1
|
Othman HO, Anwer ET, Ali DS, Hassan RO, Mahmood EE, Ahmed RA, Muhammad RF, Smaoui S. Recent advances in carbon quantum dots for gene delivery: A comprehensive review. J Cell Physiol 2024; 239:e31236. [PMID: 38454776 DOI: 10.1002/jcp.31236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
Gene therapy is a revolutionary technology in healthcare that provides novel therapeutic options and has immense potential in addressing genetic illnesses, malignancies, and viral infections. Nevertheless, other obstacles still need to be addressed regarding safety, ethical implications, and technological enhancement. Nanotechnology and gene therapy fields have shown significant promise in transforming medical treatments by improving accuracy, effectiveness, and personalization. This review assesses the possible uses of gene therapy, its obstacles, and future research areas, specifically emphasizing the creative combination of gene therapy and nanotechnology. Nanotechnology is essential for gene delivery as it allows for the development of nano-scale carriers, such as carbon quantum dots (CQDs), which may effectively transport therapeutic genes into specific cells. CQDs exhibit distinctive physicochemical characteristics such as small size, excellent stability, and minimal toxicity, which render them highly favorable for gene therapy applications. The objective of this study is to review and describe the current advancements in the utilization of CQDs for gene delivery. Additionally, it intends to assess existing research, explore novel applications, and identify future opportunities and obstacles. This study offers a thorough summary of the current state and future possibilities of using CQDs for gene delivery. Combining recent research findings highlights the potential of CQDs to revolutionize gene therapy and its delivery methods.
Collapse
Affiliation(s)
- Hazha Omar Othman
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Department of Pharmaceutics, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Esra Tariq Anwer
- Department of Pharmaceutics, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Diyar Salahuddin Ali
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Department of Pharmacy, College of Pharmacy, Knowledge University, Erbil, Iraq
| | - Rebwar Omar Hassan
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Department of Radiological Imaging Technology, College of Health Technology, Cihan University-Erbil, Iraq
| | - Elnaz Ehsan Mahmood
- Department of Pharmaceutics, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Rayan Abubakir Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | | | - Slim Smaoui
- Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules, Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| |
Collapse
|
2
|
Li N, Xu X, Li J, Hull JJ, Chen L, Liang G. A spray-induced gene silencing strategy for Spodoptera frugiperda oviposition inhibition using nanomaterial-encapsulated dsEcR. Int J Biol Macromol 2024; 281:136503. [PMID: 39395517 DOI: 10.1016/j.ijbiomac.2024.136503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Although RNAi-based pest management holds great potential as an alternative to traditional chemical control, its efficiency is restricted by dsRNA instability and limited cellular uptake. Using nanomaterials to facilitate dsRNA delivery has shown promise in solving these challenges. In this study, we firstly used RNAi to investigate the role of the juvenile hormone and ecdysteroid signaling pathways genes in reproduction of Spodoptera frugiperda, the fall armyworm. Females in knocked-down treatments of any of the Met, EcR, and USP genes had greatly reduced fertility with the most pronounced inhibitory effects on oviposition observed following EcR knockdown, and thus the dsEcR could be a candidate target for RNAi-based oviposition inhibitory agency. Then a combinatorial spray-induced and nanocarrier-delivered gene silencing (SI-NDGS) approach that targeted EcR was conducted. At 72 h post-spay, the transcript levels of EcR and the oviposition were successfully reduced and inhibited. These findings support the groundwork for further developing novel RNAi-based pest management strategies for S. frugiperda.
Collapse
Affiliation(s)
- Ningning Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiaona Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Jiwen Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - J Joe Hull
- U.S. Arid Land Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Maricopa, USA
| | - Lizhen Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
3
|
Ozfidan-Konakci C, Yildiztugay E, Arikan-Abdulveli B, Alp-Turgut FN, Baslak C, Yıldırım M. The characterization of plant derived-carbon dots and its responses on chlorophyll a fluorescence kinetics, radical accumulation in guard cells, cellular redox state and antioxidant system in chromium stressed-Lactuca sativa. CHEMOSPHERE 2024; 356:141937. [PMID: 38599327 DOI: 10.1016/j.chemosphere.2024.141937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/08/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Based on their chemical structure and catalytic features, carbon dots (CDs) demonstrate great advantages for agricultural systems. The improvements in growth, photosynthesis, nutrient assimilation and resistance are provided by CDs treatments under control or adverse conditions. However, there is no data on how CDs can enhance the tolerance against chromium toxicity on gas exchange, photosynthetic machinery and ROS-based membrane functionality. The present study was conducted to evaluate the impacts of the different concentrations of orange peel derived-carbon dots (50-100-200-500 mg L-1 CD) on growth, chlorophyll fluorescence, phenomenological fluxes between photosystems, photosynthetic performance, ROS accumulation and antioxidant system under chromium stress (Cr, 100 μM chromium (VI) oxide) in Lactuca sativa. CDs removed the Cr-reduced changes in growth (RGR), water content (RWC) and proline (Pro) content. Compared to stress, CD exposures caused an alleviation in carbon assimilation rate, stomatal conductance, transpiration rate, carboxylation efficiency, chlorophyll fluorescence (Fv/Fm) and potential photochemical efficiency (Fv/Fo). Cr toxicity disrupted the energy fluxes (ABS/RC, TRo/RC, ETo/RC and DIo/RC), quantum yields and, efficiency (ΨEo and φRo), dissipation of energy (DIo/RC) and performance index (PIABS and PItotal). An amelioration in these parameters was provided by CD addition to Cr-applied plants. Stressed plants had high activities of superoxide dismutase (SOD), peroxidase (POX) and ascorbate peroxidase (APX), which could not prevent the increase of H2O2 and lipid peroxidation (TBARS content). While all CDs induced SOD and catalase (CAT) in response to stress, POX and enzyme/non-enzymes related to ascorbate-glutathione (AsA-GSH) cycle (APX, monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), the contents of AsA and, GSH) were activated by 50-100-200 mg L-1 CD. CDs were able to protect the AsA regeneration, GSH/GSSG and GSH redox status. The decreases in H2O2 content might be attributed to the increased activity of glutathione peroxidase (GPX). Therefore, all CD applications minimized the Cr stress-based disturbances (TBARS content) by controlling ROS accumulation, antioxidant system and photosynthetic machinery. In conclusion, CDs have the potential to be used as a biocompatible inducer in removing the adverse effects of Cr stress in lettuce plants.
Collapse
Affiliation(s)
- Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, 42090, Konya, Turkey.
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, 42130, Konya, Turkey.
| | - Busra Arikan-Abdulveli
- Department of Biotechnology, Faculty of Science, Selcuk University, 42130, Konya, Turkey.
| | - Fatma Nur Alp-Turgut
- Department of Biotechnology, Faculty of Science, Selcuk University, 42130, Konya, Turkey.
| | - Canan Baslak
- Department of Chemistry, Faculty of Science, Selcuk University, 42130, Konya, Turkey.
| | - Murat Yıldırım
- Department of Biotechnology, Faculty of Science, Selcuk University, 42130, Konya, Turkey.
| |
Collapse
|
4
|
Bartkowski M, Zhou Y, Nabil Amin Mustafa M, Eustace AJ, Giordani S. CARBON DOTS: Bioimaging and Anticancer Drug Delivery. Chemistry 2024; 30:e202303982. [PMID: 38205882 DOI: 10.1002/chem.202303982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Cancer, responsible for approximately 10 million lives annually, urgently requires innovative treatments, as well as solutions to mitigate the limitations of traditional chemotherapy, such as long-term adverse side effects and multidrug resistance. This review focuses on Carbon Dots (CDs), an emergent class of nanoparticles (NPs) with remarkable physicochemical and biological properties, and their burgeoning applications in bioimaging and as nanocarriers in drug delivery systems for cancer treatment. The review initiates with an overview of NPs as nanocarriers, followed by an in-depth look into the biological barriers that could affect their distribution, from barriers to administration, to intracellular trafficking. It further explores CDs' synthesis, including both bottom-up and top-down approaches, and their notable biocompatibility, supported by a selection of in vitro, in vivo, and ex vivo studies. Special attention is given to CDs' role in bioimaging, highlighting their optical properties. The discussion extends to their emerging significance as drug carriers, particularly in the delivery of doxorubicin and other anticancer agents, underscoring recent advancements and challenges in this field. Finally, we showcase examples of other promising bioapplications of CDs, emergent owing to the NPs flexible design. As research on CDs evolves, we envisage key challenges, as well as the potential of CD-based systems in bioimaging and cancer therapy.
