1
|
Electrochemical and thermal detection of allergenic substance lysozyme with molecularly imprinted nanoparticles. Anal Bioanal Chem 2023:10.1007/s00216-023-04638-2. [PMID: 36905407 PMCID: PMC10329058 DOI: 10.1007/s00216-023-04638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/25/2023] [Indexed: 03/12/2023]
Abstract
Lysozyme (LYZ) is a small cationic protein which is widely used for medical treatment and in the food industry to act as an anti-bacterial agent; however, it can trigger allergic reactions. In this study, high-affinity molecularly imprinted nanoparticles (nanoMIPs) were synthesized for LYZ using a solid-phase approach. The produced nanoMIPs were electrografted to screen-printed electrodes (SPEs), disposable electrodes with high commercial potential, to enable electrochemical and thermal sensing. Electrochemical impedance spectroscopy (EIS) facilitated fast measurement (5-10 min) and is able to determine trace levels of LYZ (pM) and can discriminate between LYZ and structurally similar proteins (bovine serum albumin, troponin-I). In tandem, thermal analysis was conducted with the heat transfer method (HTM), which is based on monitoring the heat transfer resistance at the solid-liquid interface of the functionalized SPE. HTM as detection technique guaranteed trace-level (fM) detection of LYZ but needed longer analysis time compared to EIS measurement (30 min vs 5-10 min). Considering the versatility of the nanoMIPs which can be adapted to virtually any target of interest, these low-cost point-of-care sensors hold great potential to improve food safety.
Collapse
|
2
|
Woźnica M, Sobiech M, Luliński P. A Fusion of Molecular Imprinting Technology and Siloxane Chemistry: A Way to Advanced Hybrid Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:248. [PMID: 36677999 PMCID: PMC9863567 DOI: 10.3390/nano13020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Molecular imprinting technology is a well-known strategy to synthesize materials with a predetermined specificity. For fifty years, the "classical" approach assumed the creation of "memory sites" in the organic polymer matrix by a template molecule that interacts with the functional monomer prior to the polymerization and template removal. However, the phenomenon of a material's "memory" provided by the "footprint" of the chemical entity was first observed on silica-based materials nearly a century ago. Through the years, molecular imprinting technology has attracted the attention of many scientists. Different forms of molecularly imprinted materials, even on the nanoscale, were elaborated, predominantly using organic polymers to induce the "memory". This field has expanded quickly in recent years, providing versatile tools for the separation or detection of numerous chemical compounds or even macromolecules. In this review, we would like to emphasize the role of the molecular imprinting process in the formation of highly specific siloxane-based nanomaterials. The distinct chemistry of siloxanes provides an opportunity for the facile functionalization of the surfaces of nanomaterials, enabling us to introduce additional properties and providing a way for vast applications such as detectors or separators. It also allows for catalyzing chemical reactions providing microreactors to facilitate organic synthesis. Finally, it determines the properties of siloxanes such as biocompatibility, which opens the way to applications in drug delivery and nanomedicine. Thus, a brief outlook on the chemistry of siloxanes prior to the discussion of the current state of the art of siloxane-based imprinted nanomaterials will be provided. Those aspects will be presented in the context of practical applications in various areas of chemistry and medicine. Finally, a brief outlook of future perspectives for the field will be pointed out.
Collapse
|
3
|
Zhang W, Zhang Y, Wang R, Zhang P, Zhang Y, Randell E, Zhang M, Jia Q. A review: Development and application of surface molecularly imprinted polymers toward amino acids, peptides, and proteins. Anal Chim Acta 2022; 1234:340319. [DOI: 10.1016/j.aca.2022.340319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/09/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022]
|
4
|
Preparation of C-Terminal Epitope Imprinted Particles Via Reversible Addition-Fragmentation Chain Transfer Polymerization and Zn2+ Chelating Strategy: Selective Recognition of Cytochrome c. Chromatographia 2022. [DOI: 10.1007/s10337-022-04180-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
N-terminal epitope surface imprinted particles for high selective cytochrome c recognition prepared by reversible addition- fragmentation chain transfer strategy. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02134-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Kotyrba A, Dinc M, Mizaikoff B. Development of Silica Nanoparticle Supported Imprinted Polymers for Selective Lysozyme Recognition. NANOMATERIALS 2021; 11:nano11123287. [PMID: 34947635 PMCID: PMC8705943 DOI: 10.3390/nano11123287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 01/24/2023]
Abstract
Protein imprinted MIPs show notable potential for applications in many analytical areas such as clinical analysis, medical diagnostics and environmental monitoring, but also in drug delivery scenarios. In this study, we present various modifications of two different synthesis routes to create imprinted core-shell particles serving as a synthetic recognition material for the protein hen egg white (HEW) lysozyme. HEW lysozyme is used as food additive E 1105 for preservation due to its antibacterial effects. For facilitating quality and regulatory control analysis in food matrices, it is necessary to apply suitable isolation methods as potentially provided by molecularly imprinted materials. The highest binding capacity achieved herein was 58.82 mg/g with imprinting factors ranging up to 2.74, rendering these materials exceptionally suitable for selectively isolating HEW lysozyme.
