1
|
Guo W, Tao Y, Yang R, Mao K, Zhou H, Xu M, Sun T, Li X, Shi C, Ge Z, Xue R, Zhou H, Ren Y. Compact highly sensitive photothermal RT-LAMP chip for simultaneous multidisease detection. SCIENCE ADVANCES 2024; 10:eadq2899. [PMID: 39536102 PMCID: PMC11559619 DOI: 10.1126/sciadv.adq2899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Developing instant detection systems with disease diagnostic capabilities holds immense importance for remote or resource-limited areas. However, the task of creating these systems-which are simultaneously easy to operate, rapid in detection, and cost-effective-remains a challenge. In this study, we present a compact highly sensitive photothermal reverse transcriptase-loop-mediated isothermal amplification (RT-LAMP) chip (SPRC) designed for the detection of multiple diseases. The nucleic acid (NA) amplification on the chip is achieved through LAMP driven by either LED illumination or simple sunlight focusing. SPRC performs sample addition and amplification within a limited volume and autonomous enrichment of NA during the sample addition process, achieving a limit of detection (LOD) as low as 0.2 copies per microliter. Through 120 clinical samples, we achieved an accuracy of 95%, with a specificity exceeding 97.5%. Overall, SPRC has achieved promising progress in the application of point-of-care testing (POCT) by using light energy to simultaneously detect multiple diseases.
Collapse
Affiliation(s)
- Wenshang Guo
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ye Tao
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ruizhe Yang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Kaihao Mao
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hongwei Zhou
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Minghui Xu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Tie Sun
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiao Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Changrui Shi
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhenyou Ge
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Rui Xue
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Haizhou Zhou
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yukun Ren
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
2
|
Omran TA, Madsø IL, Sæther PC, Bemanian V, Tunsjø HS. Selection of optimal extraction and RT-PCR protocols for stool RNA detection of colorectal cancer associated immune genes. Sci Rep 2024; 14:27468. [PMID: 39523395 PMCID: PMC11551167 DOI: 10.1038/s41598-024-78680-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
There is a growing interest in using fecal mRNA transcripts as biomarkers for non-invasive detection of colorectal cancer (CRC). The following study compares different RNA extraction and reverse transcription PCR (RT-PCR) methods for mRNA detection in stool and identifies a robust and sensitive protocol. A combination of the Stool total RNA purification kit (Norgen) and the Superscript III one-step RT-PCR kit (Invitrogen) provided high RNA purity and sensitive and consistent mRNA detection, making them well-suited candidates for large-scale studies. We tested the protocol by detecting the mRNA of several immune genes (CXCL1, IL8, IL1B, IL6, PTGS2, and SPP1) in 22 CRCs, 24 adenomatous polyps, and 22 control stool samples. All these inflammatory markers, except for CXCL1, showed a strong association with CRC. Cancer stool samples showed increased levels of IL1B, IL8, and PTGS2 transcripts compared to polyp and control groups. Thus, this work supports the potential use of fecal mRNA as biomarkers for CRC detection.
Collapse
Affiliation(s)
- Thura Akrem Omran
- Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway.
| | - Inger Line Madsø
- Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Per Christian Sæther
- Department of Immunology and Transfusion Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Vahid Bemanian
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Hege Smith Tunsjø
- Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
3
|
Cruz Da Silva E, Gaki P, Flieg F, Messmer M, Gucciardi F, Markovska Y, Reisch A, Fafi-Kremer S, Pfeffer S, Klymchenko AS. Direct Zeptomole Detection of RNA Biomarkers by Ultrabright Fluorescent Nanoparticles on Magnetic Beads. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404167. [PMID: 39011971 DOI: 10.1002/smll.202404167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/05/2024] [Indexed: 07/17/2024]
Abstract
Nucleic acids are important biomarkers in cancer and viral diseases. However, their ultralow concentration in biological/clinical samples makes direct target detection challenging, because it leads to slow hybridization kinetics with the probe and its insufficient signal-to-noise ratio. Therefore, RNA target detection is done by molecular (target) amplification, notably by RT-PCR, which is a tedious multistep method that includes nucleic acid extraction and reverse transcription. Here, a direct method based on ultrabright dye-loaded polymeric nanoparticles in a sandwich-like hybridization assay with magnetic beads is reported. The ultrabright DNA-functionalized nanoparticle, equivalent to ≈10 000 strongly emissive rhodamine dyes, is hybridized with the magnetic bead to the RNA target, providing the signal amplification for the detection. This concept (magneto-fluorescent sandwich) enables high-throughput detection of DNA and RNA sequences of varied lengths from 48 to 1362 nt with the limit of detection down to 0.3 fm using a plate reader (15 zeptomoles), among the best reported for optical sandwich assays. Moreover, it allows semi-quantitative detection of SARS-CoV-2 viral RNA directly in clinical samples without a dedicated RNA extraction step. The developed technology, combining ultrabright nanoparticles with magnetic beads, addresses fundamental challenges in RNA detection; it is expected to accelerate molecular diagnostics of diseases.
Collapse
Affiliation(s)
- Elisabete Cruz Da Silva
- Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, UMR 7021 CNRS, Illkirch, 67401, France
- BrightSens Diagnostics SAS, 11 Rue de l'Académie, Strasbourg, 67000, France
| | - Paraskevi Gaki
- Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, UMR 7021 CNRS, Illkirch, 67401, France
- BrightSens Diagnostics SAS, 11 Rue de l'Académie, Strasbourg, 67000, France
| | - Fabien Flieg
- BrightSens Diagnostics SAS, 11 Rue de l'Académie, Strasbourg, 67000, France
| | - Melanie Messmer
- Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, UPR 9002, Strasbourg, 67084, France
| | - Floriane Gucciardi
- Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, UPR 9002, Strasbourg, 67084, France
| | | | - Andreas Reisch
- Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, UMR 7021 CNRS, Illkirch, 67401, France
| | - Samira Fafi-Kremer
- CHU de Strasbourg, Laboratoire de Virologie, Université de Strasbourg, INSERM, Strasbourg, IRM UMR-S 1109, France
| | - Sébastien Pfeffer
- Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, UPR 9002, Strasbourg, 67084, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, UMR 7021 CNRS, Illkirch, 67401, France
| |
Collapse
|
4
|
Zeng Y, Tang X, Chen J, Kang X, Bai D. Optimizing total RNA extraction method for human and mice samples. PeerJ 2024; 12:e18072. [PMID: 39346072 PMCID: PMC11439393 DOI: 10.7717/peerj.18072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024] Open
Abstract
Background Extracting high-quality total RNA is pivotal for advanced RNA molecular studies, such as Next-generation sequencing and expression microarrays where RNA is hybridized. Despite the development of numerous extraction methods in recent decades, like the cetyl-trimethyl ammonium bromide (CTAB) and the traditional TRIzol reagent methods, their complexity and high costs often impede their application in small-scale laboratories. Therefore, a practical and economical method for RNA extraction that maintains high standards of efficiency and quality needs to be provided to optimize RNA extraction from human and mice tissues. Method This study proposes enhancements to the TRIzol method by incorporating guanidine isothiocyanate (GITC-T method) and sodium dodecyl sulfate (SDS-T method). We evaluated the effectiveness of these modified methods compared to the TRIzol method using a micro-volume UV-visible spectrophotometer, electrophoresis, q-PCR, RNA-Seq, and whole transcriptome sequencing. Result The micro-volume UV-visible spectrophotometer, electrophoresis, and RNA-Seq demonstrated that the GITC-T method yielded RNA with higher yields, integrity, and purity, while the consistency in RNA quality between the two methods was confirmed. Taking mouse cerebral cortex tissue as a sample, the yield of total RNA extracted by the GITC-T method was 1,959.06 ± 49.68 ng/mg, while the yield of total RNA extracted by the TRIzol method was 1,673.08 ± 86.39 ng/mg. At the same time, the OD260/280 of the total RNA samples extracted by the GITC-T method was 2.03 ± 0.012, and the OD260/230 was 2.17 ± 0.031, while the OD260/280 of the total RNA samples extracted by the TRIzol method was 2.013 ± 0.041 and the OD260/230 was 2.11 ± 0.062. Furthermore, q-PCR indicated that the GITC-T method achieved higher yields, purity, and greater transcript abundance of total RNA from the same types of animal samples than the TRIzol method. Conclusion The GITC-T method not only yields higher purity and quantity of RNA but also reduces reagent consumption and overall costs, thereby presenting a more feasible option for small-scale laboratory settings.
Collapse
Affiliation(s)
- Yumei Zeng
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaoxue Tang
- Institute of Neurological Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jinwen Chen
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xi Kang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Dazhang Bai
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Institute of Neurological Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
5
|
Rajapaksha RD, Brooks C, Rascon A, Fadem A, Nguyen I, Kuehl PJ, Farmer JT. Comparative analysis of high-throughput RNA extraction kits in Naïve Non-Human Primate (NHP) tissues for downstream applications utilizing Xeno Internal Positive Control (IPC). J Pharmacol Toxicol Methods 2024; 129:107549. [PMID: 39236994 DOI: 10.1016/j.vascn.2024.107549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Ribonucleic acid (RNA) extraction and purification play pivotal roles in molecular biology and cell and gene therapy, where the quality and integrity of RNA are critical for downstream applications. Automated high-throughput systems have gained interest due to their potential for scalability and reduced labor requirements compared to manual methods. However, ensuring high-throughput capabilities, reproducibility, and reliability while maintaining RNA yield and purity remains challenging. This study evaluated and compared the performance of four commercially available high-throughput magnetic bead-based RNA extraction kits across six types of naïve non-human primate (NHP) tissue matrices: brain, heart, kidney, liver, lung, and spleen. The assessment focused on RNA purity, yield, and extraction efficiency (EE) using Xeno Internal Positive Control (IPC) spiking. Samples (∼50 mg) were homogenized via bead-beating and processed according to the manufacturer's protocol on the KingFisher Flex platform in eight replicates. RNA purity and yield were measured using a NanoDrop® spectrophotometer, while EE was evaluated via real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The findings indicate consistent high RNA purity across all tested extraction kits, yet substantial variation in RNA yield. Extraction efficiency exhibited variations across tissue types, with decreasing trends observed from brain to lung tissues. These results underscore the importance of careful kit selection and method optimization for achieving reliable downstream applications. The MagMAX™ mirVana™ Total RNA Isolation Kit stands out as the most accurate and reproducible, making it the preferred choice for applications requiring high RNA quality and consistency. Other kits, such as the Maxwell® HT simplyRNA Kit, offer a good balance between cost and performance, though with some trade-offs in precision. These findings highlight the importance of selecting the appropriate RNA isolation method based on the specific needs of the research, underscoring the critical role of accurate nucleic acid extraction in gene and cell therapy research. In conclusion, this study highlights the critical factors influencing RNA extraction performance, emphasizing the need for researchers and practitioners to consider both kit performance and tissue characteristics when designing experimental protocols. These insights contribute to the ongoing efforts to enhance the reproducibility and reliability of RNA extraction methods in molecular biology and cell/gene therapy applications.