Collapse
Affiliation(s)
- Michał Bartkowski
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
| | - Yingru Zhou
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | | | | | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
| |
Collapse
|
5
|
Yazdani S, Mozaffarian M, Pazuki G, Hadidi N, Villate-Beitia I, Zárate J, Puras G, Pedraz JL. Carbon-Based Nanostructures as Emerging Materials for Gene Delivery Applications. Pharmaceutics 2024; 16:288. [PMID: 38399344 PMCID: PMC10891563 DOI: 10.3390/pharmaceutics16020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Gene therapeutics are promising for treating diseases at the genetic level, with some already validated for clinical use. Recently, nanostructures have emerged for the targeted delivery of genetic material. Nanomaterials, exhibiting advantageous properties such as a high surface-to-volume ratio, biocompatibility, facile functionalization, substantial loading capacity, and tunable physicochemical characteristics, are recognized as non-viral vectors in gene therapy applications. Despite progress, current non-viral vectors exhibit notably low gene delivery efficiency. Progress in nanotechnology is essential to overcome extracellular and intracellular barriers in gene delivery. Specific nanostructures such as carbon nanotubes (CNTs), carbon quantum dots (CQDs), nanodiamonds (NDs), and similar carbon-based structures can accommodate diverse genetic materials such as plasmid DNA (pDNA), messenger RNA (mRNA), small interference RNA (siRNA), micro RNA (miRNA), and antisense oligonucleotides (AONs). To address challenges such as high toxicity and low transfection efficiency, advancements in the features of carbon-based nanostructures (CBNs) are imperative. This overview delves into three types of CBNs employed as vectors in drug/gene delivery systems, encompassing their synthesis methods, properties, and biomedical applications. Ultimately, we present insights into the opportunities and challenges within the captivating realm of gene delivery using CBNs.
Collapse
Affiliation(s)
- Sara Yazdani
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
| | - Mehrdad Mozaffarian
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
| | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
| | - Naghmeh Hadidi
- Department of Clinical Research and EM Microscope, Pasteur Institute of Iran (PII), Tehran P.O. Box 131694-3551, Iran;
| | - Ilia Villate-Beitia
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Jon Zárate
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
6
|
He S, Liu S. Zwitterionic materials for nucleic acid delivery and therapeutic applications. J Control Release 2024; 365:919-935. [PMID: 38103789 DOI: 10.1016/j.jconrel.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Nucleic acid therapeutics have demonstrated substantial potential in combating various diseases. However, challenges persist, particularly in the delivery of multifunctional nucleic acids. To address this issue, numerous gene delivery vectors have been developed to fully unlock the potential of gene therapy. The advancement of innovative materials with exceptional delivery properties is critical to propel the clinical translation of nucleic acid drugs. Cationic vector materials have received extensive attention, while zwitterionic materials remain relatively underappreciated in delivery. In this review, we outline a diverse range of zwitterionic material nucleic acid carriers, predominantly encompassing zwitterionic lipids, polymers and peptides. Their respective chemical structures, synthesis approaches, properties, advantages, and therapeutic applications are summarized and discussed. Furthermore, we highlight the challenges and future opportunities associated with the development of zwitterionic vector materials. This review will aid to understand the zwitterionic materials in aiding gene delivery, contributing to the continual progress of nucleic acid therapeutics.
Collapse
Affiliation(s)
- Shun He
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shuai Liu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Wang H, Ai L, Song Z, Nie M, Xiao J, Li G, Lu S. Surface Modification Functionalized Carbon Dots. Chemistry 2023; 29:e202302383. [PMID: 37681290 DOI: 10.1002/chem.202302383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
Carbon dots (CDs) smaller than 10 nm constitute a new type of fluorescent carbon-based nanomaterial. They have attracted much attention owing to their unique structures and excellent photoelectric properties. Primitive CDs usually comprise carbon and oxygen and are synthesized in one step from various natural products or synthetic organic compounds, usually via microwave or hydrothermal methods. However, the uniformity of surface functional groups often make CDs lack the diversity of active sites required for specific applications. Therefore, the functionalization of CDs by specific groups is a powerful strategy for improving their photophysical and photochemical properties. This paper reviews surface modification strategies to overcome these shortcomings. Functionalizing CDs using covalent or non-covalent modification can give them unique properties and broaden their applicability.
Collapse
Affiliation(s)
- Haolin Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, P. R. China
| | - Lin Ai
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, P. R. China
| | - Ziqi Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, P. R. China
| | - Mingjun Nie
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, P. R. China
| | - Jiping Xiao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, P. R. China
| | - Guoping Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, P. R. China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, P. R. China
| |
Collapse
|
8
|
Zhang S, Luo Y, Du J, Ren X, Liu C, Liu Y, Sun W, Xu B. In Situ Radical Reaction-Modified Carbon Dot Nanocapsules with Macrophage Escape and Prolonged Imaging. Macromol Rapid Commun 2023; 44:e2300188. [PMID: 37149871 DOI: 10.1002/marc.202300188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/25/2023] [Indexed: 05/09/2023]
Abstract
Carbon dots (CDs) have emerged as an extremely promising platform for biological imaging, owing to their optical properties and low toxicity. However, one of the major challenges in utilizing CDs for in vivo imaging is their high immunogenicity and rapid clearance, which limits their potential. Herein, a novel approach for mitigating these issues is presented through the development of carbon dot nanocapsules (nCDs). Specifically, CDs are encapsulated within a zwitterionic polymer shell composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) to create nCDs with a size of ≈40 nm. Notably, the nCDs exhibit excitation-dependent photoluminescence behavior in the range of 550-600 nm, with tunability based on the excitation wavelength. In confocal imaging, CDs display a strong fluorescence signal after 8 h of incubation with phagocytes, while nCDs show minimal signal, suggesting that nCDs may be capable of evading phagocyte uptake. Furthermore, imaging studies in zebrafish demonstrate that nCDs exhibit a retention time >10 times longer than that of CDs, with fluorescence intensity remaining at 81% after 10 h compared to only 8% for CDs. Taken together, the study presents a novel approach for enhancing the performance of CDs in in vivo imaging applications, offering significant potential for clinical translation.
Collapse
Affiliation(s)
- Song Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yuchao Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- School of Mechanical Science Engineering, Jilin University, Changchun, 130012, China
| | - Jianan Du
- Department of Molecular Biology, College of Basic Medical Sciences Jilin University, Changchun, 130021, China
| | - Xue Ren
- Department of Oncological Gynecology, the First Hospital of Jilin University, Jilin University, Changchun, 130012, China
| | - Chunbao Liu
- School of Mechanical Science Engineering, Jilin University, Changchun, 130012, China
| | - Yingyi Liu
- Department of Anesthesiology of China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130012, China
| | - Wei Sun
- Department of Molecular Biology, College of Basic Medical Sciences Jilin University, Changchun, 130021, China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
9
|
Arcudi F, Đorđević L. Supramolecular Chemistry of Carbon-Based Dots Offers Widespread Opportunities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300906. [PMID: 37078923 DOI: 10.1002/smll.202300906] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Carbon dots are an emerging class of nanomaterials that has recently attracted considerable attention for applications that span from biomedicine to energy. These photoluminescent carbon nanoparticles are defined by characteristic sizes of <10 nm, a carbon-based core and various functional groups at their surface. Although the surface groups are widely used to establish non-covalent bonds (through electrostatic interactions, coordinative bonds, and hydrogen bonds) with various other (bio)molecules and polymers, the carbonaceous core could also establish non-covalent bonds (ππ stacking or hydrophobic interactions) with π-extended or apolar compounds. The surface functional groups, in addition, can be modified by various post-synthetic chemical procedures to fine-tune the supramolecular interactions. Our contribution categorizes and analyzes the interactions that are commonly used to engineer carbon dots-based materials and discusses how they have allowed preparation of functional assemblies and architectures used for sensing, (bio)imaging, therapeutic applications, catalysis, and devices. Using non-covalent interactions as a bottom-up approach to prepare carbon dots-based assemblies and composites can exploit the unique features of supramolecular chemistry, which include adaptability, tunability, and stimuli-responsiveness due to the dynamic nature of the non-covalent interactions. It is expected that focusing on the various supramolecular possibilities will influence the future development of this class of nanomaterials.
Collapse
Affiliation(s)
- Francesca Arcudi
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| | - Luka Đorđević
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| |
Collapse
|
10
|
Niu L, Yan H, Sun Y, Zhang D, Ma W, Lin Y. Nanoparticle facilitated stacked-dsRNA improves suppression of the Lepidoperan pest Chilo suppresallis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105183. [PMID: 36127045 DOI: 10.1016/j.pestbp.2022.105183] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
In recent years, gene knockdown technology using double-stranded RNA (dsRNA) has been widely used as an environment-friendly pest control strategy, but its instability and limited cellular uptake have limited its overall effect. Studies have shown that the efficiency of single dsRNA can be improved by using various nanomaterials. However, the effect of stacked-dsRNA wrapped by nanomaterial on pests remains unclear. In the present study, both CYP15C1 and C-factor genes were cloned from the midgut of C. suppressalis, and the transcript of C-factor is most highly expressed in heads. Feeding a dsCYP15C1 or dsC-factor - nanomaterial mixture can downregulate the gene expression and significantly increase larval mortality. More importantly, feeding the stacked-dsRNA wrapped by nanomaterial can significantly increase the mortality of C. suppressalis, compared with feeding dsCYP15C1 or dsC-factor - nanomaterial mixture alone. These results showed that CYP15C1 and C-factor could be potential targets for an effective management of C. suppressalis, and we developed a nanoparticle-facilitated stacked-dsRNA strategy in the control of C. suppresallis. Our research provides a theoretical basis for gene function analysis and field pest control, and will promote the application of RNAi technology in the stacked style of pest control.