Collapse
Affiliation(s)
- Anika Kotyrba
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany;
| | - Mehmet Dinc
- Hahn-Schickard, Ulm, Sedanstraße 14, 89077 Ulm, Germany;
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany;
- Hahn-Schickard, Ulm, Sedanstraße 14, 89077 Ulm, Germany;
- Correspondence:
| |
Collapse
|
7
|
Arabi M, Ostovan A, Li J, Wang X, Zhang Z, Choo J, Chen L. Molecular Imprinting: Green Perspectives and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100543. [PMID: 34145950 DOI: 10.1002/adma.202100543] [Citation(s) in RCA: 308] [Impact Index Per Article: 102.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Indexed: 05/04/2023]
Abstract
Advances in revolutionary technologies pose new challenges for human life; in response to them, global responsibility is pushing modern technologies toward greener pathways. Molecular imprinting technology (MIT) is a multidisciplinary mimic technology simulating the specific binding principle of enzymes to substrates or antigens to antibodies; along with its rapid progress and wide applications, MIT faces the challenge of complying with green sustainable development requirements. With the identification of environmental risks associated with unsustainable MIT, a new aspect of MIT, termed green MIT, has emerged and developed. However, so far, no clear definition has been provided to appraise green MIT. Herein, the implementation process of green chemistry in MIT is demonstrated and a mnemonic device in the form of an acronym, GREENIFICATION, is proposed to present the green MIT principles. The entire greenificated imprinting process is surveyed, including element choice, polymerization implementation, energy input, imprinting strategies, waste treatment, and recovery, as well as the impacts of these processes on operator health and the environment. Moreover, assistance of upgraded instrumentation in deploying greener goals is considered. Finally, future perspectives are presented to provide a more complete picture of the greenificated MIT road map and to pave the way for further development.
Collapse
Affiliation(s)
- Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
8
|
Piloto AML, Ribeiro DSM, Rodrigues SSM, Santos JLM, Sampaio P, Sales G. Imprinted Fluorescent Cellulose Membranes for the On-Site Detection of Myoglobin in Biological Media. ACS APPLIED BIO MATERIALS 2021; 4:4224-4235. [PMID: 35006835 DOI: 10.1021/acsabm.1c00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work, the conjugation of molecularly imprinted polymers (MIPs) to quantum dots (QDs) was successfully applied in the assembly of an imprinted cellulose membrane [hydroxy ethyl cellulose (HEC)/MIP@QDs] for the specific recognition of the cardiac biomarker myoglobin (Myo) as a sensitive, user-friendly, and portable system with the potential for point-of-care (POC) applications. The concept is to use the MIPs as biorecognition elements, previously prepared on the surface of semiconductor cadmium telluride QDs as detection particles. The fluorescent quenching of the membrane occurred with increasing concentrations of Myo, showing linearity in the interval range of 7.39-291.3 pg/mL in a1000-fold diluted human serum. The best membrane showed a linear response below the cutoff values for myocardial infarction (23 ng/mL), a limit of detection of 3.08 pg/mL, and an imprinting factor of 1.65. The incorporation of the biorecognition element MIPs on the cellulose substrate brings an approach toward a portable and user-friendly device in a sustainable manner. Overall, the imprinted membranes display good stability and selectivity toward Myo when compared with the nonimprinted membranes (HEC/NIP@QDs) and have the potential to be applied as a sensitive system for Myo detection in the presence of other proteins. Moreover, the conjugation of MIPs to QDs increases the sensitivity of the system for an optical label-free detection method, reaching concentration levels with clinical significance.
Collapse
Affiliation(s)
- Ana Margarida L Piloto
- BioMark Sensor Research, School of Engineering of the Polytechnic Institute of Porto, 4249-015 Porto, Portugal.,CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal
| | - David S M Ribeiro
- Associated Laboratory for Green Chemistry LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - S Sofia M Rodrigues
- Associated Laboratory for Green Chemistry LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - João L M Santos
- Associated Laboratory for Green Chemistry LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - Paula Sampaio
- i3S-Institute for Research and Innovation in Health, Porto University, 4200-135 Porto, Portugal.,IBMC-Institute of Molecular and Cell Biology, Porto University, 4200-135 Porto, Portugal
| | - Goreti Sales
- BioMark Sensor Research, School of Engineering of the Polytechnic Institute of Porto, 4249-015 Porto, Portugal.,CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal.,BioMark/UC, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
9
|
Ullah B, Khan SR, Ali S, Jamil S. Synthesis, parameters, properties and applications of responsive molecularly imprinted microgels: a review. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Responsive molecularly imprinted microgels (MIGs) have gained a lot of interest due to their responsive specificity and selectivity for target compounds. Study on MIGs is rapidly increasing due to their quick responsive behavior in various stimuli like pH and temperature. MIGs show unique property of morphology control on in-situ synthesis of nanoparticles in response of variation in reactant concentration. Literature related to synthesis, parameters, characterization, applications and prospects of MIGs are critically reviewed here. Range of templates, monomers, initiators and crosslinkers are summarized for designing of desired MIGs. This review article describes effect of variation in reactants combination and composition on morphology, imprinting factor and percentage yield of MIGs. Hydrolysis of similar templates using MIGs is also described. Relation between percentage hydrolysis and hydrolysis time of targets at different temperatures and template:monomer ratio is also analyzed. Possible imprinting modes of ionic/non-ionic templates and its series are also generalized on the basis of previous literature. MIGs are investigated as efficient anchoring vehicles for adsorption, catalysis, bio-sensing, drug delivery, inhibition and detection.