Collapse
Affiliation(s)
- Ruwini D Rajapaksha
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108-5127, United States of America.
| | - Catherine Brooks
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108-5127, United States of America
| | - Adriana Rascon
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108-5127, United States of America
| | - Adam Fadem
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108-5127, United States of America
| | - Ivy Nguyen
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108-5127, United States of America
| | - Philip J Kuehl
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108-5127, United States of America
| | - John T Farmer
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108-5127, United States of America
| |
Collapse
|
6
|
Liu L, Zou X, Cheng Y, Li H, Zhang X, Yuan Q. Contrasting Dynamics of Intracellular and Extracellular Antibiotic Resistance Genes in Response to Nutrient Variations in Aquatic Environments. Antibiotics (Basel) 2024; 13:817. [PMID: 39334992 PMCID: PMC11428281 DOI: 10.3390/antibiotics13090817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The propagation of antibiotic resistance in environments, particularly aquatic environments that serve as primary pathways for antibiotic resistance genes (ARGs), poses significant health risks. The impact of nutrients, as key determinants of bacterial growth and metabolism, on the propagation of ARGs, particularly extracellular ARGs (eARGs), remains poorly understood. In this study, we collected microorganisms from the Yangtze River and established a series of microcosms to investigate how variations in nutrient levels and delivery frequency affect the relative abundance of intracellular ARGs (iARGs) and eARGs in bacterial communities. Our results show that the relative abundance of 7 out of 11 representative eARGs in water exceeds that of iARGs, while 8 iARGs dominate in biofilms. Notably, iARGs and eARGs consistently exhibited opposite responses to nutrient variation. When nutrient levels increased, iARGs in the water also increased, with the polluted group (COD = 333.3 mg/L, COD:N:P = 100:3:0.6, m/m) and the eutrophic group (COD = 100 mg/L, COD:N:P = 100:25:5, m/m) showing 1.2 and 3.2 times higher levels than the normal group (COD = 100 mg/L, COD:N:P = 100:10:2, m/m), respectively. In contrast, eARGs decreased by 6.7% and 8.4% in these groups. On the other hand, in biofilms, higher nutrient levels led to an increase in eARGs by 1.5 and 1.7 times, while iARGs decreased by 17.5% and 50.1% in the polluted and eutrophic groups compared to the normal group. Moreover, while increasing the frequency of nutrient delivery (from 1 time/10 d to 20 times/10 d) generally did not favor iARGs in either water or biofilm, it selectively enhanced eARGs in both. To further understand these dynamics, we developed an ARGs-nutrient model by integrating the Lotka-Volterra and Monod equations. The results highlight the complex interplay of bacterial growth, nutrient availability, and mechanisms such as horizontal gene transfer and secretion influencing ARGs' propagation, driving the opposite trend between these two forms of ARGs. This contrasting response between iARGs and eARGs contributes to a dynamic balance that stabilizes bacterial resistance levels amid nutrient fluctuations. This study offers helpful implications regarding the persistence of bacterial resistance in the environment.
Collapse
Affiliation(s)
- Lele Liu
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (L.L.); (X.Z.); (Y.C.); (H.L.)
| | - Xinyi Zou
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (L.L.); (X.Z.); (Y.C.); (H.L.)
| | - Yuan Cheng
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (L.L.); (X.Z.); (Y.C.); (H.L.)
| | - Huihui Li
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (L.L.); (X.Z.); (Y.C.); (H.L.)
| | - Xueying Zhang
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (L.L.); (X.Z.); (Y.C.); (H.L.)
| | - Qingbin Yuan
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (L.L.); (X.Z.); (Y.C.); (H.L.)
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Malburet C, Carboni A, Guinamand S, Naik H, Fertier-Prizzon S. mRNA extraction from lipid nanoparticles. J Chromatogr A 2024; 1714:464545. [PMID: 38070303 DOI: 10.1016/j.chroma.2023.464545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Messenger RiboNucleic Acid (mRNA) vaccines have recently shown considerable promises for both prophylactic and therapeutic vaccines. These vaccines do not carry an antigen but the information for producing it using the cell machinery, turning the human body into an antigen factory. However, mRNA is an unstable molecule, susceptible to physical, chemical and enzymatic degradation by exo- and endonucleases. If the mRNA is degraded, it can no longer be translated correctly into the antigen of interest and the vaccine lose its efficacy. To protect from nucleases degradation and allow it to get into the cells, mRNA can be encapsulated in lipid nanoparticles (LNPs). As part of the manufacturing process, the quality of the mRNAs should be controlled before the encapsulation (at the drug substance stage) as well as after formulation on the final vaccine product (at the drug product stage). Therefore, it is necessary to be able to extract the mRNA from the LNPs, that is to deformulate the final vaccine product. In this work, different deformulation methods have been compared: spin column extraction, magnetic particle extraction, organic extraction, and direct disruption. Advantages and disadvantages of each of these methods are highlighted.
Collapse
Affiliation(s)
- Camille Malburet
- Sanofi, 1541 Avenue Marcel Mérieux, 69280 Marcy l'Etoile, France.
| | - Aurelien Carboni
- Sanofi, 1541 Avenue Marcel Mérieux, 69280 Marcy l'Etoile, France
| | | | | | | |
Collapse
|
8
|
Gaines D, Brodsky E, Kaur H, Nestorova GG. RNA capture pin technology: investigating long-term stability and mRNA purification specificity of oligonucleotide immobilization on gold and streptavidin surfaces. Anal Bioanal Chem 2023; 415:6077-6089. [PMID: 37516691 DOI: 10.1007/s00216-023-04882-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Advancing biomedical studies necessitates the development of cutting-edge technologies for the rapid extraction of nucleic acid. We characterized an RNA capture pin (RCP) tool that is non-destructive to the sample and enables rapid purification and enrichment of mRNA for subsequent genetic analysis. At the core of this technology is a pin (200 µm × 3 cm) functionalized with dT15 capture sequences that hybridize to mRNA within 2 min of insertion in the specimen. Two methods for immobilizing the oligos on the surface of the RCPs were investigated: gold-thiol and biotin-streptavidin. The RNA capture efficiency of the RCPs was assessed using a radish plant. The average reverse transcription-quantitative polymerase chain reaction (RT-qPCR) cycle amplification values were 19.93 and 24.84 for gold- and streptavidin-coated pins, respectively. The amount of RNA present on the surface of the probes was measured using the Agilent 2100 Bioanalyzer. RNA sequencing was performed to determine the mRNA selectivity of the RNA capture pin. Gene read count analysis confirmed that the RNA purified via the gold-plated RCPs contained 70% messenger RNA, 10% ribosomal RNA, and 20% non-coding RNA. The long-term stability of the bond between the dT15 oligos and the surface of the RCPs was assessed over 4 months. A significant decrease in the dT15 surface coverage of the streptavidin-coated RCPs was observed after 2 weeks of storage at 4 °C. The gold-thiol RNA capture pins exhibited a retention rate of 40% of the oligos after 4 months of storage.
Collapse
Affiliation(s)
- Deriesha Gaines
- Molecular Sciences and Nanotechnology, Louisiana Tech University, Ruston, LA, USA
| | | | | | - Gergana G Nestorova
- School of Biological Sciences, Louisiana Tech University, 1 Adams Blvd., Ruston, LA, 71272, USA.
| |
Collapse
|
9
|
Wang J, Chew BLA, Lai Y, Dong H, Xu L, Liu Y, Fu XY, Lin Z, Shi PY, Lu TK, Luo D, Jaffrey SR, Dedon PC. A systems-level mass spectrometry-based technique for accurate and sensitive quantification of the RNA cap epitranscriptome. Nat Protoc 2023; 18:2671-2698. [PMID: 37567932 DOI: 10.1038/s41596-023-00857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/26/2023] [Indexed: 08/13/2023]
Abstract
Chemical modifications of transcripts with a 5' cap occur in all organisms and function in many aspects of RNA metabolism. To facilitate analysis of RNA caps, we developed a systems-level mass spectrometry-based technique, CapQuant, for accurate and sensitive quantification of the cap epitranscriptome. The protocol includes the addition of stable isotope-labeled cap nucleotides (CNs) to RNA, enzymatic hydrolysis of endogenous RNA to release CNs, and off-line enrichment of CNs by ion-pairing high-pressure liquid chromatography, followed by a 17 min chromatography-coupled tandem quadrupole mass spectrometry run for the identification and quantification of individual CNs. The total time required for the protocol can be up to 7 d. In this approach, 26 CNs can be quantified in eukaryotic poly(A)-tailed RNA, bacterial total RNA and viral RNA. This protocol can be modified to analyze other types of RNA and RNA from in vitro sources. CapQuant stands out from other methods in terms of superior specificity, sensitivity and accuracy, and it is not limited to individual caps nor does it require radiolabeling. Thanks to its unique capability of accurately and sensitively quantifying RNA caps on a systems level, CapQuant can reveal both the RNA cap landscape and the transcription start site distribution of capped RNA in a broad range of settings.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China.
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.
- Institute of Biomedical Sciences, Inner Mongolia University, Hohhot, China.
| | - Bing Liang Alvin Chew
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Health Technologies, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, Singapore
| | - Yong Lai
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | | | - Luang Xu
- Cancer Science Institute of Singapore, Singapore, Singapore
- School of Life Science and Technology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai, China
| | - Yu Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Xin-Yuan Fu
- Cancer Science Institute of Singapore, Singapore, Singapore
- Generos Pharmaceutical Co. Ltd, Hangzhou, China
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, MO, USA
| | - Pei-Yong Shi
- Departments of Biochemistry & Molecular Biology and Pharmacology & Toxicology, and Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
- GlaxoSmithKline, Rockville, MD, USA
| | - Timothy K Lu
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Synthetic Biology Center, Departments of Biological Engineering and Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Senti Bio, San Francisco, CA, USA
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA
| | - Peter C Dedon
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.