Collapse
Affiliation(s)
- Lin Niu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Haixia Yan
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
| | - Yajie Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
| |
Collapse
|
11
|
Javan Nikkhah S, Vandichel M. Modeling Polyzwitterion-Based Drug Delivery Platforms: A Perspective of the Current State-of-the-Art and Beyond. ACS ENGINEERING AU 2022; 2:274-294. [PMID: 35996394 PMCID: PMC9389590 DOI: 10.1021/acsengineeringau.2c00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Drug delivery platforms are anticipated to have biocompatible and bioinert surfaces. PEGylation of drug carriers is the most approved method since it improves water solubility and colloid stability and decreases the drug vehicles' interactions with blood components. Although this approach extends their biocompatibility, biorecognition mechanisms prevent them from biodistribution and thus efficient drug transfer. Recent studies have shown (poly)zwitterions to be alternatives for PEG with superior biocompatibility. (Poly)zwitterions are super hydrophilic, mainly stimuli-responsive, easy to functionalize and they display an extremely low protein adsorption and long biodistribution time. These unique characteristics make them already promising candidates as drug delivery carriers. Furthermore, since they have highly dense charged groups with opposite signs, (poly)zwitterions are intensely hydrated under physiological conditions. This exceptional hydration potential makes them ideal for the design of therapeutic vehicles with antifouling capability, i.e., preventing undesired sorption of biologics from the human body in the drug delivery vehicle. Therefore, (poly)zwitterionic materials have been broadly applied in stimuli-responsive "intelligent" drug delivery systems as well as tumor-targeting carriers because of their excellent biocompatibility, low cytotoxicity, insignificant immunogenicity, high stability, and long circulation time. To tailor (poly)zwitterionic drug vehicles, an interpretation of the structural and stimuli-responsive behavior of this type of polymer is essential. To this end, a direct study of molecular-level interactions, orientations, configurations, and physicochemical properties of (poly)zwitterions is required, which can be achieved via molecular modeling, which has become an influential tool for discovering new materials and understanding diverse material phenomena. As the essential bridge between science and engineering, molecular simulations enable the fundamental understanding of the encapsulation and release behavior of intelligent drug-loaded (poly)zwitterion nanoparticles and can help us to systematically design their next generations. When combined with experiments, modeling can make quantitative predictions. This perspective article aims to illustrate key recent developments in (poly)zwitterion-based drug delivery systems. We summarize how to use predictive multiscale molecular modeling techniques to successfully boost the development of intelligent multifunctional (poly)zwitterions-based systems.
Collapse
Affiliation(s)
- Sousa Javan Nikkhah
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Matthias Vandichel
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| |
Collapse
|
12
|
Garcia-Millan T, Swift TA, Morgan DJ, Harniman RL, Masheder B, Hughes S, Davis SA, Oliver TAA, Galan MC. Small variations in reaction conditions tune carbon dot fluorescence. NANOSCALE 2022; 14:6930-6940. [PMID: 35466987 PMCID: PMC9109711 DOI: 10.1039/d2nr01306a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The development of robust and reproducible synthetic strategies for the production of carbon dots (CDs) with improved fluorescence quantum yields and distinct emission profiles is of great relevance given the vast range of applications of CDs. The fundamental understanding at a molecular level of their formation mechanism, chemical structure and how these parameters are correlated to their photoluminescence (PL) properties is thus essential. In this study, we describe the synthesis and structural characterization of a range of CDs with distinct physico-chemical properties. The materials were prepared under three minutes of microwave irradiation using the same common starting materials (D-glucosamine hydrochloride 1 and ethylenediamine 2) but modifying the stoichiometry of the reagents. We show that small variation in reaction conditions leads to changes in the fluorescent behaviour of the CDs, especially in the selective enhancement of overlapped fluorescence bands. Structural analysis of the different CD samples suggested different reaction pathways during the CD formation and surface passivation, with the latter step being key to the observed differences. Moreover, we demonstrate that these materials have distinct reversible response to pH changes, which we can be attribute to different behaviour towards protonation/deprotonation events of distinct emission domains present within each nanomaterial. Our results highlight the importance of understanding the reaction pathways that lead to the formation of this carbon-based nanomaterials and how this can be exploited to develop tailored materials towards specific applications.
Collapse
Affiliation(s)
| | - Thomas A Swift
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - David J Morgan
- Cardiff Catalysis Institute, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
- HarwellXPS, - ESPRC National Facility for XPS, Research Complex at Harwell (RcAH), Didcot, Oxon OX11 0FA, UK
| | - Robert L Harniman
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Benjamin Masheder
- DST Innovations Ltd, Unit 6a Bridgend Business Centre, Bennett Street, Bridgend, CF31 3SH, UK
| | - Stephen Hughes
- DST Innovations Ltd, Unit 6a Bridgend Business Centre, Bennett Street, Bridgend, CF31 3SH, UK
| | - Sean A Davis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Thomas A A Oliver
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
13
|
Dinda P, Anas M, Banerjee P, Mandal TK. Dual Thermoresponsive Boc-Lysine-Based Acryl Polymer: RAFT Kinetics and Anti-Protein-Fouling of Its Zwitterionic Form. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Priyanka Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Mahammad Anas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Palash Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Tarun K. Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
14
|
Qian H, Wang K, Lv M, Zhao C, Wang H, Wen S, Huang D, Chen W, Zhong Y. Recent advances on next generation of polyzwitterion-based nano-vectors for targeted drug delivery. J Control Release 2022; 343:492-505. [PMID: 35149143 DOI: 10.1016/j.jconrel.2022.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 12/01/2022]
Abstract
Poly (ethylene glycol) (PEG)-based nanomedicines are perplexed by the challenges of oxidation damage, immune responses after repeated injections, and limited excretion from the body. As an alternative to PEG, bioinspired zwitterions bearing an identical number of positive and negative ions, exhibit exceptional hydrophilicity, excellent biomimetic nature and chemical malleability, endowing zwitterionic nano-vectors with biocompatibility, non-fouling feature, extended blood circulation and multifunctionality. In this review, we innovatively classify zwitterionic nano-vectors into linear, hyperbranched, crosslinked, and hybrid nanoparticles according to different chemical architectures in rational design of zwitterionic nano-vectors for enhanced drug delivery with an emphasis on zwitterionic engineering innovations as alternatives of PEG-based nanomedicines. Through combination with other nanostratagies, the intelligent zwitterionic nano-vectors can orchestrate stealth and other biological functionalities together to improve the efficacy in the whole journey of drug delivery.
Collapse
Affiliation(s)
- Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ke Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Mengtong Lv
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Changshun Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Suchen Wen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
15
|
Nayak S, Das P. Covalent Conjugation of Carbon Dots with Plasmid and DNA Condensation Thereafter: Realistic Insights into the Condensate Morphology, Energetics, and Photophysics. ACS OMEGA 2021; 6:21425-21435. [PMID: 34471745 PMCID: PMC8387987 DOI: 10.1021/acsomega.1c02247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The use of carbon quantum dots (CDs) as trackable nanocarriers for plasmid and gene as hybrid DNA condensates has gained momentum, as evident from the significant recent research efforts. However, the in-depth morphology of the condensates, the energetics of the condensation process, and the photophysical aspects of the CD are not well understood and often disregarded. Herein, for the first time, we covalently attached linearized pUC19 with citric acid and cysteamine-derived CD through the reaction of the surface amine groups of CDs with the 5'-phospho-methyl imidazolide derivative of the plasmid to obtain a 1:1 CD-pUC19 covalent conjugate. The CD-pUC19 conjugates were further transformed into DNA condensates with spermine that displayed a toroidal morphology with a diameter of ∼200 nm involving ∼2-5 CD-pUC19 conjugates in a single condensate. While the interaction of pristine CD to spermine was exothermic, the binding of the CD-pUC19 conjugate with spermine was endothermic and primarily entropy-driven. The condensed plasmid displayed severe conformational stress and deviation from the B-form due to the compact packing of the DNA but better transfection ability than the pristine CD. The CDs in the condensates tend to come close to each other at the core that results in their shielding from excitation. However, this does not prevent them from emanating reactive oxygen species on visible light exposure that compromises the decondensation process and cell viability at higher exposure times, calling for utmost caution in establishing them as nonviral transfecting agents universally.