Collapse
Affiliation(s)
- Burhan Ullah
- Department of Chemistry , University of Agriculture , Faisalabad 38000 , Pakistan
| | - Shanza Rauf Khan
- Department of Chemistry , University of Agriculture , Faisalabad 38000 , Pakistan
| | - Sarmed Ali
- Department of Physics , University of Agriculture , Faisalabad 38000 , Pakistan
| | - Saba Jamil
- Department of Chemistry , University of Agriculture , Faisalabad 38000 , Pakistan
- Department of Materials Science and Engineering , Cornell University , Ithaca , NY 14853 , USA
| |
Collapse
|
10
|
Gonçalves MDL, Truta LAN, Sales MGF, Moreira FTC. Electrochemical Point-of Care (PoC) Determination of Interleukin-6 (IL-6) Using a Pyrrole (Py) Molecularly Imprinted Polymer (MIP) on a Carbon-Screen Printed Electrode (C-SPE). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1879108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- M. de Lurdes Gonçalves
- BioMark/ISEP, School of Engineering, Polytechnic of Porto, Porto, Portugal
- CEB, Centre of Biological Engineering, Minho University, Braga, Portugal
| | - Liliana A. N. Truta
- BioMark/ISEP, School of Engineering, Polytechnic of Porto, Porto, Portugal
- CEB, Centre of Biological Engineering, Minho University, Braga, Portugal
| | - M. Goreti F. Sales
- BioMark/UC, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
- CEB, Centre of Biological Engineering, Minho University, Braga, Portugal
| | - Felismina T. C. Moreira
- BioMark/ISEP, School of Engineering, Polytechnic of Porto, Porto, Portugal
- CEB, Centre of Biological Engineering, Minho University, Braga, Portugal
| |
Collapse
|
11
|
Pan M, Hong L, Xie X, Liu K, Yang J, Wang S. Nanomaterials‐Based Surface Protein Imprinted Polymers: Synthesis and Medical Applications. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| |
Collapse
|
12
|
Synthesis of a molecularly imprinted polymer using MOF-74(Ni) as matrix for selective recognition of lysozyme. Anal Bioanal Chem 2020; 412:7227-7236. [PMID: 32803301 DOI: 10.1007/s00216-020-02855-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 01/23/2023]
Abstract
A molecularly imprinted polymer and metal organic framework were combined to prepare protein imprinted material. MOF-74(Ni) was used as a matrix to prepare surface-imprinted material with lysozyme as a template and polydopamine as an imprinting polymer. MOF-74(Ni) not only provides a large surface area (150.0 m2/g) to modify the polymer layer with more recognition sites (Wt (Ni) = 42.24%), but also facilitates the immobilization of lysozyme by using the chelation between Ni2+ of the MOF-74(Ni) and protein. The thin polydopamine layer (10 nm) of the molecularly imprinted material (named MOF@PDA-MIP) enables surface imprinting. Benefiting from the thin polymer layer, MOF@PDA-MIP reached adsorption equilibrium within 10 min. The maximum adsorption capacity reaches 313.5 mg/g with the highest imprinting factor (IF) of 7.8. The specific recognition sites can distinguish target lysozyme from other proteins such as egg albumin (OVA), bovine serum albumin (BSA) and ribonuclease A (RNase A). The material was successfully applied to separation of lysozyme from egg white. Graphical abstract.
Collapse
|
13
|
Qu Y, Qin L, Liu X, Yang Y. Reasonable design and sifting of microporous carbon nanosphere-based surface molecularly imprinted polymer for selective removal of phenol from wastewater. CHEMOSPHERE 2020; 251:126376. [PMID: 32169694 DOI: 10.1016/j.chemosphere.2020.126376] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 05/13/2023]
Abstract
Highly selective surface molecularly imprinted polymer (SMIP) was prepared on glucose-derived microporous carbon nanospheres (GMCNs) by surface molecular imprinting technology for the removal of phenol from wastewater. GMCNs with rich pore structure and surface oxygenic functional groups were adopted as support materials, on which the active layers were constructed by grafting silane coupling agent 3-(methacryloyloxy) propyltrimethoxysilane. Then with phenol as template molecule, different types and amounts of functional monomer (including methacrylic acid and 4-vinylpyridine (4-VP)) were screened for optimizing imprinting conditions suitable for phenol adsorption, and a series of SMIP was obtained through crosslinking polymerization. The adsorption behaviors of SMIP were evaluated by UV spectrophotometry. The results show that, when 4-VP is used as functional monomer, the resultant 4-VP/SMIP exhibites an excellent adsorption capacity of 85.72 mg g-1. The relative selectivity factor for phenol against hydroquinone, p-nitrophenol and p-tert-butylphenol is 8.38, 7.96 and 6.67, respectively, indicating outstanding adsorption capacity and selectivity of 4-VP/SMIP. The pseudo-second-order model and Langmuir‒Freundlich model fit better than other models for the adsorption of phenol. 4-VP/SMIP is promising for selective removal and enrichment recovery towards phenol in wastewater.
Collapse
Affiliation(s)
- Yun Qu
- Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, 030024, China
| | - Lei Qin
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, 030024, China; Department of Chemical Engineering, Monash University, Australia
| | - Xuguang Liu
- Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, 030024, China.