- Dept. of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Politza AJ, Liu T, Guan W. Programmable magnetic robot (ProMagBot) for automated nucleic acid extraction at the point of need. LAB ON A CHIP 2023; 23:3882-3892. [PMID: 37551930 PMCID: PMC11218199 DOI: 10.1039/d3lc00545c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Upstream sample preparation remains the bottleneck for point-of-need nucleic acid testing due to its complexity and time-consuming nature. Sample preparation involves extracting, purifying, and concentrating nucleic acids from various matrices. These processes are critical for ensuring the accuracy and sensitivity of downstream nucleic acid amplification and detection. However, current sample preparation methods are often laboratory-based, requiring specialized equipment, trained personnel, and several hours of processing time. As a result, sample preparation often limits the speed, portability, and cost-effectiveness of point-of-need nucleic acid testing. A universal, field-deployable sample preparation device is highly desirable for this critical need and unmet challenge. Here we reported a handheld, battery-powered, reconfigurable, and field-deployable nucleic acid sample preparation device. A programmable electromagnetic actuator was developed to drive a magnetic robot (ProMagBot) in X/Y 2D space, such that various magnetic bead-based sample preparations can be readily translated from the laboratory to point-of-need settings. The control of the electromagnetic actuator requires only a 3-phase unipolar voltage in X and Y directions, and therefore, the motion space is highly scalable. We validated the ProMagBot device with a model application by extracting HIV viral RNAs from plasma samples using two widely used magnetic bead kits: ChargeSwitch and MagMAX beads. In both cases, the ProMagBot could successfully extract viral RNAs from 50 μL plasma samples containing as low as 102 copies of viral RNAs in 20 minutes. Our results demonstrated the ability of ProMagBot to prepare samples from complex mediums at the point of need. We believe such a device would enable rapid and robust sample preparation in various settings, including resource-limited or remote environments, and accelerate the development of next-generation point-of-need nucleic acid testing.
Collapse
Affiliation(s)
- Anthony J Politza
- Department of Biomedical Engineering, Pennsylvania State University, University Park 16802, USA.
| | - Tianyi Liu
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
| | - Weihua Guan
- Department of Biomedical Engineering, Pennsylvania State University, University Park 16802, USA.
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
- School of Electrical Engineering and Computer Science, Pennsylvania State University, University Park 16802, USA
| |
Collapse
|
11
|
A simplified viral RNA extraction method based on magnetic nanoparticles for fast and high-throughput detection of SARS-CoV-2. Talanta 2023; 258:124479. [PMID: 36966663 PMCID: PMC10035799 DOI: 10.1016/j.talanta.2023.124479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
The ongoing outbreak of the novel coronavirus disease 2019 (COVID-19) draws worldwide concerns due to its long incubation period and strong infectivity. Although RT-PCR-based methods are being widely applied for clinical diagnosis, timely and accurate diagnosis towards COVID-19 causing virus, the SARS-CoV-2, is still limited due to labor-intensive and time-consuming operations. Herein, we report a new viral RNA extraction method based on poly-(amino ester) with carboxyl group (PC)-coated magnetic nanoparticles (pcMNPs) for the sensitive detection of SARS-CoV-2. This method combines the lysis and binding steps into one step, and refines multiple washing steps into one step, giving a turnaround time of less than 9 min. Furthermore, the extracted pcMNP-RNA complexes can be directly introduced into subsequent RT-PCR reactions without elution. This simplified viral RNA method could be well adapted in fast manual and automated high-throughput nucleic acids extraction protocols suitable for different scenarios. A high sensitivity down to 100 copies/mL and a linear correlation between 100 and 106 copies/mL of SARS-CoV-2 pseudovirus particles are achieved in both protocols. Benefitting from the simplicity and excellent performances, this new method can dramatically improve the efficiency and reduce operational requirements for the early clinical diagnosis and large-scale SARS-CoV-2 nucleic acid screening.
Collapse
|
12
|
Zeng Y, Wang A, Lv W, Wang Q, Jiang S, Pan X, Wang F, Yang H, Bolund L, Lin C, Han P, Luo Y. Recent development of urinary biomarkers for bladder cancer diagnosis and monitoring. CLINICAL AND TRANSLATIONAL DISCOVERY 2023; 3. [DOI: 10.1002/ctd2.183] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/11/2023] [Indexed: 01/04/2025]
Abstract
AbstractUrine‐based liquid biopsy has emerged as a non‐invasive and effective tool for early screening and diagnosis of bladder cancer. This review provides a comprehensive overview of the current urine‐based biomarkers and methods for the detection and monitoring of bladder cancer. We focus on biomarkers including tumour DNAs, proteins, microbiome, tumour RNAs, long non‐coding RNAs, transfer RNA‐derived fragments, messenger RNAs, microRNAs, circular RNAs, exosomes and extrachromosomal circular DNA.
Collapse
Affiliation(s)
- Yuchen Zeng
- College of Life Sciences Tianjin University Tianjin China
- IBMC‐BGI Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou Zhejiang China
| | - Anqi Wang
- Department of Biological Sciences Xi'an Jiaotong‐Liverpool University Suzhou China
- Lars Bolund Institute of Regenerative Medicine Qingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao Qingdao China
| | - Wei Lv
- College of Life Sciences University of Chinese Academy of Science Beijing China
- Department of Biomedicine Aarhus University Aarhus Denmark
| | - Qingqing Wang
- College of Life Sciences University of Chinese Academy of Science Beijing China
| | - Shiqi Jiang
- College of Life Sciences Tianjin University Tianjin China
- Intelligent Diagnosis Center Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences Hangzhou Zhejiang China
| | - Xiaoguang Pan
- Lars Bolund Institute of Regenerative Medicine Qingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao Qingdao China
| | - Fei Wang
- Lars Bolund Institute of Regenerative Medicine Qingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao Qingdao China
- Department of Biomedicine Aarhus University Aarhus Denmark
| | - Huanming Yang
- IBMC‐BGI Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou Zhejiang China
| | - Lars Bolund
- Lars Bolund Institute of Regenerative Medicine Qingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao Qingdao China
- Department of Biomedicine Aarhus University Aarhus Denmark
| | - Chunhua Lin
- Department of Urology The Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai Shandong China
| | - Peng Han
- Lars Bolund Institute of Regenerative Medicine Qingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao Qingdao China
| | - Yonglun Luo
- IBMC‐BGI Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou Zhejiang China
- Lars Bolund Institute of Regenerative Medicine Qingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao Qingdao China
- Department of Biomedicine Aarhus University Aarhus Denmark
| |
Collapse
|
13
|
Li S, Han B, Zhou D, Gu Y, Li B, Ma J, Fu R, Qi X, Liu P. One-Stop Extraction and In Situ RT-qPCR for Ultrasensitive Detection of Highly Diluted SARS-CoV-2 in Large-Volume Samples from Aquatic Environments. Anal Chem 2023; 95:2339-2347. [PMID: 36644822 DOI: 10.1021/acs.analchem.2c04224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Surveillance of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in aquatic environments attracted attention due to its considerable impacts on human health and ecology, especially in countries with poor sanitation standards. Based on a strategy of one-stop extraction and in situ amplification, we developed an ultrasensitive method that uses a polyacrylamide derivative-modified filter disc (PAD-FD), in which highly diluted RNA can be efficiently concentrated onto the filter disc and directly used for amplification. A newly designed spin column with a cup-like filter base facilitated the non-contact transfer of the affinity filter disc from the column to a PCR tube. The limit of detection of the PAD-FD coupled with RT-qPCR is 10 copies/mL. Using 32 suspected SARS-CoV-2 samples, we demonstrated that the detection rate of our method (62.5%, 20/32) was triple the rate of the commercial kit (18.8%, 6/32). Using a PAD-FD, 56.3% (18/32) and 40.6% (13/32) of the 10-fold-dilution samples with river and tap water, respectively, were detected. Even when diluted 100-fold, 28.1% (9/32) and 37.5% (12/32) were still detected in river and tap water, respectively. We believe that the PAD-FD method offers an accurate testing tool for monitoring viral RNA in aquatic environments, contributing to the forewarning of the SARS-CoV-2 outbreak and the breaking of the transmission chain.
Collapse
Affiliation(s)
- Shanglin Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bingqian Han
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Donggen Zhou
- Ningbo International Travel Healthcare Center (Ningbo Port Hospital), Ningbo, Zhejiang 315012, China
| | - Yin Gu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Bao Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianxin Ma
- Center for Disease Control and Prevention of Chaoyang District of Beijing, Beijing 100021, China
| | - Rongxin Fu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiao Qi
- Center for Disease Control and Prevention of Chaoyang District of Beijing, Beijing 100021, China
| | - Peng Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Jiang Q, Li Y, Huang L, Guo J, Wang A, Ma C, Shi C. Direct capture and amplification of nucleic acids using a universal, elution-free magnetic bead-based method for rapid pathogen detection in multiple types of biological samples. Anal Bioanal Chem 2023; 415:427-438. [PMID: 36385304 PMCID: PMC9668711 DOI: 10.1007/s00216-022-04422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022]
Abstract
Nucleic acid amplification tests (NAATs) have become an attractive approach for pathogen detection, and obtaining high-quality nucleic acid extracts from biological samples plays a critical role in ensuring accurate NAATs. In this work, we established an elution-free magnetic bead (MB)-based method by introducing polyethylene-polypropylene glycol (PEPPG) F68 in lysis buffer and using NaOH solution instead of alcohols as the washing buffer for rapid nucleic acid extraction from multiple types of biological samples, including nasopharyngeal swabs, serum, milk, and pork, which bypassed the nucleic acid elution step and allowed the nucleic acid/MB composite to be directly used as the template for amplification reactions. The entire extraction process was able to be completed in approximately 7 min. Even though the nucleic acid/MB composite could not be used for quantitative real-time PCR (qPCR) assays, this elution-free MB-based method significantly improved the sensitivity of the loop-mediated isothermal amplification (LAMP) assay. The sensitivity of the quantitative real-time LAMP (qLAMP) assays combined with this elution-free MB-based method showed an improvement of one to three orders of magnitude compared with qLAMP or qPCR assays combined with the traditional MB-based method. In addition to manual operation, like the traditional MB-based method, this universal, rapid, and facile nucleic acid extraction method also has potential for integration into automated robotic processing, making it particularly suitable for the establishment of an analysis platform for ultrafast and sensitive pathogen detection in various biological samples both in centralized laboratories and at remote sites.