Collapse
Affiliation(s)
- Suman Nayak
- Department of Chemistry, Indian
Institute of Technology Patna, Bihta, Patna, 801106 Bihar, India
| | - Prolay Das
- Department of Chemistry, Indian
Institute of Technology Patna, Bihta, Patna, 801106 Bihar, India
| |
Collapse
|
16
|
Hasanzadeh A, Radmanesh F, Hosseini ES, Hashemzadeh I, Kiani J, Naseri M, Nourizadeh H, Fatahi Y, Azar BKY, Marani BG, Beyzavi A, Mahabadi VP, Karimi M. Synthesis and characterization of vitamin D 3-functionalized carbon dots for CRISPR/Cas9 delivery. Nanomedicine (Lond) 2021; 16:1673-1690. [PMID: 34291668 DOI: 10.2217/nnm-2021-0038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aim: To develop a novel nanovector for the delivery of genetic fragments and CRISPR/Cas9 systems in particular. Materials & methods: Vitamin D3-functionalized carbon dots (D/CDs) fabricated using one-step microwave-aided methods were characterized by different microscopic and spectroscopic techniques. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide assay and flow cytometry were employed to determine the cell viability and transfection efficiency. Results: D/CDs transfected CRISPR plasmid in various cell lines with high efficiency while maintaining their remarkable efficacy at high serum concentration and low plasmid doses. They also showed great potential for the green fluorescent protein disruption by delivering two different types of CRISPR/Cas9 systems. Conclusion: Given their high efficiency and safety, D/CDs provide a versatile gene-delivery vector for clinical applications.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Advanced Nanobiotechnology & Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Fatemeh Radmanesh
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, 1449614535, Iran.,Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, 1665659911, Iran
| | - Elaheh Sadat Hosseini
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Iman Hashemzadeh
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Advanced Nanobiotechnology & Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Marzieh Naseri
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Helena Nourizadeh
- Advanced Nanobiotechnology & Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417613151, Iran.,Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417613151, Iran.,Universal Scientific Education & Research Network (USERN), Tehran, 1417755331, Iran
| | - Behjat Kheiri Yeghaneh Azar
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Student Research Committee, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Behnaz Golnari Marani
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Advanced Nanobiotechnology & Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Ali Beyzavi
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Vahid Pirhajati Mahabadi
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Neuroscience research center, Iran University of medical sciences, Tehran, 1449614535, Iran
| | - Mahdi Karimi
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Advanced Nanobiotechnology & Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Oncopathology Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Research Center for Science & Technology in Medicine, Tehran University of Medical Sciences, Tehran, 1417613151, Iran.,Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, 1916893813, Iran
| |
Collapse
|
17
|
Liu Y, Zhang L, Liang Y, Yang H, Guo X, Dong W. Spectroscopic cyclic voltammetry, and molecular docking study on the molecular interaction between synthesized blue emitting nitrogen‐doped carbon dots and human serum albumin. NANO SELECT 2021. [DOI: 10.1002/nano.202100148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yufeng Liu
- College of Pharmacy Liaoning University Shenyang P.R. China
| | - Lizhi Zhang
- College of Chemistry Liaoning University Shenyang P.R. China
| | - YuanHao Liang
- College of Pharmacy Liaoning University Shenyang P.R. China
| | - Hongtian Yang
- College of Pharmacy Liaoning University Shenyang P.R. China
| | - Xingjia Guo
- College of Chemistry Liaoning University Shenyang P.R. China
| | - Wei Dong
- College of Pharmacy Medical College Shenyang P.R. China
| |
Collapse
|
18
|
Carbon Dot Nanoparticles: Exploring the Potential Use for Gene Delivery in Ophthalmic Diseases. NANOMATERIALS 2021; 11:nano11040935. [PMID: 33917548 PMCID: PMC8067473 DOI: 10.3390/nano11040935] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/16/2023]
Abstract
Ocular gene therapy offers significant potential for preventing retinal dystrophy in patients with inherited retinal dystrophies (IRD). Adeno-associated virus (AAV) based gene transfer is the most common and successful gene delivery approach to the eye. These days, many studies are using non-viral nanoparticles (NPs) as an alternative therapeutic option because of their unique properties and biocompatibility. Here, we discuss the potential of carbon dots (CDs), a new type of nanocarrier for gene delivery to the retinal cells. The unique physicochemical properties of CDs (such as optical, electronic, and catalytic) make them suitable for biosensing, imaging, drug, and gene delivery applications. Efficient gene delivery to the retinal cells using CDs depends on various factors, such as photoluminescence, quantum yield, biocompatibility, size, and shape. In this review, we focused on different approaches used to synthesize CDs, classify CDs, various pathways for the intake of gene-loaded carbon nanoparticles inside the cell, and multiple studies that worked on transferring nucleic acid in the eye using CDs.
Collapse
|
19
|
Emami E, Mousazadeh MH. pH-responsive zwitterionic carbon dots for detection of rituximab antibody. LUMINESCENCE 2021; 36:1198-1208. [PMID: 33749984 DOI: 10.1002/bio.4045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 03/18/2021] [Indexed: 01/25/2023]
Abstract
Zwitterionic carbon dots (CDs) have received much attention as a result of good photostability, high biocompatibility, and high quantum yield. In this study, novel zwitterionic CDs were synthesized using a simple hydrothermal method of citric acid (CA) and l-histidine as carbon and nitrogen precursors, respectively. Prepared zwitterionic CDs have an average particle size of 4 nm diameter and showed green fluorescence with a peak at 530 nm when excited at 470 nm; quantum efficiency was 39.34% using rhodamine 6G as a baseline. The fluorescence intensity of zwitterionic CDs was quenched by rituximab in the range 0-400 μmol L-1 , with a limit of detection of 27 μmol L-1 . In addition, the synthesized zwitterionic CDs had low toxicity, good stability, and high selectivity and sensitivity sensing for rituximab, therefore zwitterionic CDs are a promising candidate for practical applications.
Collapse
Affiliation(s)
- Elham Emami
- Department of Chemistry, Amirkabir University of Technology, 424 Hafez Avenue, P.O. Box: 15875-4413, Tehran, Iran
| | - Mohammad H Mousazadeh
- Department of Chemistry, Amirkabir University of Technology, 424 Hafez Avenue, P.O. Box: 15875-4413, Tehran, Iran
| |
Collapse
|
20
|
Yan X, Xu Q, Li D, Wang J, Han R. Carbon dots inhibit root growth by disrupting auxin biosynthesis and transport in Arabidopsis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112168. [PMID: 33819781 DOI: 10.1016/j.ecoenv.2021.112168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Carbon dots (CDs) possess considerable potentials in fields like biomarker and cell imaging due to its good fluorescence properties. Nevertheless, the molecular mechanism concerning influences of CDs on plant growth still remains unknown. In this study, the subcellular localization of CDs in Arabidopsis and the molecular mechanism of CDs toxicity to plants were investigated. Results demonstrate that CDs tend to accumulate in meristematic nucleus of root tips. CDs can inhibit growth of meristem zone of primary root (PR) of Arabidopsis seedlings significantly. The transcription level of auxin biosynthesis related genes decreases and the abundance of auxin efflux carriers PIN1 and PIN2 declines after 40 mg/L CDs treatment, thus lowering the auxin level in root tips. Moreover, CDs weaken activity of cell division in meristem zone by disturbing expressions of DNA damage repair genes and cell cycle regulation genes, thus enabling to inhibit growth of the meristem zone. To sum up, CDs inhibit growth of Arabidopsis seedlings through above pathways. These results provide useful information to elaborate potential toxicity mechanism of CDs on terrestrial plants.
Collapse
Affiliation(s)
- Xiaoyan Yan
- College of Life Science, Shanxi Normal University, Linfen 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Linfen 041004, Shanxi Province, People's Republic of China
| | - Qiang Xu
- College of Life Science, Shanxi Normal University, Linfen 041004, People's Republic of China
| | - Dongxia Li
- College of Life Science, Shanxi Normal University, Linfen 041004, People's Republic of China
| | - Jianhua Wang
- College of Life Science, Shanxi Normal University, Linfen 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Linfen 041004, Shanxi Province, People's Republic of China
| | - Rong Han
- College of Life Science, Shanxi Normal University, Linfen 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Linfen 041004, Shanxi Province, People's Republic of China.
| |
Collapse
|
21
|
Sangeetha VP, Smriti S, Solanki PR, Mohanan PV. Mechanism of action and cellular responses of HEK293 cells on challenge with zwitterionic carbon dots. Colloids Surf B Biointerfaces 2021; 202:111698. [PMID: 33773172 DOI: 10.1016/j.colsurfb.2021.111698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 02/03/2023]
Abstract
Carbon, an extremely versatile element has great demand in the field of nanoscience. Carbon-based nanostructures are exponentially increased due to its wide range of applications in biotechnological and environmental approaches; hence, its safety assessment is of greater concern. In the present study, high quantum yielding zwitterionic carbon dots were synthesized, characterized and its safety assessment at different concentration ranges (50-1600 μgmL-1) on HEK 293 cells was carried out. Cellular, mitochondrial, lysosomal integrity and ROS generation were assessed using specific fluorochromes.The key cellular event apoptosis was assessed by annexinpropidium iodide staining using imaging flow cytometry. Moreover, the mRNA levels of the apoptotic genes were determined by real-time PCR. The results revealed that the cell viability assays (MTT, NR) and mitochondrial membrane potential were altered on exposure to a higher concentration of zwitterionic CDs for 24 h. Also, annexinpropidiumiodidestaining exhibited an increased percentage of apoptotic cells upon exposure to zwitterionic CDs at higher concentrations. Further, apoptosis was confirmed by significantlyincreased expression of pro-apoptotic gene (Bax) together with decreased expression of Bcl-2/Bax ratio. Collectively, this study suggests that zwitterionic CDs induce apoptosis in HEK 293 at higher concentration and the safe range for its intended application is found to be 50-200 μg/mL.