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, 030024, China.
| |
Collapse
|
14
|
Xu J, Miao H, Wang J, Pan G. Molecularly Imprinted Synthetic Antibodies: From Chemical Design to Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906644. [PMID: 32101378 DOI: 10.1002/smll.201906644] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/27/2020] [Indexed: 05/25/2023]
Abstract
Billions of dollars are invested into the monoclonal antibody market every year to meet the increasing demand in clinical diagnosis and therapy. However, natural antibodies still suffer from poor stability and high cost, as well as ethical issues in animal experiments. Thus, developing antibody substitutes or mimics is a long-term goal for scientists. The molecular imprinting technique presents one of the most promising strategies for antibody mimicking. The molecularly imprinted polymers (MIPs) are also called "molecularly imprinted synthetic antibodies" (MISAs). The breakthroughs of key technologies and innovations in chemistry and material science in the last decades have led to the rapid development of MISAs, and their molecular affinity has become comparable to that of natural antibodies. Currently, MISAs are undergoing a revolutionary transformation of their applications, from initial adsorption and separation to the rising fields of biomedicine. Herein, the fundamental chemical design of MISAs is examined, and then current progress in biomedical applications is the focus. Meanwhile, the potential of MISAs as qualified substitutes or even to transcend the performance of natural antibodies is discussed from the perspective of frontier needs in biomedicines, to facilitate the rapid development of synthetic artificial antibodies.
Collapse
Affiliation(s)
- Jingjing Xu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
- Sino-European School of Technology of Shanghai University, Shanghai University, Shanghai, CN-200444, P. R. China
| | - Haohan Miao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Jixiang Wang
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| |
Collapse
|
15
|
Chu Z, Zhang W, Li D, Zhang L, Zhu M, Ge Z. Synthesis and chromatographic evaluation of poly(pentabromostyrene)-silica composite: A versatile stationary phase for separating both polar and non-polar aromatic compounds. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Magnetic mesoporous silica/graphene oxide based molecularly imprinted polymers for fast selective separation of bovine hemoglobin. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2573-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
17
|
Yang X, Sun Y, Xiang Y, Qiu F, Fu G. Controlled synthesis of PEGylated surface protein-imprinted nanoparticles. Analyst 2020; 144:5439-5448. [PMID: 31410417 DOI: 10.1039/c9an01221d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
High recognition selectivity has been the main object in developing protein-imprinted materials. Here, we demonstrate a novel strategy for the controlled synthesis of PEGylated surface protein-imprinted nanoparticles with reduced nonspecific binding, which is based on sequential two steps of surface-initiated reversible addition-fragmentation chain transfer aqueous precipitation polymerization (SI-RAFT APP). Click chemistry was employed to construct hydrophilic nanocores with both high-density RAFT chain transfer agents and template-capturing groups. Through the first-step SI-RAFT APP, protein-imprinted nanoshells were formed over the nanocores using lysozyme as a model template. By the second-step SI-RAFT APP, nonlinear PEG chains were grafted from the core-shell imprinted nanoparticles before the removal of the template. Both the thickness of the imprinted nanoshells and the length of the grafted chains could be readily controlled by the polymerization time. Thus the obtained PEGylated core-shell particles exhibited greatly improved template binding selectivity compared with the non-PEGylated controls, typically with the imprinting factor increasing from 2.1 to 9.1. Meanwhile, the PEGylation process did not impair but significantly enhance the protein binding capacity. The generality of the established approach was preliminarily proved by imprinting another template protein, bovine hemoglobin. This work represents the first example for the controlled synthesis and post-imprinting functionalization of surface protein-imprinted nanoparticles via SI-RAFT polymerization.
Collapse
Affiliation(s)
- Xue Yang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | | | | | | | | |
Collapse
|
18
|
Zhou L, Wang Y, Xing R, Chen J, Liu J, Li W, Liu Z. Orthogonal dual molecularly imprinted polymer-based plasmonic immunosandwich assay: A double characteristic recognition strategy for specific detection of glycoproteins. Biosens Bioelectron 2019; 145:111729. [PMID: 31581071 DOI: 10.1016/j.bios.2019.111729] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 12/27/2022]
Abstract
Sensitive and specific detection methods are critical to the detection of glycoproteins. Immunoassay has been a powerful tool for this purpose, in which antibodies or their mimics particularly molecularly imprinted polymers (MIPs) are used for specific recognition. Epitope and glycan are two structure features of a glycoprotein. However, immunoassays based on simultaneous recognition towards the two characteristics have been scarcely explored so far. Herein we present a new strategy called orthogonal dual molecularly imprinted polymer-based plasmonic immunosandwich assay (odMIP-PISA). It relies on double recognition towards a target glycoprotein by two different types of MIPs, using epitope-imprinted gold nanoparticles (AuNPs)-coated slide as capturing substrate to recognize the peptide epitope and glycans-imprinted Raman-active silver nanoparticles as labeling nanotags to recognize the glycans. Carcinoembryonic antigen (CEA), a routinely used marker for colon cancer, was used as a test glycoprotein. The orthogonal double recognition apparently improved the specificity, reducing the maximum cross-reactivity from 14.4% for epitope recognition and 15.2% for glycan recognition to 8.2% for double recognition. Meanwhile, the plasmonic nanostructure-based Raman detection provided ultrahigh sensitivity, yielding a limit of detection of 5.56 × 10-14 M (S/N = 10). Through measuring the CEA level in human serum, this method permitted differentiation of colon cancer patient from healthy individual. Compared with the traditional immunoassay, odMIP-PISA exhibited multiple advantages, including simplified procedure (6 steps), speed (30 min), reduced cost, and so on. Therefore, this new approach holds great promise in many applications particularly clinical diagnosis.