Collapse
Affiliation(s)
- Qianqian Jiang
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences; Department of Pathogenic Biology, School of Basic Medicine; Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071 People’s Republic of China
| | - Yang Li
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences; Department of Pathogenic Biology, School of Basic Medicine; Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071 People’s Republic of China
| | - Lin Huang
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences; Department of Pathogenic Biology, School of Basic Medicine; Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071 People’s Republic of China
| | - Jinling Guo
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences; Department of Pathogenic Biology, School of Basic Medicine; Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071 People’s Republic of China
| | - Ailin Wang
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences; Department of Pathogenic Biology, School of Basic Medicine; Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071 People’s Republic of China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 People’s Republic of China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences; Department of Pathogenic Biology, School of Basic Medicine; Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071 People’s Republic of China
| |
Collapse
|
15
|
Tripathy S, Agarkar T, Talukdar A, Sengupta M, Kumar A, Ghosh S. Evaluation of indirect sequence-specific magneto-extraction-aided LAMP for fluorescence and electrochemical SARS-CoV-2 nucleic acid detection. Talanta 2023; 252:123809. [PMID: 35985192 PMCID: PMC9373715 DOI: 10.1016/j.talanta.2022.123809] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 12/17/2022]
Abstract
Nucleic acid amplification tests (NAATs) such as quantitative real-time reverse transcriptase PCR (qRT-PCR) or isothermal NAATs (iNAATs) such as loop-mediated isothermal amplification (LAMP) require pure nucleic acid free of any polymerase inhibitors as its substrate. This in turn, warrants the use of spin-column mediated extraction with centralized high-speed centrifuges. Additionally, the utilization of centralized real-time fluorescence readout and TaqMan-like molecular probes in qRT-PCR and real-time LAMP add cost and restrict their deployment. To circumvent these disadvantages, we report a novel sample-to-answer workflow comprising an indirect sequence-specific magneto-extraction (also referred to as magnetocapture, magneto-preconcentration, or magneto-enrichment) for detecting SARS-CoV-2 nucleic acid. It was followed by in situ fluorescence or electrochemical LAMP. After in silico validation of the approach's sequence selectivity against SARS-CoV-2 variants of concern, the comparative performance of indirect and direct magnetocapture in detecting SARS-CoV-2 nucleic acid in the presence of excess host nucleic acid or serum was probed. After proven superior, the sensitivity of the indirect sequence-specific magnetocapture in conjunction with electrochemical LAMP was investigated. In each case, its sensitivity was assessed through the detection of clinically relevant 102 and 103 copies of target nucleic acid. Overall, a highly specific nucleic acid detection method was established that can be accommodated for either centralized real-time SYBR-based fluorescence LAMP or portable electrochemical LAMP.
Collapse
|
16
|
Yang R, Li J, Wu Y, Jiang X, Qu S, Wang Q, Liang H, Zen K. A novel method to purify small RNAs from human tissues for methylation analysis by LC-MS/MS. Front Mol Biosci 2022; 9:949181. [PMID: 36111135 PMCID: PMC9468635 DOI: 10.3389/fmolb.2022.949181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Methylation modification of small RNAs, including miRNA, piRNA, and tsRNA, is critical for small RNA biogenesis and biological function. Methylation of individual small RNA can be defined by liquid chromatography-coupled with mass spectrometry (LC-MS/MS). However, LC-MS/MS analysis requires a high purity of individual small RNA. Due to the difficulty of purifying specific small RNA from tissues or cells, the progress in characterizing small RNA methylation by LC-MS/MS is limited. Here, we report a novel method that can efficiently purify small RNA from human tissues for LC-MS/MS analysis. This method includes two steps: 1) pull down the target small RNA by incubating total small RNAs (18–24 nt) extracted from human tissues with a biotinylated antisense oligonucleotide of the target small RNA, followed by capturing the binding duplex of biotinylated antisense and small RNA via streptavidin magnetic beads, and 2) protect the target small RNA by pairing it with a single-strand DNA, which sequence is complementary to the target small RNA, to form a DNA/RNA hybrid double-strand, followed by sequential digestion with exonuclease I, nuclease S1, and DNase I, respectively. Furthermore, employing a mixture of four pairs of synthetic methylated and non-methylated small RNAs, we further refined this two-step method by optimizing the nuclease S1 treatment condition. With this method, we successfully purified miR-21-5p, miR-26-5p, piR-020485, and tsRNA from human lung and sperm tissue samples and analyzed their 2′-O-methylation modification at the 3′-end by LC-MS/MS.
Collapse
Affiliation(s)
- Rong Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jianfeng Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yifan Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xinli Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shuang Qu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qiang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- *Correspondence: Ke Zen, ; Hongwei Liang, ; Qiang Wang,
| | - Hongwei Liang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- *Correspondence: Ke Zen, ; Hongwei Liang, ; Qiang Wang,
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- *Correspondence: Ke Zen, ; Hongwei Liang, ; Qiang Wang,
| |
Collapse
|
17
|
Szymczyk A, Drozd M, Kamińska A, Matczuk M, Trzaskowski M, Mazurkiewicz-Pawlicka M, Ziółkowski R, Malinowska E. Comparative Evaluation of Different Surface Coatings of Fe3O4-Based Magnetic Nano Sorbent for Applications in the Nucleic Acids Extraction. Int J Mol Sci 2022; 23:ijms23168860. [PMID: 36012139 PMCID: PMC9408759 DOI: 10.3390/ijms23168860] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Nucleic acid extraction and purification are crucial steps in sample preparation for multiple diagnostic procedures. Routine methodologies of DNA isolation require benchtop equipment (e.g., centrifuges) and labor-intensive steps. Magnetic nanoparticles (MNPs) as solid-phase sorbents could simplify this procedure. A wide range of surface coatings employs various molecular interactions between dsDNA and magnetic nano-sorbents. However, a reliable, comparative evaluation of their performance is complex. In this work, selected Fe3O4 modifications, i.e., polyethyleneimine, gold, silica, and graphene derivatives, were comprehensively evaluated for applications in dsDNA extraction. A family of single batch nanoparticles was compared in terms of morphology (STEM), composition (ICP-MS/MS and elemental analysis), surface coating (UV-Vis, TGA, FTIR), and MNP charge (ζ-potential). ICP-MS/MS was also used to unify MNPs concentration allowing a reliable assessment of individual coatings on DNA extraction. Moreover, studies on adsorption medium (monovalent vs. divalent ions) and extraction buffer composition were carried out. As a result, essential relationships between nanoparticle coatings and DNA adsorption efficiencies have been noticed. Fe3O4@PEI MNPs turned out to be the most efficient nano sorbents. The optimized composition of the extraction buffer (medium containing 0.1 mM EDTA) helped avoid problems with Fe3+ stripping, which improved the validity of the spectroscopic determination of DNA recovery.
Collapse
Affiliation(s)
- Anna Szymczyk
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Doctoral School No. 1, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland
| | - Marcin Drozd
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Agnieszka Kamińska
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Magdalena Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Maciej Trzaskowski
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Marta Mazurkiewicz-Pawlicka
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Ludwika Waryńskiego 1, 00-645 Warsaw, Poland
| | - Robert Ziółkowski
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Correspondence:
| | - Elżbieta Malinowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
18
|
Mannier C, Yoon JY. Progression of LAMP as a Result of the COVID-19 Pandemic: Is PCR Finally Rivaled? BIOSENSORS 2022; 12:492. [PMID: 35884295 PMCID: PMC9312731 DOI: 10.3390/bios12070492] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 06/01/2023]
Abstract
Reflecting on the past three years and the coronavirus disease 19 (COVID-19) pandemic, varying global tactics offer insights into the most effective public-health responses. In the US, specifically, rapid and widespread testing was quickly prioritized to lower restrictions sooner. Essentially, only two types of COVID-19 diagnostic tests were publicly employed during the peak pandemic: the rapid antigen test and reverse transcription polymerase chain reaction (RT-PCR). However, neither test ideally suited the situation, as rapid antigen tests are far too inaccurate, and RT-PCR tests require skilled personnel and sophisticated equipment, leading to long wait times. Loop-mediated isothermal amplification (LAMP) is another exceptionally accurate nucleic acid amplification test (NAAT) that offers far quicker time to results. However, RT-LAMP COVID-19 tests have not been embraced as extensively as rapid antigen tests or RT-PCR. This review will investigate the performance of current RT-LAMP-based COVID-19 tests and summarize the reasons behind the hesitancy to embrace RT-LAMP instead of RT-PCR. We will also look at other LAMP platforms to explore possible improvements in the accuracy and portability of LAMP, which could be applied to COVID-19 diagnostics and future public-health outbreaks.
Collapse
Affiliation(s)
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, the University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
19
|
Zhang Z, Ma P, Ahmed R, Wang J, Akin D, Soto F, Liu BF, Li P, Demirci U. Advanced Point-of-Care Testing Technologies for Human Acute Respiratory Virus Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103646. [PMID: 34623709 DOI: 10.1002/adma.202103646] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/25/2021] [Indexed: 04/14/2023]
Abstract
The ever-growing global threats to human life caused by the human acute respiratory virus (RV) infections have cost billions of lives, created a significant economic burden, and shaped society for centuries. The timely response to emerging RVs could save human lives and reduce the medical care burden. The development of RV detection technologies is essential for potentially preventing RV pandemic and epidemics. However, commonly used detection technologies lack sensitivity, specificity, and speed, thus often failing to provide the rapid turnaround times. To address this problem, new technologies are devised to address the performance inadequacies of the traditional methods. These emerging technologies offer improvements in convenience, speed, flexibility, and portability of point-of-care test (POCT). Herein, recent developments in POCT are comprehensively reviewed for eight typical acute respiratory viruses. This review discusses the challenges and opportunities of various recognition and detection strategies and discusses these according to their detection principles, including nucleic acid amplification, optical POCT, electrochemistry, lateral flow assays, microfluidics, enzyme-linked immunosorbent assays, and microarrays. The importance of limits of detection, throughput, portability, and specificity when testing clinical samples in resource-limited settings is emphasized. Finally, the evaluation of commercial POCT kits for both essential RV diagnosis and clinical-oriented practices is included.
Collapse
Affiliation(s)
- Zhaowei Zhang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Peng Ma
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Rajib Ahmed
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Jie Wang
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Demir Akin
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Fernando Soto
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Peiwu Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| |
Collapse
|
20
|
Hashimoto M, Takahashi S, Kawahara K, Ogawa T, Kawashita M. Effect of heating conditions on the magnetic properties of micron-sized carboxyl modified-magnetite particles synthesized by a spray pyrolysis and heating process. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2021.103412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Zhou L, Hayden A, Chandrasekaran AR, Vilcapoma J, Cavaliere C, Dey P, Mao S, Sheng J, Dey BK, Rangan P, Halvorsen K. Sequence-selective purification of biological RNAs using DNA nanoswitches. CELL REPORTS METHODS 2021; 1:100126. [PMID: 35072148 PMCID: PMC8782281 DOI: 10.1016/j.crmeth.2021.100126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/07/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022]
Abstract
Nucleic acid purification is a critical aspect of biomedical research and a multibillion-dollar industry. Here we establish sequence-selective RNA capture, release, and isolation using conformationally responsive DNA nanoswitches. We validate purification of specific RNAs ranging in size from 22 to 401 nt with up to 75% recovery and 99.98% purity in a benchtop process with minimal expense and equipment. Our method compared favorably with bead-based extraction of an endogenous microRNA from cellular total RNA, and can be programmed for multiplexed purification of multiple individual RNA targets from one sample. Coupling our approach with downstream LC/MS, we analyzed RNA modifications in 5.8S ribosomal RNA, and found 2'-O-methylguanosine, 2'-O-methyluridine, and pseudouridine in a ratio of ~1:7:22. The simplicity, low cost, and low sample requirements of our method make it suitable for easy adoption, and the versatility of the approach provides opportunities to expand the strategy to other biomolecules.