Collapse
Affiliation(s)
- V P Sangeetha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - Sri Smriti
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pratima R Solanki
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India.
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India.
| |
Collapse
|
22
|
Kanto R, Yonenuma R, Yamamoto M, Furusawa H, Yano S, Haruki M, Mori H. Mixed Polyplex Micelles with Thermoresponsive and Lysine-Based Zwitterionic Shells Derived from Two Poly(vinyl amine)-Based Block Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3001-3014. [PMID: 33650430 DOI: 10.1021/acs.langmuir.0c02197] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two series of poly(vinyl amine) (PVAm)-based block copolymers with zwitterionic and thermoresponsive segments were synthesized by the reversible addition-fragmentation chain transfer polymerization. A mixture of the two copolymers, poly(N-acryloyl-l-lysine) (PALysOH) and poly(N-isopropylacrylamide) (PNIPAM), which have the same cationic PVAm chain but different shell-forming segments, were used to prepare mixed polyplex micelles with DNA. Both PVAm-b-PALysOH and PVAm-b-PNIPAM showed low cytotoxicity, with characteristic assembled structures and stimuli-responsive properties. The cationic PVAm segment in both block copolymers showed site-specific interactions with DNA, which were evaluated by dynamic light scattering, zeta potential, circular dichroism, agarose gel electrophoresis, atomic force microscopy, and transmission electron microscopy measurements. The PVAm-b-PNIPAM/DNA polyplexes showed the characteristic temperature-induced formation of assembled structures in which the polyplex size, surface charge, chiroptical property of DNA, and polymer-DNA binding were governed by the nitrogen/phosphate (N/P) ratio. The DNA binding strength and colloidal stability of the PVAm-b-PALysOH/DNA polyplexes could be tuned by introducing an appropriate amount of zwitterionic PALysOH functionality, while maintaining the polyplex size, surface charge, and chiroptical property, regardless of the N/P ratio. The mixed polyplex micelles showed temperature-induced stability originating from the hydrophobic (dehydrated) PNIPAM chains upon heating, and remarkable stability under salty conditions owing to the presence of the zwitterionic PALysOH chain on the polyplex surface.
Collapse
Affiliation(s)
- Ryosuke Kanto
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan
| | - Ryo Yonenuma
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan
| | - Mizuki Yamamoto
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642, Japan
| | - Hiroyuki Furusawa
- Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan
| | - Shigekazu Yano
- Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan
| | - Mitsuru Haruki
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642, Japan
| | - Hideharu Mori
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan
| |
Collapse
|
23
|
Mou Z, Zhao B, Wang B, Xiao D. Integration of Functionalized Polyelectrolytes onto Carbon Dots for Synergistically Improving the Tribological Properties of Polyethylene Glycol. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8794-8807. [PMID: 33576227 DOI: 10.1021/acsami.0c22077] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, we carefully designed and synthesized a series of novel polyelectrolyte-functionalized carbon dots (CDs-PEI-X) by a facile and reversible phase transfer method based on the protonation reaction and anion exchange process executed on the surface of polyethylenimine-grafted CDs (CDs-PEI), where X denotes the anionic moieties of polyelectrolyte shells including hexafluorophosphate (PF6-), bis(trifluoromethane)sulfonimide (NTf2-), oleate (OL-), and bis(salicylato)borate (BScB-), respectively. Attributed to the favorable compatibility of these anions and polyethylene glycol (PEG) molecules, the hydrophobic CDs-PEI-X displayed excellent dispersibility and long-term stability in PEG200 base oil. Subsequently, the tribological behaviors of CDs-PEI-X as the lubricant additives of PEG200 were systematically investigated. It was proved that the anionic moieties of the polyelectrolyte shells of CDs-PEI-X played a crucial role in regulating their tribological behaviors. Particularly, CDs-PEI-OL was confirmed as an optimal additive, exhibiting the best lubricity, outstanding load-bearing capacity, long service life, and remarkable operational stability under boundary lubrication regime. Based on the tribological evaluations and worn surface analyses, the lubrication mechanism of CDs-PEI-OL was mainly attributed to the formation of the organic-inorganic hybrid adsorption film, the protective tribofilm, and its nanolubrication functions as scrollable "ball-bearing", i.e., the synergistic lubrication effects of surface polyelectrolyte shells and carbon cores. This study provides a feasible and versatile strategy to rapidly and effectively tailor the surface chemistry of CDs and discloses the essential contribution of carbon cores and surface groups on the lubrication process, which facilitates the development of advanced CDs-based nanolubricant additives.
Collapse
Affiliation(s)
- Zihao Mou
- Institute for Advanced Study, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, P. R. China
| | - Bin Zhao
- State Key Laboratory for Oxo Synthesis & Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Middle Road, Lanzhou 730000, P. R. China
| | - Baogang Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, P. R. China
| | - Dan Xiao
- Institute for Advanced Study, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, P. R. China
- College of Chemical Engineering, Sichuan University, 24 Section of the Southbound 1, First Ring Road, Chengdu 610065, P. R. China
| |
Collapse
|
24
|
Hasanzadeh A, Mofazzal Jahromi MA, Abdoli A, Mohammad-Beigi H, Fatahi Y, Nourizadeh H, Zare H, Kiani J, Radmanesh F, Rabiee N, Jahani M, Mombeiny R, Karimi M. Photoluminescent carbon quantum dot/poly-l-Lysine core-shell nanoparticles: A novel candidate for gene delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Shiralizadeh Dezfuli A, Kohan E, Tehrani Fateh S, Alimirzaei N, Arzaghi H, Hamblin MR. Organic dots (O-dots) for theranostic applications: preparation and surface engineering. RSC Adv 2021; 11:2253-2291. [PMID: 35424170 PMCID: PMC8693874 DOI: 10.1039/d0ra08041a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/08/2020] [Indexed: 12/17/2022] Open
Abstract
Organic dots is a term used to represent materials including graphene quantum dots and carbon quantum dots because they rely on the presence of other atoms (O, H, and N) for their photoluminescence or fluorescence properties. They generally have a small size (as low as 2.5 nm), and show good photostability under prolonged irradiation. The excitation and emission wavelengths of O-dots can be tailored according to their synthetic procedure, where although their quantum yield is quite low compared with organic dyes, this is partly compensated by their large absorption coefficients. A wide range of strategies have been used to modify the surface of O-dots for passivation, improving their solubility and biocompatibility, and allowing the attachment of targeting moieties and therapeutic cargos. Hybrid nanostructures based on O-dots have been used for theranostic applications, particularly for cancer imaging and therapy. This review covers the synthesis, physics, chemistry, and characterization of O-dots. Their applications cover the prevention of protein fibril formation, and both controlled and targeted drug and gene delivery. Multifunctional therapeutic and imaging platforms have been reported, which combine four or more separate modalities, frequently including photothermal or photodynamic therapy and imaging and drug release.
Collapse
Affiliation(s)
- Amin Shiralizadeh Dezfuli
- Physiology Research Center, Iran University of Medical Sciences Tehran Iran
- Ronash Technology Pars Company Tehran Iran
| | - Elmira Kohan
- Department of Science, University of Kurdistan Kurdistan Sanandaj Iran
| | - Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU) Tehran Iran
| | - Neda Alimirzaei
- Institute of Nanoscience and Nanotechnology, University of Kashan Kashan Iran
| | - Hamidreza Arzaghi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences (IUMS) Tehran Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School Boston MA 02114 USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg Doornfontein 2028 South Africa
| |
Collapse
|
26
|
Alaghmandfard A, Sedighi O, Tabatabaei Rezaei N, Abedini AA, Malek Khachatourian A, Toprak MS, Seifalian A. Recent advances in the modification of carbon-based quantum dots for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111756. [PMID: 33545897 DOI: 10.1016/j.msec.2020.111756] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Carbon-based quantum dots (CDs) are mainly divided into two sub-groups; carbon quantum dots (CQDs) and graphene quantum dots (GQDs), which exhibit outstanding photoluminescence (PL) properties, low toxicity, superior biocompatibility and facile functionalization. Regarding these features, they have been promising candidates for biomedical science and engineering applications. In this work, we reviewed the efforts made to modify these zero-dimensional nano-materials to obtain the best properties for bio-imaging, drug and gene delivery, cancer therapy, and bio-sensor applications. Five main surface modification techniques with outstanding results are investigated, including doping, surface functionalization, polymer capping, nano-composite and core-shell structures, and the drawbacks and challenges in each of these methods are discussed.