Collapse
Affiliation(s)
- Lingli Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yijia Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Rongrong Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Chen
- Department of Medical Oncology, Jiangsu Cancer Hospital, Nanjing, 210009, China
| | - Jia Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
19
|
Zhou J, Wang Y, Bu J, Zhang B, Zhang Q. Ni 2+-BSA Directional Coordination-Assisted Magnetic Molecularly Imprinted Microspheres with Enhanced Specific Rebinding to Target Proteins. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25682-25690. [PMID: 31246393 DOI: 10.1021/acsami.9b06507] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Protein imprinting technology is of interest in drug delivery, biosensing, solid-phase extraction, and so forth. However, the efficient recognition and separation of proteins have remained challenging to date. Toward this, under the assistance of Ni2+-bovine serum albumin (BSA) directional coordination strategy, magnetic BSA-imprinted materials had been synthesized via dopamine self-polymerization on hollow Fe3O4@mSiO2 microspheres (mSiO2 referred as mesoporous silica). The well-defined imprinted microspheres possessed more satisfactory adsorption capacity (266.99 mg/g), enhanced imprinting factor (5.45), and fast adsorption saturation kinetics (40 min) for BSA, superior to many previous reports. Benefiting from the coordinate interaction between Ni2+ and BSA, these fabricated microspheres exhibited excellent specificity not only in individual and competitive protein rebinding samples but also in bovine serum. Combined with the directional coordination method, the magnetic-imprinted composite materials to selectively capture target proteins could provide promising potential in applications.
Collapse
Affiliation(s)
- Jingjing Zhou
- MOE Key laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Science , Northwestern Polytechnical University , Xi'an 710072 , P. R. China
| | - Yufei Wang
- MOE Key laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Science , Northwestern Polytechnical University , Xi'an 710072 , P. R. China
| | - Jun Bu
- MOE Key laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Science , Northwestern Polytechnical University , Xi'an 710072 , P. R. China
| | - Baoliang Zhang
- MOE Key laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Science , Northwestern Polytechnical University , Xi'an 710072 , P. R. China
| | - Qiuyu Zhang
- MOE Key laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Science , Northwestern Polytechnical University , Xi'an 710072 , P. R. China
| |
Collapse
|
20
|
Liu L, Yang K, Li S, Zhang L, Zhang Y. Poly(ether sulfone) nanoparticles and controllably modified nanoparticles obtained through temperature-dependent cryogelation. J Appl Polym Sci 2019. [DOI: 10.1002/app.47485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lukuan Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116024 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Kaiguang Yang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| | - Senwu Li
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| |
Collapse
|
21
|
Xu Z, Deng P, Li J, Tang S, Cui Y. Modification of mesoporous silica with molecular imprinting technology: A facile strategy for achieving rapid and specific adsorption. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:684-693. [DOI: 10.1016/j.msec.2018.10.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/23/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022]
|
22
|
Cai W, Li HH, Lu ZX, Collinson MM. Bacteria assisted protein imprinting in sol-gel derived films. Analyst 2018; 143:555-563. [PMID: 29260166 DOI: 10.1039/c7an01509g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A hierarchical imprinting strategy was used to create protein imprints in a silicate film with a high binding capacity as well as selectivity toward the imprint protein and little specificity towards other proteins. In the first part of this work, rod-shaped bacteria were used as templates to create imprints in silica films of various thicknesses to open up the silica framework and increase the surface area exposed to solution. In the second part, the protein (e.g., cytochrome c (CYC) or green fluorescent protein (GFP)) was covalently attached to the surface of Bacillus subtilis and this protein-bacteria complex served as the imprint moiety. Atomic force microscopy and scanning electron microscopy were used to image the micron-size rod-shaped bacteria imprints formed on the silica surface. Fluorescence microscopy, which was used to follow the fabrication process with GFP as the representative protein, clearly demonstrated protein imprinting, protein removal and protein rebinding as well as protein specificity. Visible absorption spectroscopy using CYC as the imprint protein demonstrated relatively fast uptake kinetics and also good specificity against other proteins including bovine serum albumin (BSA), horseradish peroxidase (HRP), glucose oxidase (GOD), and lysozyme (LYZ). Collectively this work demonstrates a new surface bio-imprinting approach that generates recognition sites for proteins and provides a viable means to increase the binding capacity of such imprinted thin films.
Collapse
Affiliation(s)
- Wei Cai
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | | | | | | |
Collapse
|
23
|
Jia M, Yang J, Zhao YX, Liu ZS, Aisa HA. A strategy of improving the imprinting effect of molecularly imprinted polymer: Effect of heterogeneous macromolecule crowding. Talanta 2017; 175:488-494. [DOI: 10.1016/j.talanta.2017.07.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 11/29/2022]
|
24
|
|
25
|
Huang K, Chen Y, Zhou F, Zhao X, Liu J, Mei S, Zhou Y, Jing T. Integrated ion imprinted polymers-paper composites for selective and sensitive detection of Cd(II) ions. JOURNAL OF HAZARDOUS MATERIALS 2017; 333:137-143. [PMID: 28342354 DOI: 10.1016/j.jhazmat.2017.03.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 06/06/2023]
Abstract
Paper-based sensor is a new alternative technology to develop a portable, low-cost, and rapid analysis system in environmental chemistry. In this study, ion imprinted polymers (IIPs) using cadmium ions as the template were directly grafted on the surface of low-cost print paper based on the reversible addition-fragmentation chain transfer polymerization. It can be applied as a recognition element to selectively capture the target ions in the complex samples. The maximum adsorption capacity of IIPs composites was 155.2mgg-1 and the imprinted factor was more than 3.0. Then, IIPs-paper platform could be also applied as a detection element for highly selective and sensitive detection of Cd(II) ions without complex sample pretreatment and expensive instrument, due to the selective recognition, formation of dithizone-cadmium complexes and light transmission ability. Under the optimized condition, the linear range was changed from 1 to 100ngmL-1 and the limit of detection was 0.4ngmL-1. The results were in good agreement with the classic ICP-MS method. Furthermore, the proposed method can also be developed for detection of other heavy metals by designing of new IIPs.