Collapse
Affiliation(s)
- Lifeng Zhou
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Andrew Hayden
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | | | - Javier Vilcapoma
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Cassandra Cavaliere
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Paromita Dey
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- Department of Biology, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Song Mao
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jia Sheng
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Bijan K. Dey
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- Department of Biology, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Prashanth Rangan
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- Department of Biology, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Ken Halvorsen
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
22
|
Development of an Automated, Non-Enzymatic Nucleic Acid Amplification Test. MICROMACHINES 2021; 12:mi12101204. [PMID: 34683255 PMCID: PMC8538085 DOI: 10.3390/mi12101204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
Among nucleic acid diagnostic strategies, non-enzymatic tests are the most promising for application at the point of care in low-resource settings. They remain relatively under-utilized, however, due to inadequate sensitivity. Inspired by a recent demonstration of a highly-sensitive dumbbell DNA amplification strategy, we developed an automated, self-contained assay for detection of target DNA. In this new diagnostic platform, called the automated Pi-powered looping oligonucleotide transporter, magnetic beads capture the target DNA and are then loaded into a microfluidic reaction cassette along with the other reaction solutions. A stepper motor controls the motion of the cassette relative to an external magnetic field, which moves the magnetic beads through the reaction solutions automatically. Real-time fluorescence is used to measure the accumulation of dumbbells on the magnetic bead surface. Left-handed DNA dumbbells produce a distinct signal which reflects the level of non-specific amplification, acting as an internal control. The autoPiLOT assay detected as little as 5 fM target DNA, and was also successfully applied to the detection of S. mansoni DNA. The autoPiLOT design is a novel step forward in the development of a sensitive, user-friendly, low-resource, non-enzymatic diagnostic test.
Collapse
|
23
|
Tzepos RG, Raman E, Toote LE, Wright DW, Gerdon AE. Signal Amplification with Co(III) Protoporphyrin IX Nanoparticles and Anodic Stripping Voltammetry. ELECTROANAL 2021. [DOI: 10.1002/elan.202100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Robert G. Tzepos
- Emmanuel College Department of Chemistry and Physics 400 Fenway Boston MA 02115
| | - Easwer Raman
- Emmanuel College Department of Chemistry and Physics 400 Fenway Boston MA 02115
| | - Lauren E. Toote
- Elizabethtown College Department of Chemistry and Biochemistry 1 Alpha Drive Elizabethtown PA 17022
| | - David W. Wright
- Vanderbilt University Department of Chemistry 7330 Stevenson Center Nashville TN 37235
| | - Aren E. Gerdon
- Emmanuel College Department of Chemistry and Physics 400 Fenway Boston MA 02115
| |
Collapse
|
24
|
Oreskovic A, Lutz BR. Ultrasensitive hybridization capture: Reliable detection of <1 copy/mL short cell-free DNA from large-volume urine samples. PLoS One 2021; 16:e0247851. [PMID: 33635932 PMCID: PMC7909704 DOI: 10.1371/journal.pone.0247851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/12/2021] [Indexed: 12/19/2022] Open
Abstract
Urine cell-free DNA (cfDNA) is a valuable non-invasive biomarker with broad potential clinical applications, but there is no consensus on its optimal pre-analytical methodology, including the DNA extraction step. Due to its short length (majority of fragments <100 bp) and low concentration (ng/mL), urine cfDNA is not efficiently recovered by conventional silica-based extraction methods. To maximize sensitivity of urine cfDNA assays, we developed an ultrasensitive hybridization method that uses sequence-specific oligonucleotide capture probes immobilized on magnetic beads to improve extraction of short cfDNA from large-volume urine samples. Our hybridization method recovers near 100% (95% CI: 82.6-117.6%) of target-specific DNA from 10 mL urine, independent of fragment length (25-150 bp), and has a limit of detection of ≤5 copies of double-stranded DNA (0.5 copies/mL). Pairing hybridization with an ultrashort qPCR design, we can efficiently capture and amplify fragments as short as 25 bp. Our method enables amplification of cfDNA from 10 mL urine in a single qPCR well, tolerates variation in sample composition, and effectively removes non-target DNA. Our hybridization protocol improves upon both existing silica-based urine cfDNA extraction methods and previous hybridization-based sample preparation protocols. Two key innovations contribute to the strong performance of our method: a two-probe system enabling recovery of both strands of double-stranded DNA and dual biotinylated capture probes, which ensure consistent, high recovery by facilitating optimal probe density on the bead surface, improving thermostability of the probe-bead linkage, and eliminating interference by endogenous biotin. We originally designed the hybridization method for tuberculosis diagnosis from urine cfDNA, but expect that it will be versatile across urine cfDNA targets, and may be useful for other cfDNA sample types and applications beyond cfDNA. To make our hybridization method accessible to new users, we present a detailed protocol and straightforward guidelines for designing new capture probes.
Collapse
Affiliation(s)
- Amy Oreskovic
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Barry R. Lutz
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
25
|
Fitzpatrick AH, Rupnik A, O'Shea H, Crispie F, Keaveney S, Cotter P. High Throughput Sequencing for the Detection and Characterization of RNA Viruses. Front Microbiol 2021; 12:621719. [PMID: 33692767 PMCID: PMC7938315 DOI: 10.3389/fmicb.2021.621719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
This review aims to assess and recommend approaches for targeted and agnostic High Throughput Sequencing of RNA viruses in a variety of sample matrices. HTS also referred to as deep sequencing, next generation sequencing and third generation sequencing; has much to offer to the field of environmental virology as its increased sequencing depth circumvents issues with cloning environmental isolates for Sanger sequencing. That said however, it is important to consider the challenges and biases that method choice can impart to sequencing results. Here, methodology choices from RNA extraction, reverse transcription to library preparation are compared based on their impact on the detection or characterization of RNA viruses.
Collapse
Affiliation(s)
- Amy H. Fitzpatrick
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
- Shellfish Microbiology, Marine Institute, Oranmore, Ireland
- Biological Sciences, Munster Technological University, Cork, Ireland
| | | | - Helen O'Shea
- Biological Sciences, Munster Technological University, Cork, Ireland
| | - Fiona Crispie
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| | | | - Paul Cotter
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| |
Collapse
|
26
|
Peng X, Yan H, Wu Z, Wen W, Zhang X, Wang S. Magnetic Nanobeads and De Novo Growth of Electroactive Polymers for Ultrasensitive microRNA Detection at the Cellular Level. Anal Chem 2020; 93:902-910. [DOI: 10.1021/acs.analchem.0c03558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaolun Peng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Huangli Yan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhen Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
27
|
Zhang C, Liu WJ, Wang TY, Qian TT, Ain NU, Wu LQ, Wu XN, Cai XP, Zeng Q, Xie HP. Fabrication of surface charge pH-sensitive multi-bumpy small magnetic bead with ultrahigh magnetic content and its ultrahigh loading capacity and salt-free rapid isolation for DNA. J Pharm Biomed Anal 2020; 189:113439. [PMID: 32650194 DOI: 10.1016/j.jpba.2020.113439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/29/2022]
Abstract
Gene transfection vector polyethyleneimine (PEI) was used as a cross-linking agent to crosslink the surface epoxidized magnetic nanoparticles and aggregate them to form a small magnetic bead (MB) with multiple nanoscale bumps on its surface (i.e. the multi-bumpy small magnetic bead, mbsMB). As there is a very low content of non-magnetic components (the cross-linking agent) in the magnetic bead, the mbsMB has an ultrahigh magnetic content of 81.95 % and a smaller particle size of 1.4 μm when compared with the usual medical MB. Such a small MB also has a strong magnetic force allowing it to reach the rapid separating ability of the commonly used larger medical MB which has 8 times its volume. The mbsMB has an obvious pH sensitivity of positive and negative surface charges and the salt-free isolation of DNA has been achieved based on the electrostatic interactions between mbsMB and DNA. This avoids the desalting of the isolated DNA as well as the effects of high salt concentration on its long chain helix structure. Whether in an acidic absorbing medium, an alkalinous desorbing one or a near neutral particle-storing one, the mbsMB will have obvious surface electrostatic charges. There is also its good suspension stability in an aqueous medium which provides a good condition for isolating of DNA suitable for efficiently adsorbing and desorbing. The as-prepared MB has a unique surface structure and some excellent properties, all suitable for adsorbing DNA. In addition, a large amount of commonly used gene transfection vector PEI can be cross-linked and bonded on the surface of mbsMB, whilst still having an excellent DNA-loading ability. In summary, the mbsMB has an ultrahigh capacity of 629.49 mg/g for DNA load.
Collapse
Affiliation(s)
- Chen Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Wen-Juan Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Tian-Yu Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ting-Ting Qian
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China; Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, 223000, China
| | - Noor Ul Ain
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Lu-Qian Wu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xiao-Ning Wu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xue-Ping Cai
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China; Suzhou Institute for Drug Control, Suzhou, 215104, China
| | - Qi Zeng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China; Dushuhu Public Hospital Affiliated to Soochow University, Suzhou, 215123, China.
| | - Hong-Ping Xie
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
28
|
Chen Y, Liu Y, Shi Y, Ping J, Wu J, Chen H. Magnetic particles for integrated nucleic acid purification, amplification and detection without pipetting. Trends Analyt Chem 2020; 127:115912. [PMID: 32382202 PMCID: PMC7202819 DOI: 10.1016/j.trac.2020.115912] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleic acid amplification based detection plays an important role in food safety, environmental monitoring and clinical diagnosis. However, traditional nucleic acid detection process involves transferring liquid from one tube to another by pipetting. It requires trained persons, equipped labs and consumes lots of time. The ideal nucleic acid detection is integrated, closed, simplified and automated. Magnetic particles actuated by magnetic fields can efficiently adsorb nucleic acids and promote integrated nucleic acid assays without pipetting driven by pumps and centrifuges. We will comprehensively review magnetic particles assisted integrated system for nucleic acid detection and hope it can inspire further related study.