Collapse
Affiliation(s)
| | - Omid Sedighi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Nima Tabatabaei Rezaei
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Amir Abbas Abedini
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Muhammet S Toprak
- Department of Applied Physics, KTH-Royal Institute of Technology, SE10691 Stockholm, Sweden
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd) London BioScience Innovation Centre 2 Royal College Street, London NW1 0NH, UK.
| |
Collapse
|
27
|
Sun Y, Wang P, Abouzaid M, Zhou H, Liu H, Yang P, Lin Y, Hull JJ, Ma W. Nanomaterial-wrapped dsCYP15C1, a potential RNAi-based strategy for pest control against Chilo suppressalis. PEST MANAGEMENT SCIENCE 2020; 76:2483-2489. [PMID: 32061016 DOI: 10.1002/ps.5789] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/26/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Although the utility of double-stranded RNA (dsRNA)-mediated knockdown as an environmentally friendly pest management strategy has gained traction in recent years, its overall efficacy has been limited by poor stability and limited cellular uptake. Encapsulation of dsRNAs with various nanomaterials, however, has shown promise in overcoming these limitations. This study sought to investigate the biological efficacy of an oral dsRNA nanomaterial mixture targeting the CYP15C1 gene product in the economically important rice pest, Chilo suppressalis. RESULTS A putative CYP15C1 ortholog was cloned from C. suppressalis midguts. The transcript is downregulated in fifth-instar larvae and is most highly expressed in heads. RNA interference (RNAi)-mediated knockdown of CsCYP15C1 was associated with significantly increased mortality. More importantly, feeding a dsRNA-nanomaterial mixture significantly increased larval mortality compared with feeding dsRNA alone. CONCLUSION A critical role for CsCYP15C1 function in molting is supported by sequence similarity with known juvenile hormone epoxidases, its expression profile, and abnormal molting phenotypes associated with RNA-mediated knockdown. CsCYP15C1 is thus a prime target for controlling C. suppressalis. Furthermore, RNAi-mediated characterization of candidate gene function can be enhanced by incorporating an enveloping nanomaterial. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yajie Sun
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Peipei Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mostafa Abouzaid
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hui Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pan Yang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
| | - J Joe Hull
- U.S. Arid Land Agricultural Research Center, U.S. Agricultural Research Service, Department of Agriculture, Maricopa, AZ, USA
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
28
|
Blood compatible heteratom-doped carbon dots for bio-imaging of human umbilical vein endothelial cells. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
29
|
|
30
|
Hashemi E, Mahdavi H, Khezri J, Razi F, Shamsara M, Farmany A. Enhanced Gene Delivery in Bacterial and Mammalian Cells Using PEGylated Calcium Doped Magnetic Nanograin. Int J Nanomedicine 2019; 14:9879-9891. [PMID: 31908446 PMCID: PMC6928224 DOI: 10.2147/ijn.s228396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/03/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Beyond viral carriers which have been widely used in gene delivery, non-viral carriers can further improve the delivery process. However, the high cytotoxicity and low efficiency impedes the clinical application of non-viral systems. Therefore, in this work, we fabricated polyethylene glycol (PEG) coated, calcium doped magnetic nanograin (PEG/Ca(II)/Fe3O4) as a genome expression enhancer. METHODS Monodisperse magnetic nanograins (MNGs) with tunable size were synthesized by a solvothermal method. The citrate anions on the spherical surface of MNGs capture Ca2+ ions by an ion exchange process, which was followed by surface capping with PEG. The synthesized PEG/Ca(II)/Fe3O4 was characterized using Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) spectra, vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). MTT test was utilized to assess the toxicity of PEG/Ca(II)/Fe3O4. Real time qPCR was applied for quantification of gene expression. RESULTS DLS spectra and TEM images confirmed a thin layer of PEG on the nanocarrier surface. Shifting the zeta potential in the biological pH window from -23.9 mV (for Fe3O4) to ≈ +11 mV (for PEG/Ca(II)/Fe3O4) confirms the MNGs surface protonation. Cytotoxicity results show that cell viability and proliferation were not hindered in a wide range of nanocarrier concentrations and different incubation times. CONCLUSION PEGylated calcium doped magnetic nanograin enhanced PUC19 plasmid expression into E. Coli and GFP protein expression in HEK-293 T cells compared to control. A polymerase chain reaction of the NeoR test shows that the transformed plasmids are of high quality.
Collapse
Affiliation(s)
- Ehsan Hashemi
- National Research Center for Transgenic Mouse & Animal Biotechnology Division, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Mahdavi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Jafar Khezri
- National Research Center for Transgenic Mouse & Animal Biotechnology Division, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Farideh Razi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shamsara
- National Research Center for Transgenic Mouse & Animal Biotechnology Division, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Farmany
- Dental Implant Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
31
|
Debayle M, Balloul E, Dembele F, Xu X, Hanafi M, Ribot F, Monzel C, Coppey M, Fragola A, Dahan M, Pons T, Lequeux N. Zwitterionic polymer ligands: an ideal surface coating to totally suppress protein-nanoparticle corona formation? Biomaterials 2019; 219:119357. [DOI: 10.1016/j.biomaterials.2019.119357] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/01/2019] [Accepted: 07/13/2019] [Indexed: 01/08/2023]
|
32
|
Revisiting fluorescent carbon nanodots for environmental, biomedical applications and puzzle about fluorophore impurities. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Sahiner N, Suner SS, Sahiner M, Silan C. Nitrogen and Sulfur Doped Carbon Dots from Amino Acids for Potential Biomedical Applications. J Fluoresc 2019; 29:1191-1200. [PMID: 31502060 DOI: 10.1007/s10895-019-02431-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/27/2019] [Indexed: 11/28/2022]
Abstract
Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1-4 min via microwave technique from five different types of amino acids viz. Arginine (A), Lysine (L), Histidine (H), Cysteine (C), and Methionine (M). These amino acid derived N- and/or S- doped CDs were found to be in spherical shapes with 5-20 nm particle size range determined by Transition Electron Microscope (TEM) images and Dynamic Light Scattering (DLS) measurements. Thermal degradation, functional groups, and surface potential of the CDs were determined by Thermogravimetric Analysis (TGA), FT-IR spectroscopy, and zeta potential measurements, respectively. Although the zeta potential value of Cysteine derived CD (C-CD) was measured as -7.45±1.32 mV, the zeta potential values of A-CD, L-CD, H-CD, and M-CD particles were measured as +2.84±0.67, +2.61±1.0, +4.10±1.50 and+2.20±0.60 mV, respectively. Amongst the CDs, C- CDs was found to possess the highest quantum yield, 89%. Moreover, the blood compatibility test of CDs, determined with hemolysis and blood clotting tests was shown that CDs at 0.25 mg/mL concentration, CDs has less than 5% hemolysis ratio and higher than 50% blood clotting indexes. Furthermore, A-CD was modified with polyethyleneimine (PEI) and was found that the zeta potential values was increased to +34.41±4.17 mV (from +2.84±0.67 mV) inducing antimicrobial capability to these materials. Minimum Inhibition Concentration (MIC) of A-CD dots was found as 2.5 mg/mL whereas the PEI modified A-CDs, A-CD-PEI was found as 1 mg/mL against Escherichia coli ATCC 8739 (gram -) and Staphylococcus aureus ATCC 6538 (gram +) bacteria strains signifying the tunability of CDs.
Collapse
Affiliation(s)
- Nurettin Sahiner
- Faculty of Sciences and Arts, Chemistry Department, Canakkale Onsekiz Mart University, Canakkale, Turkey. .,Nanoscience and Technology Research and Application Center (NANORAC), Terzioglu Campus, 17100, Canakkale, Turkey. .,Department of Ophthalmology, Morsani School of Medicine, University of South Florida, 12901, Bruce B Downs Blvd., MDC 21, Tampa, FL, 33612, USA.
| | - Selin S Suner
- Faculty of Sciences and Arts, Chemistry Department, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Mehtap Sahiner
- Fashion Design, Canakkale Applied Science, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100, Canakkale, Turkey
| | - Coskun Silan
- School of Medicine, Department of Pharmacology, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100, Canakkale, Turkey
| |
Collapse
|
34
|
Yao H, Zhang S, Guo X, Li Y, Ren J, Zhou H, Du B, Zhou J. A traceable nanoplatform for enhanced chemo-photodynamic therapy by reducing oxygen consumption. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 20:101978. [DOI: 10.1016/j.nano.2019.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/01/2019] [Accepted: 03/09/2019] [Indexed: 10/26/2022]
|
35
|
Du J, Xu N, Fan J, Sun W, Peng X. Carbon Dots for In Vivo Bioimaging and Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805087. [PMID: 30779301 DOI: 10.1002/smll.201805087] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/20/2019] [Indexed: 05/21/2023]
Abstract
Carbon dots (CDs), a kind of carbon material discovered accidentally, exhibit unexpected advantages in fluorescence imaging/sensing such as photostability, biocompatibility, and low toxicity. For emerging theranostics, an interdiscipline created by integrating therapy and diagnostics, CDs are good candidates when they are combined with targeted chemo/gene/photodynamic/photothermal therapeutic moieties. Here, the development of CDs in nanomedicine is reviewed from their use as original imaging agents and/or drug carriers to multifunctional theranostic systems. Finally, the challenges and prospects of the next-generation of CD-based theranostics for clinical applications are also discussed.