Collapse
Affiliation(s)
- Kai Huang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health Wuhan, Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Hubei, 430030, Wuhan, China
| | - Ying Chen
- Hubei Center for Disease Control and Prevention, No. 6 ZhuoDao Quan North Road, 430079, Wuhan, China
| | - Feng Zhou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health Wuhan, Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Hubei, 430030, Wuhan, China
| | - Xiaoya Zhao
- Hubei Entry-Exit Inspection and Quarantine Bureau of PRC, No.588 Qingtaidadao Road, Hubei, 430022, Wuhan, China
| | - Jiafa Liu
- Hubei Center for Disease Control and Prevention, No. 6 ZhuoDao Quan North Road, 430079, Wuhan, China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health Wuhan, Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Hubei, 430030, Wuhan, China
| | - Yikai Zhou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health Wuhan, Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Hubei, 430030, Wuhan, China
| | - Tao Jing
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health Wuhan, Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Hubei, 430030, Wuhan, China.
| |
Collapse
|
26
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 603] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
27
|
Abstract
Stimuli-responsive polymers respond to a variety of external stimuli, which include optical, electrical, thermal, mechanical, redox, pH, chemical, environmental and biological signals. This paper is concerned with the process of forming such polymers by RAFT polymerization.
Collapse
|
28
|
Superparamagnetic nanocomposites based on surface imprinting for biomacromolecular recognition. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:1076-1080. [DOI: 10.1016/j.msec.2016.03.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/03/2016] [Accepted: 03/14/2016] [Indexed: 11/19/2022]
|
29
|
Wu K, Yang W, Jiao Y, Zhou C. A surface molecularly imprinted electrospun polyethersulfone (PES) fiber mat for selective removal of bilirubin. J Mater Chem B 2017; 5:5763-5773. [DOI: 10.1039/c7tb00643h] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Electrospinning and surface molecular imprinting were used together to prepare a surface molecularly imprinted electrospun polyethersulfone (PES) fiber mat for selective removal of bilirubin.
Collapse
Affiliation(s)
- Keke Wu
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou
- China
| | - Wufeng Yang
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou
- China
| | - Yanpeng Jiao
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou
- China
| | - Changren Zhou
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou
- China
| |
Collapse
|
30
|
Zhu W, Xu L, Zhu C, Li B, Xiao H, Jiang H, Zhou X. Magnetically controlled electrochemical sensing membrane based on multifunctional molecularly imprinted polymers for detection of insulin. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.09.108] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
YANG C, ZHOU XL, LIU YR, ZHANG Y, WANG J, TIAN LL, YAN YN. Extensive Imprinting Adaptability of Polyacrylamide-based Amphoteric Cryogels Against Protein Molecules. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60954-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Niu M, Pham-Huy C, He H. Core-shell nanoparticles coated with molecularly imprinted polymers: a review. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1930-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Ayadi H, Mekhalif T, Salmi Z, Carbonnier B, Djazi F, Chehimi MM. Molecularly imprinted PVC beads for the recognition of proteins. J Appl Polym Sci 2016. [DOI: 10.1002/app.43694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hassan Ayadi
- Département de Chimie; Université des Frères Mentouri; Route Ain El-Bey Constantine 25000 Algeria
- Laboratoire de Recherche sur la Physicochimie des Surfaces et Interfaces, Université 20 Août 1955; Skikda 21000 Algeria
| | - Tahar Mekhalif
- Laboratoire de Recherche sur la Physicochimie des Surfaces et Interfaces, Université 20 Août 1955; Skikda 21000 Algeria
| | - Zakaria Salmi
- Univ Paris Diderot, Sorbonne Paris Cité, ITODYS; UMR CNRS 7086, 15 rue J-A de Baïf Paris 75013 France
| | | | - Fayçal Djazi
- Laboratoire de Recherche sur la Physicochimie des Surfaces et Interfaces, Université 20 Août 1955; Skikda 21000 Algeria
| | - Mohamed M. Chehimi
- Univ Paris Diderot, Sorbonne Paris Cité, ITODYS; UMR CNRS 7086, 15 rue J-A de Baïf Paris 75013 France
- Université Paris Est, UMR 7182 CNRS, UPEC; Thiais 94320 France
| |
Collapse
|
34
|
Li S, Yang K, Deng N, Min Y, Liu L, Zhang L, Zhang Y. Thermoresponsive Epitope Surface-Imprinted Nanoparticles for Specific Capture and Release of Target Protein from Human Plasma. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5747-5751. [PMID: 26906290 DOI: 10.1021/acsami.5b11415] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Among various artificial antibodies, epitope imprinted polymer has been paid increasingly attention. To modulate the "adsorption and release" behavior by environment stimuli, N-isopropylacrylamide, was adopted to fabricate the thermoresponsive epitope imprinted sites. The prepared imprinted materials could adsorb 46.6 mg/g of target protein with the imprinting factor of 4.0. The template utilization efficiency could reach as high as 8.21%. More importantly, in the real sample, the materials could controllably capture the target protein from the human plasma at 45 °C and release it at 4 °C, which demonstrated the "on-demand" application potentials of such materials in the biomolecule recognition field.