Collapse
Key Words
- ATP, adenosine triphosphate
- DLS, dynamic light scattering
- FMR, ferromagnetic resonance
- GTC, guanidinium thiocyanate
- ICP-AES, inductively coupled plasma atomic emission spectroscopy
- IFAST, immiscible filtration assisted by surface tension
- Immiscible interface
- Integrated detection
- LAMP, loop-mediated isothermal amplification
- Magnetic particles
- Nucleic acid
- PCR, polymerase chain reaction
- PEG, polyethylene glycol
- POCT, point-of-care testing
- RPA, recombinase polymerase amplification
- SQUID, superconducting quantum interference device magnetometer
- TEM, transmission electron microscopy
- XRD, X-Ray diffraction
- qPCR, quantitative PCR
Collapse
Affiliation(s)
- Yanju Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yang Liu
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| | - Ya Shi
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| | - Jianfeng Ping
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of on Site Processing Equipment for Agricultural Products, Ministry of Agriculture, Hangzhou, 310058, China
| | - Huan Chen
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| |
Collapse
|
29
|
Wang J, Alvin Chew BL, Lai Y, Dong H, Xu L, Balamkundu S, Cai WM, Cui L, Liu CF, Fu XY, Lin Z, Shi PY, Lu TK, Luo D, Jaffrey SR, Dedon PC. Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA. Nucleic Acids Res 2019; 47:e130. [PMID: 31504804 PMCID: PMC6847653 DOI: 10.1093/nar/gkz751] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/16/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
Chemical modification of transcripts with 5' caps occurs in all organisms. Here, we report a systems-level mass spectrometry-based technique, CapQuant, for quantitative analysis of an organism's cap epitranscriptome. The method was piloted with 21 canonical caps-m7GpppN, m7GpppNm, GpppN, GpppNm, and m2,2,7GpppG-and 5 'metabolite' caps-NAD, FAD, UDP-Glc, UDP-GlcNAc, and dpCoA. Applying CapQuant to RNA from purified dengue virus, Escherichia coli, yeast, mouse tissues, and human cells, we discovered new cap structures in humans and mice (FAD, UDP-Glc, UDP-GlcNAc, and m7Gpppm6A), cell- and tissue-specific variations in cap methylation, and high proportions of caps lacking 2'-O-methylation (m7Gpppm6A in mammals, m7GpppA in dengue virus). While substantial Dimroth-induced loss of m1A and m1Am arose with specific RNA processing conditions, human lymphoblast cells showed no detectable m1A or m1Am in caps. CapQuant accurately captured the preference for purine nucleotides at eukaryotic transcription start sites and the correlation between metabolite levels and metabolite caps.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, People's Republic of China
- School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Bing Liang Alvin Chew
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- NTU Institute of Health Technologies, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore
| | - Yong Lai
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Hongping Dong
- Shanghai Blueray Biopharma, Shanghai, People's Republic of China
| | - Luang Xu
- Cancer Science Institute of Singapore, Singapore
| | - Seetharamsingh Balamkundu
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Weiling Maggie Cai
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
- Department of Microbiology, National University of Singapore, Singapore
| | - Liang Cui
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Chuan Fa Liu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Xin-Yuan Fu
- Cancer Science Institute of Singapore, Singapore
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, MO, USA
| | - Pei-Yong Shi
- Departments of Biochemistry & Molecular Biology and Pharmacology & Toxicology, and Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Timothy K Lu
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
- Synthetic Biology Center, Departments of Biological Engineering and Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA
| | - Peter C Dedon
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
- Dept. of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
30
|
Yuan QB, Huang YM, Wu WB, Zuo P, Hu N, Zhou YZ, Alvarez PJJ. Redistribution of intracellular and extracellular free & adsorbed antibiotic resistance genes through a wastewater treatment plant by an enhanced extracellular DNA extraction method with magnetic beads. ENVIRONMENT INTERNATIONAL 2019; 131:104986. [PMID: 31299601 DOI: 10.1016/j.envint.2019.104986] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/31/2019] [Accepted: 06/30/2019] [Indexed: 05/13/2023]
Abstract
Due to the limitations of current extraction methods, extracellular DNA (eDNA) is rarely discerned from intracellular DNA (iDNA) despite having unique contributions to antibiotic resistance genes (ARGs) propagation. Furthermore, eDNA may be free (f-eDNA) or adsorbed to or suspended solids, including cells (a-eDNA), which affects ARG persistence and transmissivity. We developed a novel method using magnetic beads to separate iDNA, a-eDNA, and f-eDNA to assess how these physical states of ARGs change across a wastewater treatment plant. This method efficiently extracted eDNA (>85.3%) with higher recovery than current methods such as alcohol precipitation, CTAB-based extraction, and DNA extraction kits (<10%). Biological treatment and UV disinfection decreased the concentration of intracellular ARGs (iARGs) and adsorbed extracellular ARGs (a-eARGs), causing an increase of released free extracellular ARGs (f-eARGs). More ARGs were discharged through the wasted biosolids than in the effluent; iARGs and a-eARGs are prevalent in wasted biosolids ((73.9 ± 22.5) % and (23.4 ± 15.3) % of total ARGs respectively), while f-eARGs were prevalent in the effluent ((90.3 ± 16.5) %). Bacterial community analysis showed significant correlations between specific genera and ARGs (e.g., Aeromonas, Pseudomonas and Acinetobacter were strongly correlated with multidrug-resistance gene blaTEM). This treatment system decreased the discharge of iARGs to receiving environments, however, increased eARG concentrations were present in the effluent, which may contribute to the environmental resistome.
Collapse
Affiliation(s)
- Qing-Bin Yuan
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; Department of Civil and Environmental Engineering, Rice University, Houston, TX 77251, USA.
| | - Ya-Meng Huang
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wen-Bin Wu
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Pengxiao Zuo
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77251, USA
| | - Nan Hu
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yong-Zhang Zhou
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77251, USA.
| |
Collapse
|
31
|
Juang DS, Berry SM, Li C, Lang JM, Beebe DJ. Centrifugation-Assisted Immiscible Fluid Filtration for Dual-Bioanalyte Extraction. Anal Chem 2019; 91:11848-11855. [PMID: 31411020 DOI: 10.1021/acs.analchem.9b02572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The extraction of bioanalytes is the first step in many diagnostic and analytical assays. However, most bioanalyte extraction methods require extensive dilution-based washing processes that are not only time-consuming and laborious but can also result in significant sample loss, limiting their applications in rare sample analyses. Here, we present a method that enables the efficient extraction of multiple different bioanalytes from rare samples (down to 10 cells) without washing-centrifugation-assisted immiscible fluid filtration (CIFF). CIFF utilizes centrifugal force to drive the movement of analyte-bound glass microbeads from an aqueous sample into an immiscible hydrophobic solution to perform an efficient, simple, and nondilutive extraction. The method can be performed using conventional polymerase chain reaction (PCR) tubes with no requirement of specialized devices, columns, or instruments, making it broadly accessible and cost-effective. The CIFF process can effectively remove approximately 99.5% of the aqueous sample in one extraction with only 0.5% residual carryover, whereas a traditional "spin-down and aspirate" operation results in a higher 3.6% carryover. Another unique aspect of CIFF is its ability to perform two different solid-phase bioanalytes extractions simultaneously within a single vessel without fractionating the sample or performing serial extractions. Here we demonstrate efficient mRNA and DNA extraction from low-input samples (down to 10 cells) with slightly higher to comparable recovery compared to a traditional column-based extraction technique and the simultaneous extraction of two different proteins in the same tube using CIFF.
Collapse
|
32
|
Oreskovic A, Brault ND, Panpradist N, Lai JJ, Lutz BR. Analytical Comparison of Methods for Extraction of Short Cell-Free DNA from Urine. J Mol Diagn 2019; 21:1067-1078. [PMID: 31442674 DOI: 10.1016/j.jmoldx.2019.07.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/02/2019] [Accepted: 07/23/2019] [Indexed: 11/19/2022] Open
Abstract
Urine cell-free DNA (cfDNA) is a valuable noninvasive biomarker for cancer mutation detection, infectious disease diagnosis (eg, tuberculosis), organ transplantation monitoring, and prenatal screening. Conventional silica DNA extraction does not efficiently capture urine cfDNA, which is dilute (ng/mL) and highly fragmented [30 to 100 nucleotides (nt)]. The clinical sensitivity of urine cfDNA detection increases with decreasing target length, motivating use of sample preparation methods designed for short fragments. We compared the analytical performance of two published protocols (Wizard resin/guanidinium thiocyanate and Q Sepharose), three commercial kits (Norgen, QIAamp, and MagMAX), and an in-house sequence-specific hybridization capture technique. Dependence on fragment length (25 to 150 nt), performance at low concentrations (10 copies/mL), tolerance to variable urine conditions, and susceptibility to PCR inhibition were characterized. Hybridization capture and Q Sepharose performed best overall (60% to 90% recovery), although Q Sepharose had reduced recovery (<10%) of the shortest 25-nt fragment. Wizard resin/guanidinium thiocyanate recovery was dependent on pH and background DNA concentration and was limited to <35%, even under optimal conditions. The Norgen kit led to consistent PCR inhibition but had high recovery of short fragments. The QIAamp and MagMAX kits had minimal recovery of fragments <150 and <80 nt, respectively. Urine cfDNA extraction methods differ widely in ability to capture short, dilute cfDNA in urine; using suboptimal methods may profoundly impair clinical results.
Collapse
Affiliation(s)
- Amy Oreskovic
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Norman D Brault
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Nuttada Panpradist
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - James J Lai
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Barry R Lutz
- Department of Bioengineering, University of Washington, Seattle, Washington.
| |
Collapse
|
33
|
Li N, Du M, Tian S, Ji X, He Z. The behavior of a bipedal DNA walker moving on the surface of magnet microparticles and its application in DNA detection. Anal Bioanal Chem 2019; 411:4055-4061. [PMID: 30693369 DOI: 10.1007/s00216-019-01604-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/16/2018] [Accepted: 01/11/2019] [Indexed: 12/26/2022]
Abstract
In this work, a three-dimensional DNA machine based on the isothermal strand-displacement polymerase reaction (ISDPR) has been constructed. The walking behavior of a DNA walker on the obstructive surface of magnetic beads has also been studied by adding different nucleic acid blocks. The "leg" of the DNA walker could hybridize with a hairpin structure DNA named H1 and lead to the opening of it. And the newly exposed stem would interact with a primer. A strand exchange has happened with the assistance of polymerase and dNTPs, so that the "leg" has been displaced and the DNA walker could be pushed to move on the surface. But the nucleic acid blocks could increase steric hindrance and obstruct this process, which is similar to the behavior of human beings walking on craggy paths. Through changing these blocks, such as the structure, the amount, and the length of blocks, the movement of the DNA walker has been controlled. What's more, the results of its application for DNA detection are satisfactory. The limit of detection is 21.6 pM. Also, this method has been successfully applied in complex biological samples. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Ningxing Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Mingyuan Du
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Songbai Tian
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xinghu Ji
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Zhike He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, China.
| |
Collapse
|
34
|
Rao J, Liao J, Bu Y, Wang Y, Hu X, Long G, Huang M, Zhong L, Yang X, Liao F. Ampholytic ion-exchange materials coated with small zwitterions for high-efficacy purification of ionizable soluble biomacromolecules. Int J Biol Macromol 2018; 120:2234-2241. [PMID: 30092309 DOI: 10.1016/j.ijbiomac.2018.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/02/2018] [Accepted: 08/05/2018] [Indexed: 01/17/2023]
Abstract
For the purification of soluble proteins and nucleic acids through ion-exchange, the ampholytic ion-exchange materials (AIEMs) were designed, which possessed both short aliphatic carboxyl and short aliphatic amines/imidazole at optimized ratios on solid supports coated with high density of small zwitterions; under optimized conditions, the soluble ionizable biomacromolecules were adsorbed on those AIEMs via electrostatic attractions and eluted effectively through electrostatic repulsions. As the proof-of-concept, magnetic submicron particles bearing short aliphatic carboxyl and the coats of small zwitterion served as the starting solid supports, which were conjugated with lysine alone, or with lysine plus glycine or N,N‑dimethylethylenediamine, to yield magnetic AIEMs whose surfaces possessed zero net charges at different pH. Such magnetic AIEMs exhibited ideal efficacy to release acid red 13 as an anion at the elution pH optimized for strong electrostatic repulsions; those magnetic AIEMs were proven absorbing under optimized conditions for the purification of soluble proteins stable at pH close to their isoelectric points and solid-phase extraction of nucleic acids in applicable biological mixtures. Therefore, the designed AIEMs are promising for the high-efficacy purification of ionizable soluble biomacromolecules.
