:22084-22094. [PMID: 26398113 DOI: 10.1021/acsami.5b07549] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
On the basis of host-guest interactions, this study reported a kind of linear-hyperbranched supramolecular amphiphile and its assembled vesicles for the combined achievement of drug encapsulation and DNA delivery. Amine-attached β-cyclodextrin-centered hyperbranched polyglycerol and linear adamantane-terminated octadecane were arranged to spontaneously interlink together and then self-assemble into nanoscale vesicles. As the model of a hydrophilic agent, DOX·HCl was demonstrated to be readily loaded into the hollow cavity of the vesicles. The drug release pattern could be controlled by adjusting the environmental acidity, favoring the intracellularly fast drug liberation in response to the cellular lysosomal microenvironment. The nanovesicles displayed superior serum-tolerant transgene ability and significantly lower cytotoxicity compared to those of PEI25K, the gold standard of gene delivery vectors. The drug-loaded nanovesicle can co-deliver DNA payloads into cells and allow the preferable accumulation of two payloads in nuclei. The drug encapsulation was found to have little influence on the transfection. This co-delivery vehicle presents a good example of rational design of cationic supramolecular vesicles for stimulus-responsive drug/DNA transport.
Collapse
Affiliation(s)
- Bin Yang
- Key Laboratory of Biomedical Polymers (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, P. R. China
| | - Xing Dong
- Key Laboratory of Biomedical Polymers (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, P. R. China
| | - Qi Lei
- Key Laboratory of Biomedical Polymers (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, P. R. China
| | - Renxi Zhuo
- Key Laboratory of Biomedical Polymers (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, P. R. China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, P. R. China
| | - Xianzheng Zhang
- Key Laboratory of Biomedical Polymers (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, P. R. China
| |
Collapse
|
29
|
Deng W, Cao X, Chen J, Zhang Z, Yu Q, Wang Y, Shao G, Zhou J, Gao X, Yu J, Xu X. MicroRNA Replacing Oncogenic Klf4 and c-Myc for Generating iPS Cells via Cationized Pleurotus eryngii Polysaccharide-based Nanotransfection. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18957-18966. [PMID: 26269400 DOI: 10.1021/acsami.5b06768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Induced pluripotent stem cells (iPSCs), resulting from the forced expression of cocktails out of transcription factors, such as Oct4, Sox2, Klf4, and c-Myc (OSKM), has shown tremendous potential in regenerative medicine. Although rapid progress has been made recently in the generation of iPSCs, the safety and efficiency remain key issues for further application. In this work, microRNA 302-367 was employed to substitute the oncogenic Klf4 and c-Myc in the OSKM combination as a safer strategy for successful iPSCs generation. The negatively charged plasmid mixture (encoding Oct4, Sox2, miR302-367) and the positively charged cationized Pleurotus eryngii polysaccharide (CPEPS) self-assembled into nanosized particles, named as CPEPS-OS-miR nanoparticles, which were applied to human umbilical cord mesenchymal stem cells for iPSCs generation after characterization of the physicochemical properties. The CPEPS-OS-miR nanoparticles possessed spherical shape, ultrasmall particle size, and positive surface charge. Importantly, the combination of plasmids Oct4, Sox2, and miR302-367 could not only minimize genetic modification but also show a more than 50 times higher reprogramming efficiency (0.044%) than any other single or possible double combinations of these factors (Oct4, Sox2, miR302-367). Altogether, the current study offers a simple, safe, and effective self-assembly approach for generating clinically applicable iPSCs.
Collapse
Affiliation(s)
- Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Jingjing Chen
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Zhijian Zhang
- Center for Drug/Gene Delivery and Tissue Engineering, and School of Medical Science and Laboratory Medicine, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Qingtong Yu
- School of Life Science & Technology, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | - Yan Wang
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Genbao Shao
- Center for Drug/Gene Delivery and Tissue Engineering, and School of Medical Science and Laboratory Medicine, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Jie Zhou
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Xiangdong Gao
- School of Life Science & Technology, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| |
Collapse
|
30
|
Shao XR, Wei XQ, Song X, Hao LY, Cai XX, Zhang ZR, Peng Q, Lin YF. Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell Prolif 2015; 48:465-74. [PMID: 26017818 PMCID: PMC6496505 DOI: 10.1111/cpr.12192] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/01/2015] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Up to now, little research has been focussed on discovering how zeta potential independently affects polymeric nanoparticle (NP) cytotoxicity. METHODS Polymeric nanoparticles of gradient zeta potential ranging from -30 mv to +40 mv were fabricated using the same poly-3-hydroxybutyrate-co-3-hydroxyhexanoate (PHBHHx) biopolymer. Interaction forces between nanoparticles and cells were measured by atomic force microscopy (AFM). Cytotoxicity of the nanoparticles to cells was investigated by using MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay. RESULTS Four kinds of nanoparticle with similar sizes and gradient zeta potentials, were fabricated. Those with positive surface charges were found to be more toxic than those with negative surface charges. Positively charged nanoparticles or nanoparticles with higher 'like' charges, offered higher interaction force with cells. CONCLUSION This work proposes a novel approach for investigating interaction between NPs and cells, and discloses the importance of controlling zeta potential in developing NPs-based formulations in the future.