Collapse
Affiliation(s)
- Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South fourth Road, Nanshan District, Shenzhen, 518057, China
| | - Ning Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South fourth Road, Nanshan District, Shenzhen, 518057, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South fourth Road, Nanshan District, Shenzhen, 518057, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South fourth Road, Nanshan District, Shenzhen, 518057, China
| |
Collapse
|
36
|
Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J, Coquet P, Yong KT, Chen X. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chem Rev 2019; 119:9559-9656. [DOI: 10.1021/acs.chemrev.9b00099] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nishtha Panwar
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Alana Mauluidy Soehartono
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kok Ken Chan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuwen Zeng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Gaixia Xu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Junle Qu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Philippe Coquet
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR 8520—Université de Lille, 59650 Villeneuve d’Ascq, France
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
37
|
Cheng YY, Xie YF, Li CM, Li YF, Huang CZ. Förster Resonance Energy Transfer-Based Soft Nanoballs for Specific and Amplified Detection of MicroRNAs. Anal Chem 2019; 91:11023-11029. [DOI: 10.1021/acs.analchem.9b01281] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yun Ying Cheng
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yi Fen Xie
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Chun Mei Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
38
|
Mohammadinejad R, Dadashzadeh A, Moghassemi S, Ashrafizadeh M, Dehshahri A, Pardakhty A, Sassan H, Sohrevardi SM, Mandegary A. Shedding light on gene therapy: Carbon dots for the minimally invasive image-guided delivery of plasmids and noncoding RNAs - A review. J Adv Res 2019; 18:81-93. [PMID: 30828478 PMCID: PMC6383136 DOI: 10.1016/j.jare.2019.01.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
Recently, carbon dots (CDs) have attracted great attention due to their superior properties, such as biocompatibility, fluorescence, high quantum yield, and uniform distribution. These characteristics make CDs interesting for bioimaging, therapeutic delivery, optogenetics, and theranostics. Photoluminescence (PL) properties enable CDs to act as imaging-trackable gene nanocarriers, while cationic CDs with high transfection efficiency have been applied for plasmid DNA and siRNA delivery. In this review, we have highlighted the precursors, structure and properties of positively charged CDs to demonstrate the various applications of these materials for nucleic acid delivery. Additionally, the potential of CDs as trackable gene delivery systems has been discussed. Although there are several reports on cellular and animal approaches to investigating the potential clinical applications of these nanomaterials, further systematic multidisciplinary approaches are required to examine the pharmacokinetic and biodistribution patterns of CDs for potential clinical applications.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Arezoo Dadashzadeh
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Saeid Moghassemi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, P.O. Box: 71345-1583, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hosseinali Sassan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran
| | - Seyed-Mojtaba Sohrevardi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shahid Sadoughi University of Medical Silences, Yazd, Iran
| | - Ali Mandegary
- Neuroscience Research Center, Institute of Neuropharmacology, and Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
39
|
Lu W, Jiao Y, Gao Y, Qiao J, Mozneb M, Shuang S, Dong C, Li CZ. Bright Yellow Fluorescent Carbon Dots as a Multifunctional Sensing Platform for the Label-Free Detection of Fluoroquinolones and Histidine. ACS APPLIED MATERIALS & INTERFACES 2018; 10:42915-42924. [PMID: 30412373 DOI: 10.1021/acsami.8b16710] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Owing to their diverse properties, fluorescent carbon dots (CDs) have attracted more attention and present enormous potential in development of sensors, bioimaging, drug delivery, microfluidics, photodynamic therapy, light emitting diode, and so forth. Herein, a multifunctional sensing platform based on bright yellow fluorescent CDs (Y-CDs) was designed for the label-free detection of fluoroquinolones (FQs) and histidine (His). The Y-CDs with superior optical and biological merits including high chemical stability, good biocompatibility, and low cytotoxicity were simply synthesized via one-step hydrothermal treatment of o-phenylenediamine ( o-PD) and 4-aminobutyric acid (GABA). The Y-CDs can be utilized to directly monitor the amount of FQs based on fluorescence static quenching owing to the specific interaction between FQs and Y-CDs. Then, the fluorescence of this system can be effectively recovered upon addition of His. The multifunctional sensing platform exhibited high sensitivity and selectivity toward three kinds of FQs and His with low detection limits of 17-67 and 35 nM, respectively. Benefiting from these outstanding characters, the Y-CDs were successfully employed for trace detection of FQs in real samples such as antibiotic tablets and milk products. Furthermore, the probe was also extended to cellular imaging. All of the above prove that this multifunctional sensing platform presents great prospect in multiple applications such as biosensing, biomedicine, disease diagnosis, and environmental monitoring.
Collapse
Affiliation(s)
- Wenjing Lu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China
- Nanobioengineering/Bioelectronics Laboratory, and Department of Biomedical Engineering , Florida International University , Miami 33174 , United States
| | - Yuan Jiao
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China
| | - Yifang Gao
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China
| | - Jie Qiao
- Nanobioengineering/Bioelectronics Laboratory, and Department of Biomedical Engineering , Florida International University , Miami 33174 , United States
- School of Basic Medical Sciences , Shanxi Medical University , Taiyuan 030001 , China
| | - Maedeh Mozneb
- Nanobioengineering/Bioelectronics Laboratory, and Department of Biomedical Engineering , Florida International University , Miami 33174 , United States
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China
| | - Chen-Zhong Li
- Nanobioengineering/Bioelectronics Laboratory, and Department of Biomedical Engineering , Florida International University , Miami 33174 , United States
| |
Collapse
|
40
|
Fabrication of poly (4,4′-oxybisbenzenamine) and its conjugated copolymers initiated by easily accessible carbon dots. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Sri S, Kumar R, Panda AK, Solanki PR. Highly Biocompatible, Fluorescence, and Zwitterionic Carbon Dots as a Novel Approach for Bioimaging Applications in Cancerous Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37835-37845. [PMID: 30360121 DOI: 10.1021/acsami.8b13217] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Highly biocompatible, excellently photostable, nitrogen- and sulfur-containing novel zwitterionic carbon dots (CDs) were synthesized by microwave-assisted pyrolysis. The size of CDs were 2-5 nm, with an average size of 2.61 ± 0.7 nm. CDs were characterized by UV/vis spectroscopy, fluorescence spectroscopy, zeta potential, Fourier-transform infrared spectroscopy, X-ray diffraction, and time-resolved fluorescence spectroscopy. CDs were known to emit blue fluorescence when excited at 360 nm, that is, UV region, and emit in the blue region of visible spectrum, that is, at 443 nm. CDs showed excitation-independent photoluminescence behavior and were highly fluorescent even at lower concentration under UV light. These CDs were highly fluorescent in nature, with the quantum yield being as high as 80%, which is comparable to that of organic dyes. The CDs were further used to image two different oral cancer cell lines, namely, FaDu (human pharyngeal carcinoma) and Cal-27 (human tongue carcinoma). The cell viability assay demonstarted that CDs were highly biocompatible, which was further confirmed by the side scattering studies as no change in the granularity was observed even at the highest concentration of 1600 μg/mL. The generation of reactive oxygen species (ROS) was also investigated and negligible generaton of ROS was detected. In addition to that, the uptake phenomenon, cell cycle analysis, exocytosis, and cellular uptake at 4 °C and in the presence of ATP inhibitor were studied. It was found that CDs easily cross the plasma membrane without hampering the cellular integrity.
Collapse
Affiliation(s)
- Smriti Sri
- Special Centre for Nanoscience , Jawaharlal Nehru University , New Delhi 110067 , India
| | - Robin Kumar
- National Institute of Immunology , Aruna Asaf Ali Marg , New Delhi 110067 , India
| | - Amulya K Panda
- National Institute of Immunology , Aruna Asaf Ali Marg , New Delhi 110067 , India
| | - Pratima R Solanki
- Special Centre for Nanoscience , Jawaharlal Nehru University , New Delhi 110067 , India
| |
Collapse
|
42
|
Gao J, Zhai G. Poly(tertiary amine) as a surface-active multifunctional macro-initiator in Cu2+–amine redox-initiated radical emulsion polymerization of methyl methacrylate. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2534-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Zhang JH, Yang HZ, Zhang J, Liu YH, He X, Xiao YP, Yu XQ. Biodegradable Gene Carriers Containing Rigid Aromatic Linkage with Enhanced DNA Binding and Cell Uptake. Polymers (Basel) 2018; 10:E1080. [PMID: 30961005 PMCID: PMC6403675 DOI: 10.3390/polym10101080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2022] Open
Abstract
The linking and modification of low molecular weight cationic polymers (oligomers) has become an attracted strategy to construct non-viral gene carriers with good transfection efficiency and much reduced cytotoxicity. In this study, PEI 600 Da was linked by biodegradable bridges containing rigid aromatic rings. The introduction of aromatic rings enhanced the DNA-binding ability of the target polymers and also improved the stability of the formed polymer/DNA complexes. The biodegradable property and resulted DNA release were verified by enzyme stimulated gel electrophoresis experiment. These materials have lower molecular weights compared to PEI 25 kDa, but exhibited higher transfection efficiency, especially in the presence of serum. Flow cytometry and confocal laser scanning microscopy results indicate that the polymers with aromatic rings could induce higher cellular uptake. This strategy for the construction of non-viral gene vectors may be applied as an efficient and promising method for gene delivery.