Collapse
Affiliation(s)
- Senwu Li
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Kaiguang Yang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Nan Deng
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yi Min
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Lukuan Liu
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
- University of Chinese Academy of Sciences , Beijing 100049, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024, China
| | - Lihua Zhang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Yukui Zhang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| |
Collapse
|
35
|
Raim V, Zadok I, Srebnik S. Comparison of descriptors for predicting selectivity of protein-imprinted polymers. J Mol Recognit 2016; 29:391-400. [DOI: 10.1002/jmr.2538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 01/03/2016] [Accepted: 01/21/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Vladimir Raim
- Department of Chemical Engineering; Technion - Israel institute of Technology; Haifa 32000 Israel
| | - Israel Zadok
- Department of Chemical Engineering; Technion - Israel institute of Technology; Haifa 32000 Israel
| | - Simcha Srebnik
- Department of Chemical Engineering; Technion - Israel institute of Technology; Haifa 32000 Israel
| |
Collapse
|
36
|
Wang HS, Song M, Hang TJ. Functional Interfaces Constructed by Controlled/Living Radical Polymerization for Analytical Chemistry. ACS APPLIED MATERIALS & INTERFACES 2016; 8:2881-2898. [PMID: 26785308 DOI: 10.1021/acsami.5b10465] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The high-value applications of functional polymers in analytical science generally require well-defined interfaces, including precisely synthesized molecular architectures and compositions. Controlled/living radical polymerization (CRP) has been developed as a versatile and powerful tool for the preparation of polymers with narrow molecular weight distributions and predetermined molecular weights. Among the CRP system, atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) are well-used to develop new materials for analytical science, such as surface-modified core-shell particles, monoliths, MIP micro- or nanospheres, fluorescent nanoparticles, and multifunctional materials. In this review, we summarize the emerging functional interfaces constructed by RAFT and ATRP for applications in analytical science. Various polymers with precisely controlled architectures including homopolymers, block copolymers, molecular imprinted copolymers, and grafted copolymers were synthesized by CRP methods for molecular separation, retention, or sensing. We expect that the CRP methods will become the most popular technique for preparing functional polymers that can be broadly applied in analytical chemistry.
Collapse
Affiliation(s)
- Huai-Song Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University , Nanjing, 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education , Nanjing 210009, China
| | - Min Song
- Department of Pharmaceutical Analysis, China Pharmaceutical University , Nanjing, 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education , Nanjing 210009, China
| | - Tai-Jun Hang
- Department of Pharmaceutical Analysis, China Pharmaceutical University , Nanjing, 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education , Nanjing 210009, China
| |
Collapse
|
37
|
Qin L, Jia X, Yang Y, Liu X. Porous Carbon Microspheres: An Excellent Support To Prepare Surface Molecularly Imprinted Polymers for Selective Removal of Dibenzothiophene in Fuel Oil. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.5b02837] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lei Qin
- Key
Laboratory of Interface Science and Engineering in Advanced Materials
(Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, China
- College
of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaorui Jia
- Key
Laboratory of Interface Science and Engineering in Advanced Materials
(Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, China
- College
of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yongzhen Yang
- Key
Laboratory of Interface Science and Engineering in Advanced Materials
(Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, China
- Research
Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xuguang Liu
- Key
Laboratory of Interface Science and Engineering in Advanced Materials
(Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, China
- College
of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
38
|
Molecularly imprinted plasmonic nanosensor for selective SERS detection of protein biomarkers. Biosens Bioelectron 2016; 80:433-441. [PMID: 26874111 DOI: 10.1016/j.bios.2016.01.092] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/29/2016] [Accepted: 01/31/2016] [Indexed: 11/21/2022]
Abstract
Molecularly imprinted plasmonic nanosensor has been prepared via the rational design of an ultrathin polymer layer on the surface of gold nanorods imprinted with the target protein. This nanosensor enabled selective fishing-out of the target protein biomarker even from a complex real sample such as human serum. Sensitive SERS detection of the protein biomarkers with a strong Raman enhancement was achieved by formation of protein imprinted gold nanorods aggregates, stacking of protein imprinted gold nanorods onto a glass plate, or self-assembly of protein imprinted gold nanorods into close-packed array. High specificity and sensitivity of this method were demonstrated with a detection limit of at least 10(-8)mol/L for the target protein. This could provide a promising alternative for the currently used immunoassays and fluorescence detection, and offer an ultrasensitive, non-destructive, and label-free technique for clinical diagnosis applications.
Collapse
|
39
|
Chen F, Cai C, Chen X, Chen C. "Click on the bidirectional switch": the aptasensor for simultaneous detection of lysozyme and ATP with high sensitivity and high selectivity. Sci Rep 2016; 6:18814. [PMID: 26742854 PMCID: PMC4705532 DOI: 10.1038/srep18814] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/25/2015] [Indexed: 12/21/2022] Open
Abstract
A bifunctional and simple aptasensor was designed to one-spot simultaneously detect two analytes, lysozyme and ATP. The aptasensor was obtained by the electronic interaction between methyl violet (MV) and dsDNA. The dsDNA was obtained by hybridization of ATP aptamer and lysozyme aptamer. And we used the resonance light scattering (RLS) technique to detect the concentration of lysozyme and ATP. During the procedure of detection, the aptasensor works like a bidirectional switch, the corresponding side of the dsDNA will open when the target (lysozyme or ATP) "click" the aptamer, which results in corresponding RLS signal change. By the combination of the RLS technique, it is found that the changed RLS intensity was proportional to the concentration of lysozyme and ATP. The mixtures of ATP and lysozyme also met two binary function relations. The results indicated that the aptasensor could achieve simultaneous detection of ATP and lysozyme, the detection limits of ATP and lysozyme could reach 10(-11) M and 10(-12) M, respectively. The aptasensor shows potential application for small molecule and protein detection by RLS, it could extend the application of RLS technique.