Collapse
Affiliation(s)
- Jingjing Rao
- College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Juan Liao
- Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Youquan Bu
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yitao Wang
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaolei Hu
- College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Gaobo Long
- Chongqing Bolanying Biotechnology Co. Ltd., Xiyong, Shapingba, Chongqing 401332, China
| | - Mingtong Huang
- Chongqing Bolanying Biotechnology Co. Ltd., Xiyong, Shapingba, Chongqing 401332, China
| | - Luhui Zhong
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 401135, China
| | - Xiaolan Yang
- College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Fei Liao
- College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 401135, China.
| |
Collapse
|
35
|
Lee AHF, Gessert SF, Chen Y, Sergeev NV, Haghiri B. Preparation of iron oxide silica particles for Zika viral RNA extraction. Heliyon 2018; 4:e00572. [PMID: 29556569 PMCID: PMC5854921 DOI: 10.1016/j.heliyon.2018.e00572] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/05/2017] [Accepted: 03/08/2018] [Indexed: 12/19/2022] Open
Abstract
In this work, a robust synthetic pathway for magnetic core preparation and silica surface coating of magnetic microparticles is presented. Silica-coated magnetic particles are widely used to extract DNA and RNA from various biological samples. We present a novel route for the synthesis of iron oxide silica particles (Fe3O4@Silica) and demonstrate their performance for extracting ZIKA viral RNA from serum. The iron (II, III) oxide (Fe3O4), magnetite core is first prepared by ammonia neutralization of ferrous and ferric chloride aqueous solution under argon, followed by the addition of citrate salt to stabilize the surface of the resultant magnetic nanospheres. After this one-pot, two-step synthesis, the magnetic nanospheres are consumed during silica coating by hydrolysis of tetraethoxysilane (TEOS) under alkaline condition. The final product is a sphere-like magnetic aggregate with a size range of 1–2 micron. By simply suspending the magnetic aggregates in guanidinium chloride solution, the silica surface can be prepared for RNA binding. The RNA extraction efficiency was evaluated by extracting ZIKA viral RNA from serum followed by a PCR-based assay. The data indicate excellent recovery of target RNA and removal of PCR inhibitors. This manufacturing procedure for the silica coated microparticles provides a low-cost, effective and ready for scale-up method whose performance is equivalent to commercial alternatives such as magnetic silica surface particles for DNA and RNA sample preparations. The cost of the clinical assays could be largely decreased due to the 100 fold reduction in cost by replacing the commercially available magnetic particles with the developed material for RNA extraction.
Collapse
Affiliation(s)
- Alex H F Lee
- Theranos Inc., 7333 Gateway Blvd, Newark, CA 94560, USA
| | | | - Yutao Chen
- Theranos Inc., 7333 Gateway Blvd, Newark, CA 94560, USA
| | | | - Babak Haghiri
- Theranos Inc., 7333 Gateway Blvd, Newark, CA 94560, USA
| |
Collapse
|
36
|
Beverly M, Hagen C, Slack O. Poly A tail length analysis of in vitro transcribed mRNA by LC-MS. Anal Bioanal Chem 2018; 410:1667-1677. [PMID: 29313076 DOI: 10.1007/s00216-017-0840-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/03/2017] [Accepted: 11/17/2017] [Indexed: 11/29/2022]
Abstract
The 3'-polyadenosine (poly A) tail of in vitro transcribed (IVT) mRNA was studied using liquid chromatography coupled to mass spectrometry (LC-MS). Poly A tails were cleaved from the mRNA using ribonuclease T1 followed by isolation with dT magnetic beads. Extracted tails were then analyzed by LC-MS which provided tail length information at single-nucleotide resolution. A 2100-nt mRNA with plasmid-encoded poly A tail lengths of either 27, 64, 100, or 117 nucleotides was used for these studies as enzymatically added poly A tails showed significant length heterogeneity. The number of As observed in the tails closely matched Sanger sequencing results of the DNA template, and even minor plasmid populations with sequence variations were detected. When the plasmid sequence contained a discreet number of poly As in the tail, analysis revealed a distribution that included tails longer than the encoded tail lengths. These observations were consistent with transcriptional slippage of T7 RNAP taking place within a poly A sequence. The type of RNAP did not alter the observed tail distribution, and comparison of T3, T7, and SP6 showed all three RNAPs produced equivalent tail length distributions. The addition of a sequence at the 3' end of the poly A tail did, however, produce narrower tail length distributions which supports a previously described model of slippage where the 3' end can be locked in place by having a G or C after the poly nucleotide region. Graphical abstract Determination of mRNA poly A tail length using magnetic beads and LC-MS.
Collapse
Affiliation(s)
- Michael Beverly
- Novartis Institutes of Biomedical Research, 700 Main Street, Cambridge, MA, 02139, USA.
| | - Caitlin Hagen
- Novartis Institutes of Biomedical Research, 700 Main Street, Cambridge, MA, 02139, USA
| | - Olga Slack
- Novartis Institutes of Biomedical Research, 700 Main Street, Cambridge, MA, 02139, USA
| |
Collapse
|
37
|
Magnetic Bead-Based Sandwich Immunoassay for Viral Pathogen Detection by Employing Gold Nanoparticle as Carrier. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0040-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Basha IHK, Ho ETW, Yousuff CM, Hamid NHB. Towards Multiplex Molecular Diagnosis-A Review of Microfluidic Genomics Technologies. MICROMACHINES 2017; 8:E266. [PMID: 30400456 PMCID: PMC6190060 DOI: 10.3390/mi8090266] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/30/2017] [Accepted: 07/16/2017] [Indexed: 12/21/2022]
Abstract
Highly sensitive and specific pathogen diagnosis is essential for correct and timely treatment of infectious diseases, especially virulent strains, in people. Point-of-care pathogen diagnosis can be a tremendous help in managing disease outbreaks as well as in routine healthcare settings. Infectious pathogens can be identified with high specificity using molecular methods. A plethora of microfluidic innovations in recent years have now made it increasingly feasible to develop portable, robust, accurate, and sensitive genomic diagnostic devices for deployment at the point of care. However, improving processing time, multiplexed detection, sensitivity and limit of detection, specificity, and ease of deployment in resource-limited settings are ongoing challenges. This review outlines recent techniques in microfluidic genomic diagnosis and devices with a focus on integrating them into a lab on a chip that will lead towards the development of multiplexed point-of-care devices of high sensitivity and specificity.
Collapse
Affiliation(s)
- Ismail Hussain Kamal Basha
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Eric Tatt Wei Ho
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Caffiyar Mohamed Yousuff
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Nor Hisham Bin Hamid
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| |
Collapse
|
39
|
Kudr J, Haddad Y, Richtera L, Heger Z, Cernak M, Adam V, Zitka O. Magnetic Nanoparticles: From Design and Synthesis to Real World Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E243. [PMID: 28850089 PMCID: PMC5618354 DOI: 10.3390/nano7090243] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022]
Abstract
The increasing number of scientific publications focusing on magnetic materials indicates growing interest in the broader scientific community. Substantial progress was made in the synthesis of magnetic materials of desired size, morphology, chemical composition, and surface chemistry. Physical and chemical stability of magnetic materials is acquired by the coating. Moreover, surface layers of polymers, silica, biomolecules, etc. can be designed to obtain affinity to target molecules. The combination of the ability to respond to the external magnetic field and the rich possibilities of coatings makes magnetic materials universal tool for magnetic separations of small molecules, biomolecules and cells. In the biomedical field, magnetic particles and magnetic composites are utilized as the drug carriers, as contrast agents for magnetic resonance imaging (MRI), and in magnetic hyperthermia. However, the multifunctional magnetic particles enabling the diagnosis and therapy at the same time are emerging. The presented review article summarizes the findings regarding the design and synthesis of magnetic materials focused on biomedical applications. We highlight the utilization of magnetic materials in separation/preconcentration of various molecules and cells, and their use in diagnosis and therapy.
Collapse
Affiliation(s)
- Jiri Kudr
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-61600 Brno, Czech Republic.
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic.
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-61600 Brno, Czech Republic.
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-61600 Brno, Czech Republic.
| | - Mirko Cernak
- CEPLANT R&D Centre for Low-Cost Plasma and Nanotechnology Surface Modifications, Masaryk University, Kotlarska 2, CZ-61137 Brno, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-61600 Brno, Czech Republic.
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-61600 Brno, Czech Republic.
| |
Collapse
|
40
|
Current Nucleic Acid Extraction Methods and Their Implications to Point-of-Care Diagnostics. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9306564. [PMID: 28785592 PMCID: PMC5529626 DOI: 10.1155/2017/9306564] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
Nucleic acid extraction (NAE) plays a vital role in molecular biology as the primary step for many downstream applications. Many modifications have been introduced to the original 1869 method. Modern processes are categorized into chemical or mechanical, each with peculiarities that influence their use, especially in point-of-care diagnostics (POC-Dx). POC-Dx is a new approach aiming to replace sophisticated analytical machinery with microanalytical systems, able to be used near the patient, at the point of care or point of need. Although notable efforts have been made, a simple and effective extraction method is still a major challenge for widespread use of POC-Dx. In this review, we dissected the working principle of each of the most common NAE methods, overviewing their advantages and disadvantages, as well their potential for integration in POC-Dx systems. At present, it seems difficult, if not impossible, to establish a procedure which can be universally applied to POC-Dx. We also discuss the effects of the NAE chemicals upon the main plastic polymers used to mass produce POC-Dx systems. We end our review discussing the limitations and challenges that should guide the quest for an efficient extraction method that can be integrated in a POC-Dx system.