Collapse
Affiliation(s)
- Ju-Hui Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Hui-Zhen Yang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xi He
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ya-Ping Xiao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
44
|
Wen J, Sun S. Carbon Nanomaterials in Optical Detection. CARBON-BASED NANOMATERIALS IN ANALYTICAL CHEMISTRY 2018. [DOI: 10.1039/9781788012751-00105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Owing to their unique optical, electronic, mechanical, and chemical properties, flexible chemical modification, large surface coverage and ready cellular uptake, various carbon nanomaterials such as carbon nanotubes (CNTs), graphene and its derivatives, carbon dots (CDs), graphene quantum dots, fullerenes, carbon nanohorns (CNHs) and carbon nano-onions (CNOs), have been widely explored for use in optical detection. Most of them are based on fluorescence changes. In this chapter, we will focus on carbon nanomaterials-based optical detection applications, mainly including fluorescence sensing and bio-imaging. Moreover, perspectives on future exploration of carbon nanomaterials for optical detection are also given.
Collapse
Affiliation(s)
- Jia Wen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University Yangling, Shaanxi 712100 PR China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University Yangling, Shaanxi 712100 PR China
| |
Collapse
|
45
|
Hill SA, Benito-Alifonso D, Davis SA, Morgan DJ, Berry M, Galan MC. Practical Three-Minute Synthesis of Acid-Coated Fluorescent Carbon Dots with Tuneable Core Structure. Sci Rep 2018; 8:12234. [PMID: 30111806 PMCID: PMC6093873 DOI: 10.1038/s41598-018-29674-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/12/2018] [Indexed: 11/09/2022] Open
Abstract
We report a one-pot, three-minute synthesis of carboxylic acid-decorated fluorescent carbon dots (COOH-FCDs) with tuneable core morphology dependent on the surface passivating agent. Mechanism investigations highlighted the presence of key pyrazine and polyhydroxyl aromatic motifs, which are formed from the degradation of glucosamine in the presence of a bifunctional linker bearing acid and amine groups. The novel COOH-FCDs are selective Fe3+ and hemin sensors. Furthermore, the FCDs are shown to be non-toxic, fluorescent bioimaging agents for cancer cells.
Collapse
Affiliation(s)
- Stephen A Hill
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | | | - Sean A Davis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - David J Morgan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
| | - Monica Berry
- School of Physics, University of Bristol, Bristol, BS8 1TL, UK
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
46
|
Zhu YX, Jia HR, Pan GY, Ulrich NW, Chen Z, Wu FG. Development of a Light-Controlled Nanoplatform for Direct Nuclear Delivery of Molecular and Nanoscale Materials. J Am Chem Soc 2018; 140:4062-4070. [DOI: 10.1021/jacs.7b13672] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Guang-Yu Pan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Nathan W. Ulrich
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| |
Collapse
|
47
|
Li S, Guo Z, Zeng G, Zhang Y, Xue W, Liu Z. Polyethylenimine-Modified Fluorescent Carbon Dots As Vaccine Delivery System for Intranasal Immunization. ACS Biomater Sci Eng 2017; 4:142-150. [PMID: 33418684 DOI: 10.1021/acsbiomaterials.7b00370] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescent carbon dots (CDs) as a luminescent nanomaterial have obtained much attention in the biomedical field. To make good use of their luminescent property and nanoscaled size, we developed CDs as a vaccine delivery system for intranasal immunization in this work. To this aim, polyethylenimine-modified CDs were prepared via a simple microwave method. Intranasal immunization was performed by using the CDs as an antigen carrier to deliver model protein antigen ovalbumin. The results showed that the CDs as an intranasal vaccine delivery system enhanced the immunization efficacy by significantly increasing IgG titer, IgA induction in the local and distant mucous membrane sites, splenocyte proliferation, cytokine IFN-γ secretion by splenocytes, and memory T cells. From the results, the CDs could be used as vaccine delivery systems with the advantage of tracing the antigen transportation from administration site to the lymph organs.
Collapse
Affiliation(s)
- Sha Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Zhong Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Guandi Zeng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, No. 601 West Huangpu Avenue, Guangzhou 510632, China
| | - Yu Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Zonghua Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| |
Collapse
|
48
|
Hou P, Yang T, Liu H, Li YF, Huang CZ. An active structure preservation method for developing functional graphitic carbon dots as an effective antibacterial agent and a sensitive pH and Al(iii) nanosensor. NANOSCALE 2017; 9:17334-17341. [PMID: 29094119 DOI: 10.1039/c7nr05539k] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Functional engineering is a crucial prerequisite for specific and wide applications of optical probes. In this study, we proposed a facile active structure preservation (ASP) method to directly develop new self-functional graphitic carbon dots (g-CDs) through a hydrothermal synthesis route by taking ciprofloxacin hydrochloride, an antibiotic belonging to a group of fluoroquinolone drugs, as an example. To retain the functional structures of the starting materials, the reaction temperature is intentionally controlled below the decomposition temperature of the reactants that hold the functional groups. As a proof of concept, we successfully prepared g-CDs with ciprofloxacin-like structures on its surface, as identified by mass spectrometric (MS) analysis. The as-prepared g-CDs not only exhibit effective antibacterial activity towards the bacteria Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative), but can also optically sense pH in the range from 5.02 to 9.91. Furthermore, the g-CDs can coordinate with aluminum ions to show a chelation-enhanced photoluminescence (CHEP) effect. These results indicate that the ASP method can be promising for engineering CDs with various properties.
Collapse
Affiliation(s)
- Peng Hou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Science, Southwest University, Chongqing 400715, China.
| | | | | | | | | |
Collapse
|
49
|
Hou X, Hu Y, Wang P, Yang L, Al Awak MM, Tang Y, Twara FK, Qian H, Sun YP. Modified Facile Synthesis for Quantitatively Fluorescent Carbon Dots. CARBON 2017; 122:389-394. [PMID: 29176908 PMCID: PMC5697797 DOI: 10.1016/j.carbon.2017.06.093] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A simple yet consequential modification was made to the popular carbonization processing of citric acid - polyethylenimine precursor mixtures to produce carbon dots (CDots). The modification was primarily on pushing the carbonization processing a little harder at a higher temperature, such as the hydrothermal processing condition of around 330 °C for 6 hours. The CDots thus produced are comparable in spectroscopic and other properties to those obtained in other more controlled syntheses including the deliberate chemical functionalization of preprocessed and selected small carbon nanoparticles, demonstrating the consistency in CDots and reaffirming their general definition as carbon nanoparticles with surface passivation by organic or other species. Equally significant is the finding that the modified processing of citric acid - polyethylenimine precursor mixtures could yield CDots of record-setting fluorescence performance, approaching the upper limit of being quantitatively fluorescent. Thus, the reported work serves as a demonstration on not only the need in selecting the right processing conditions and its associated opportunities in one-pot syntheses of CDots, but also the feasibility in pursuing the preparation of quantitatively fluorescent CDots, which represents an important milestone in the development and understanding of these fluorescent carbon nanomaterials.
Collapse
Affiliation(s)
- Xiaofang Hou
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA
- School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yin Hu
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA
| | - Ping Wang
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA
| | - Liju Yang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
- Corresponding authors: ,
| | - Mohamad M. Al Awak
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Yongan Tang
- Department of Mathematics and Physics, North Carolina Central University, Durham, NC 27707, USA
| | - Fridah K. Twara
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Haijun Qian
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA
| | - Ya-Ping Sun
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA
- Corresponding authors: ,
| |
Collapse
|
50
|
Preparation and Characterization of Thermo-Responsive Rod-Coil Diblock Copolymers. Polymers (Basel) 2017; 9:polym9080340. [PMID: 30971016 PMCID: PMC6418999 DOI: 10.3390/polym9080340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 11/21/2022] Open
Abstract
In this study, we synthesized amphiphilic poly(2,7–(9,9–dioctylfluorene))–block–N,N–(diisopropylamino)ethyl methacrylate (POF–b–PDPMAEMA) rod-coil diblock copolymers by atom transfer radical polymerization (ATRP). The structure and multifunctional sensing properties of these copolymers were also investigated. The POF rod segment length of 10 was fixed and the PDPAEMA coil segment lengths of 90 and 197 were changed, respectively. The micellar aggregates of POF10–b–PDPAEMA90 rod-coil diblock copolymer in water showed a reversible shape transition from cylinder bundles to spheres when the temperature was changed from 20 to 80 °C or the pH was changed from 11 to 2. The atomic force microscopy (AFM) and transmission electron microscopy (TEM) measurements indicated that the temperature had also an obvious influence on the micelle size. In addition, since POF10–b–PDPAEMA90 had a lower critical solution temperature, its photoluminescence (PL) intensity in water is thermoreversible. The PL spectra showed that the POF–b–PDPAEMA copolymer had a reversible on/off profile at elevated temperatures, and thus could be used as an on/off fluorescent indicator for temperature or pH. The fluorescence intensity distribution of pH switched from “off–on” to “on–off” as the temperature increased. These results showed that the POF–b–PDPAEMA copolymer has a potential application for temperature and pH sensing materials.
Collapse
|