Collapse
Affiliation(s)
- Xiao-Ru Shao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xue-Qin Wei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xu Song
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Li-Ying Hao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiao-Xiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhi-Rong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yun-Feng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
31
|
Yang YY, Hu H, Wang X, Yang F, Shen H, Xu FJ, Wu DC. Acid-Labile Poly(glycidyl methacrylate)-Based Star Gene Vectors. ACS APPLIED MATERIALS & INTERFACES 2015; 7:12238-12248. [PMID: 25993557 DOI: 10.1021/acsami.5b02733] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
It was recently reported that ethanolamine-functionalized poly(glycidyl methacrylate) (PGEA) possesses great potential applications in gene therapy due to its good biocompatibility and high transfection efficiency. Importing responsivity into PGEA vectors would further improve their performances. Herein, a series of responsive star-shaped vectors, acetaled β-cyclodextrin-PGEAs (A-CD-PGEAs) consisting of a β-CD core and five PGEA arms linked by acid-labile acetal groups, were proposed and characterized as therapeutic pDNA vectors. The A-CD-PGEAs owned abundant hydroxyl groups to shield extra positive charges of A-CD-PGEAs/pDNA complexes, and the star structure could decrease charge density. The incorporation of acetal linkers endowed A-CD-PGEAs with pH responsivity and degradation. In weakly acidic endosome, the broken acetal linkers resulted in decomposition of A-CD-PGEAs and morphological transformation of A-CD-PGEAs/pDNA complexes, lowering cytotoxicity and accelerating release of pDNA. In comparison with control CD-PGEAs without acetal linkers, A-CD-PGEAs exhibited significantly better transfection performances.
Collapse
Affiliation(s)
- Yan-Yu Yang
- ‡Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029 China
- §Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 China
| | - Hao Hu
- ‡Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029 China
- §Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 China
| | | | | | | | - Fu-Jian Xu
- ‡Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029 China
- §Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 China
| | | |
Collapse
|
32
|
Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev 2015; 44:5680-742. [DOI: 10.1039/c4cs00483c] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent developments of surface modification and endothelialization of biomaterials in vascular tissue engineering applications.
Collapse
Affiliation(s)
- Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Haixia Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Qian Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xuefang Hao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Juan Lv
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Nan Ma
- Institute of Chemistry and Biochemistry
- Free University of Berlin
- D-14195 Berlin
- Germany
| | - Wenzhong Li
- Department of Cardiac Surgery
- University of Rostock
- D-18057 Rostock
- Germany
| |
Collapse
|
33
|
Jiang S, Kai D, Dou QQ, Loh XJ. Multi-arm carriers composed of an antioxidant lignin core and poly(glycidyl methacrylate-co-poly(ethylene glycol)methacrylate) derivative arms for highly efficient gene delivery. J Mater Chem B 2015; 3:6897-6904. [DOI: 10.1039/c5tb01202c] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A lignin-based copolymer with good biocompability was successfully prepared via atom transfer radical polymerization (ATRP) for efficient gene delivery.
Collapse
Affiliation(s)
- Shan Jiang
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- Singapore 117602
- College of Chemistry
- Jilin University
| | - Dan Kai
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- Singapore 117602
| | - Qing Qing Dou
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- Singapore 117602
| | - Xian Jun Loh
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- Singapore 117602
- Department of Materials Science and Engineering
- National University of Singapore
| |
Collapse
|
34
|
Jiang S, Poh YZ, Loh XJ. POSS-based hybrid cationic copolymers with low aggregation potential for efficient gene delivery. RSC Adv 2015. [DOI: 10.1039/c5ra12580d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This work describes the synthesis and application of POSS-based copolymers with low aggregation potential for efficient gene delivery.
Collapse
Affiliation(s)
- Shan Jiang
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- Singapore 117602
- College of Chemistry
- Jilin University
| | - Ying Zhou Poh
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- Singapore 117602
| | - Xian Jun Loh
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- Singapore 117602
- Department of Materials Science and Engineering
- National University of Singapore
| |
Collapse
|