Collapse
|
41
|
Development of a microarray-based assay for rapid monitoring of genetic variants of West Nile virus circulating in the United States. J Virol Methods 2017; 239:17-25. [DOI: 10.1016/j.jviromet.2016.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/30/2016] [Accepted: 10/25/2016] [Indexed: 12/23/2022]
|
42
|
Nehilla BJ, Hill JJ, Srinivasan S, Chen YC, Schulte TH, Stayton PS, Lai JJ. A Stimuli-Responsive, Binary Reagent System for Rapid Isolation of Protein Biomarkers. Anal Chem 2016; 88:10404-10410. [PMID: 27686335 PMCID: PMC6750004 DOI: 10.1021/acs.analchem.6b01961] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Magnetic microbeads exhibit rapid separation characteristics and are widely employed for biomolecule and cell isolations in research laboratories, clinical diagnostics assays, and cell therapy manufacturing. However, micrometer particle diameters compromise biomarker recognition, which leads to long incubation times and significant reagent demands. Here, a stimuli-responsive binary reagent system is presented that combines the nanoscale benefits of efficient biomarker recognition and the microscale benefits of rapid magnetic separation. This system comprises magnetic nanoparticles and polymer-antibody (Ab) conjugates that transition from hydrophilic nanoscale reagents to microscale aggregates in response to temperature stimuli. The binary reagent system was benchmarked against Ab-labeled Dynabeads in terms of biomarker isolation kinetics, assay speed, and reagent needs. Surface plasmon resonance (SPR) measurements showed that polymer conjugation did not significantly alter the Ab's binding affinity or kinetics. ELISA analysis showed that the unconjugated Ab, polymer-Ab conjugates, and Ab-labeled Dynabeads exhibited similar equilibrium dissociation constants (Kd), ∼2 nM. However, the binary reagent system isolated HIV p24 antigen from spiked serum specimens (150 pg/mL) much more quickly than Dynabeads, which resulted in shorter binding times by tens of minutes, or about 30-50% shorter overall assay times. The binary reagent system showed improved performance because the Ab molecules were not conjugated to large, solid microparticle surfaces. This stimuli-responsive binary reagent system illustrates the potential advantages of nanoscale reagents in molecule and cell isolations for both research and clinical applications.
Collapse
Affiliation(s)
| | - John J. Hill
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| | - Selvi Srinivasan
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| | - Yen-Chi Chen
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| | - Thomas H. Schulte
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| | - Patrick S. Stayton
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| | - James J. Lai
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| |
Collapse
|
43
|
Berry SM, Pezzi HM, LaVanway AJ, Guckenberger D, Anderson M, Beebe DJ. AirJump: Using Interfaces to Instantly Perform Simultaneous Extractions. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15040-5. [PMID: 27249333 PMCID: PMC5058634 DOI: 10.1021/acsami.6b02555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Analyte isolation is an important process that spans a range of biomedical disciplines, including diagnostics, research, and forensics. While downstream analytical techniques have advanced in terms of both capability and throughput, analyte isolation technology has lagged behind, increasingly becoming the bottleneck in these processes. Thus, there exists a need for simple, fast, and easy to integrate analyte separation protocols to alleviate this bottleneck. Recently, a new class of technologies has emerged that leverages the movement of paramagnetic particle (PMP)-bound analytes through phase barriers to achieve a high efficiency separation in a single or a few steps. Specifically, the passage of a PMP/analyte aggregate through a phase interface (aqueous/air in this case) acts to efficiently "exclude" unbound (contaminant) material from PMP-bound analytes with higher efficiency than traditional washing-based solid-phase extraction (SPE) protocols (i.e., bind, wash several times, elute). Here, we describe for the first time a new type of "exclusion-based" sample preparation, which we term "AirJump". Upon realizing that much of the contaminant carryover stems from interactions with the sample vessel surface (e.g., pipetting residue, wetting), we aim to eliminate the influence of that factor. Thus, AirJump isolates PMP-bound analyte by "jumping" analyte directly out of a free liquid/air interface. Through careful characterization, we have demonstrated the validity of AirJump isolation through comparison to traditional washing-based isolations. Additionally, we have confirmed the suitability of AirJump in three important independent biological isolations, including protein immunoprecipitation, viral RNA isolation, and cell culture gene expression analysis. Taken together, these data sets demonstrate that AirJump performs efficiently, with high analyte yield, high purity, no cross contamination, rapid time-to-isolation, and excellent reproducibility.
Collapse
|
44
|
Zhang Y, Dong C, Su L, Wang H, Gong X, Wang H, Liu J, Chang J. Multifunctional Microspheres Encoded with Upconverting Nanocrystals and Magnetic Nanoparticles for Rapid Separation and Immunoassays. ACS APPLIED MATERIALS & INTERFACES 2016; 8:745-753. [PMID: 26653130 DOI: 10.1021/acsami.5b09913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Immunoassays based on the downconversion target materials (organic dyes or quantum dots) lead to fairly strong spectral interference between the coded signal and reporter signal, which seriously affects the detection accuracy and hampers their applications. In this work, a new kind of upconverting nanocrystals encoded magnetic microspheres (UCNMMs) were designed and prepared successfully to solve the problem mentioned above. The UCNMMs were obtained by incorporating magnetic Fe3O4 nanoparticles and upconverting nanocrystals with polystyrene microspheres. Due to that upconverting nanocrystals (UCNs) and reporter signals are excitated by near-infrared and UV/visible light separately, immunoassays based on UCNMMs do not occur optical spectral interferences. Furthermore, these new functionalized UCNMMs have excellent properties in binding biomolecules and fast separating, which would have large potential applications in multiplexed assays.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Nanobiotechnology, School of Life Sciences, Tianjin University , Tianjin, 300072, People's Republic of China
| | - Chunhong Dong
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin University , Tianjin, 300072, People's Republic of China
| | - Lin Su
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin University , Tianjin, 300072, People's Republic of China
| | - Hanjie Wang
- Institute of Nanobiotechnology, School of Life Sciences, Tianjin University , Tianjin, 300072, People's Republic of China
| | - Xiaoqun Gong
- Institute of Nanobiotechnology, School of Life Sciences, Tianjin University , Tianjin, 300072, People's Republic of China
| | - Huiquan Wang
- School of Electronics and Information Engineering, Tianjin Polytechnic University , Tianjin 300387, People's Republic of China
| | - Junqing Liu
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin University , Tianjin, 300072, People's Republic of China
| | - Jin Chang
- Institute of Nanobiotechnology, School of Life Sciences, Tianjin University , Tianjin, 300072, People's Republic of China
| |
Collapse
|
45
|
Sun XY, Li PZ, Ai B, Wang YB. Surface modification of MCM-41 and its application in DNA adsorption. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2015.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Akceoglu GA, Li OL, Saito N. Adsorption and desorption of DNA tuned by hydroxyl groups in graphite oxides-based solid extraction material. Colloids Surf B Biointerfaces 2015; 136:1-6. [PMID: 26355811 DOI: 10.1016/j.colsurfb.2015.07.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 11/28/2022]
Abstract
The extraction of DNA is the most crucial method used in molecular biology. Up to date silica matrices has been widely applied as solid support for selective DNA adsorption and extraction. However, since adsorption force of SiOH functional groups is much greater than that of desorption force, the DNA extraction efficiency of silica surfaces is limited. In order to increase the DNA extraction yield, a new surface with different functional groups which possess of greater desorption property is required. In this study, we proposed cellulose/graphite oxide (GO) composite as an alternative material for DNA adsorption and extraction. GO/Cellulose composite provides the major adsorption and desorption of DNA by COH, which belongs to alkyl or phenol type of OH functional group. Compared to SiOH, COH is less polarized and reactive, therefore the composite might provide a higher desorption of DNA during the elution process. The GO/cellulose composite were prepared in spherical structure by mixing urea, cellulose, NaOH, Graphite oxide and water. The concentration of GO within the composites were controlled to be 0-4.15 wt.%. The extraction yield of DNA increased with increasing weight percentage of GO. The highest yield was achieved at 4.15 wt.% GO, where the extraction efficiency was reported as 660.4 ng/μl when applying 2M GuHCl as the binding buffer. The absorbance ratios between 260 nm and 280 nm (A260/A280) of the DNA elution was demonstrated as 1.86, indicating the extracted DNA consisted of high purity. The results proved that GO/cellulose composite provides a simple method for selective DNA extraction with high extraction efficiency of pure DNA.
Collapse
Affiliation(s)
- Garbis Atam Akceoglu
- Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Japan
| | - Oi Lun Li
- Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Japan; Green Mobility Collaborative Research Center, Nagoya University, Japan
| | - Nagahiro Saito
- Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Japan; Green Mobility Collaborative Research Center, Nagoya University, Japan; Socıal Innovation Design Center (SIDC), Instıtute of Innovation for Future Society, Nagoya University, Japan.
| |
Collapse
|
47
|
Mertes F, Lichtner B, Kuhl H, Blattner M, Otte J, Wruck W, Timmermann B, Lehrach H, Adjaye J. Combined ultra-low input mRNA and whole-genome sequencing of human embryonic stem cells. BMC Genomics 2015; 16:925. [PMID: 26564201 PMCID: PMC4643517 DOI: 10.1186/s12864-015-2025-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/07/2015] [Indexed: 12/21/2022] Open
Abstract
Background Next Generation Sequencing has proven to be an exceptionally powerful tool in the field of genomics and transcriptomics. With recent development it is nowadays possible to analyze ultra-low input sample material down to single cells. Nevertheless, investigating such sample material often limits the analysis to either the genome or transcriptome. We describe here a combined analysis of both types of nucleic acids from the same sample material. Methods The method described enables the combined preparation of amplified cDNA as well as amplified whole-genome DNA from an ultra-low input sample material derived from a sub-colony of in-vitro cultivated human embryonic stem cells. cDNA is prepared by the application of oligo-dT coupled magnetic beads for mRNA capture, first strand synthesis and 3’-tailing followed by PCR. Whole-genome amplified DNA is prepared by Phi29 mediated amplification. Illumina sequencing is applied to short fragment libraries prepared from the amplified samples. Results We developed a protocol which enables the combined analysis of the genome as well as the transcriptome by Next Generation Sequencing from ultra-low input samples. The protocol was evaluated by sequencing sub-colony structures from human embryonic stem cells containing 150 to 200 cells. The method can be adapted to any available sequencing system. Conclusions To our knowledge, this is the first report where sub-colonies of human embryonic stem cells have been analyzed both at the genomic as well as transcriptome level. The method of this proof of concept study may find useful practical applications for cases where only a limited number of cells are available, e.g. for tissues samples from biopsies, tumor spheres, circulating tumor cells and cells from early embryonic development. The results we present demonstrate that a combined analysis of genomic DNA and messenger RNA from ultra-low input samples is feasible and can readily be applied to other cellular systems with limited material available.
Collapse
Affiliation(s)
- Florian Mertes
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany. .,Molecular Exposomics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| | - Björn Lichtner
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany.
| | - Heiner Kuhl
- Next Generation Sequencing Group, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany.
| | - Mirjam Blattner
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany.
| | - Jörg Otte
- Institute for stem cell research and regenerative medicine, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Wasco Wruck
- Institute for stem cell research and regenerative medicine, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Bernd Timmermann
- Next Generation Sequencing Group, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany.
| | - Hans Lehrach
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany.
| | - James Adjaye
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany. .,Institute for stem cell research and regenerative medicine, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany.
| |
Collapse
|