Collapse
Affiliation(s)
- Feng Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Changqun Cai
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Xiaoming Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Chunyan Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
40
|
Li S, Yang K, Zhao B, Li X, Liu L, Chen Y, Zhang L, Zhang Y. Epitope imprinting enhanced IMAC (EI-IMAC) for highly selective purification of His-tagged protein. J Mater Chem B 2016; 4:1960-1967. [DOI: 10.1039/c5tb02505b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Selectivity of epitope imprinted sites is introduced on the IMAC surface through epitope surface imprinting. The obtained epitope imprinting enhanced IMAC (EI-IMAC) could purify His-tagged proteins with high selectivity without any major interference from the host proteins.
Collapse
Affiliation(s)
- Senwu Li
- National Chromatographic R. & A. Center
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Kaiguang Yang
- National Chromatographic R. & A. Center
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Baofeng Zhao
- National Chromatographic R. & A. Center
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Xiao Li
- National Chromatographic R. & A. Center
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Lukuan Liu
- National Chromatographic R. & A. Center
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Yuanbo Chen
- National Chromatographic R. & A. Center
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Lihua Zhang
- National Chromatographic R. & A. Center
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Yukui Zhang
- National Chromatographic R. & A. Center
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| |
Collapse
|
41
|
Qin L, Shi W, Liu W, Yang Y, Liu X, Xu B. Surface molecularly imprinted polymers grafted on ordered mesoporous carbon nanospheres for fuel desulfurization. RSC Adv 2016. [DOI: 10.1039/c5ra23582k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
By adopting OMCNS as a carrier, the corresponding desulfurization adsorbent SMIP/OMCNS possesses excellent adsorption capacity and selectivity towards DBT.
Collapse
Affiliation(s)
- Lei Qin
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology)
- Ministry of Education
- Taiyuan 030024
- China
- College of Chemistry and Chemical Engineering
| | - Weiping Shi
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology)
- Ministry of Education
- Taiyuan 030024
- China
- College of Chemistry and Chemical Engineering
| | - Weifeng Liu
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology)
- Ministry of Education
- Taiyuan 030024
- China
- Research Center of Advanced Materials Science and Technology
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology)
- Ministry of Education
- Taiyuan 030024
- China
- Research Center of Advanced Materials Science and Technology
| | - Xuguang Liu
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology)
- Ministry of Education
- Taiyuan 030024
- China
- College of Chemistry and Chemical Engineering
| | - Bingshe Xu
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology)
- Ministry of Education
- Taiyuan 030024
- China
- Research Center of Advanced Materials Science and Technology
| |
Collapse
|
42
|
Li W, Chen M, Xiong H, Wen W, He H, Zhang X, Wang S. Surface protein imprinted magnetic nanoparticles for specific recognition of bovine hemoglobin. NEW J CHEM 2016. [DOI: 10.1039/c5nj02879e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Magnetic molecular imprinting for recognition of bovine hemoglobin was prepared by combining the surface imprinting technique with two-stage core–shell sol–gel polymerization.
Collapse
Affiliation(s)
- Weiming Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
- P. R. China
| | - Miaomiao Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
- P. R. China
| | - Huayu Xiong
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
- P. R. China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
- P. R. China
| | - Hanping He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
- P. R. China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
- P. R. China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
- P. R. China
| |
Collapse
|
43
|
Xie X, Liu X, Pan X, Chen L, Wang S. Surface-imprinted magnetic particles for highly selective sulfonamides recognition prepared by reversible addition fragmentation chain transfer polymerization. Anal Bioanal Chem 2015; 408:963-70. [DOI: 10.1007/s00216-015-9190-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/17/2015] [Accepted: 11/12/2015] [Indexed: 11/28/2022]
|
44
|
Li Q, Yang K, Li S, Liu L, Zhang L, Liang Z, Zhang Y. Preparation of surface imprinted core-shell particles via a metal chelating strategy: specific recognition of porcine serum albumin. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1640-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Zhang H. Recent Advances in Macromolecularly Imprinted Polymers by Controlled Radical Polymerization Techniques. ACTA ACUST UNITED AC 2015. [DOI: 10.1515/molim-2015-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractMolecularly imprinted polymers (MIPs) are synthetic receptors with tailor-made recognition sites for the target molecules. Their high molecular recognition ability, good stability, easy preparation, and low cost make them highly promising substitutes for biological receptors. Recent years have witnessed rapidly increasing interest in the imprinting of biomacromolecules and especially proteins because of the great potential of these MIPs in such applications as proteome analysis, clinical diagnostics, and biomedicine. So far, some useful strategies have been developed for the imprinting of proteins and controlled radical polymerization techniques have proven highly versatile for such purpose. This mini-review describes recent developments in the controlled preparation of proteins-imprinted polymers via such advanced polymerization techniques.
Collapse
|