1
|
Lee AW, Chang PL, Liaw SK, Lu CH, Chen JK. Inflammation-Responsive Nanovalves of Polymer-Conjugated Dextran on a Hole Array of Silicon Substrate for Controlled Antibiotic Release. Polymers (Basel) 2022; 14:polym14173611. [PMID: 36080686 PMCID: PMC9459923 DOI: 10.3390/polym14173611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Poly(methacrylic acid) (PMAA) brushes were tethered on a silicon surface possessing a 500-nm hole array via atom transfer radical polymerization after the modification of the halogen group. Dextran-biotin (DB) was sequentially immobilized on the PMAA chains to obtain a P(MAA-DB) brush surrounding the hole edges on the silicon surface. After loading antibiotics inside the holes, biphenyl-4,4′-diboronic acid (BDA) was used to cross-link the P(MAA-DB) chains through the formation of boronate esters to cap the hole and block the release of the antibiotics. The boronate esters were disassociated with reactive oxygen species (ROS) to open the holes and release the antibiotics, thus indicating a reversible association. The total amount of drug inside the chip was approximately 52.4 μg cm−2, which could be released at a rate of approximately 1.6 μg h−1 cm−2 at a ROS concentration of 10 nM. The P(MAA-DB) brush-modified chip was biocompatible without significant toxicity toward L929 cells during the antibiotic release. The inflammation-triggered antibiotic release system based on a subcutaneous implant chip not only exhibits excellent efficacy against bacteria but also excellent biocompatibility, recyclability, and sensitivity, which can be easily extended to other drug delivery systems for numerous biomedical applications without phagocytosis- and metabolism-related issues.
Collapse
Affiliation(s)
- Ai-Wei Lee
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan
- Department of Materials and Science Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Pao-Lung Chang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan
| | - Shien-Kuei Liaw
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chien-Hsing Lu
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- Ph.D. Program in Translational Medicine, Institute of Biomedical Sciences, Rong-Hsing Research Center for Translational Medicine, National Chung-Hsing University, Taichung 40227, Taiwan
- Correspondence: (C.-H.L.); (J.-K.C.); Tel.: +886-2-27376523 (J.-K.C.); Fax: +886-2-27376544 (J.-K.C.)
| | - Jem-Kun Chen
- Department of Materials and Science Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Correspondence: (C.-H.L.); (J.-K.C.); Tel.: +886-2-27376523 (J.-K.C.); Fax: +886-2-27376544 (J.-K.C.)
| |
Collapse
|
2
|
Buhl KB, Agergaard AH, Lillethorup M, Nikolajsen JP, Pedersen SU, Daasbjerg K. Polymer Brush Coating and Adhesion Technology at Scale. Polymers (Basel) 2020; 12:E1475. [PMID: 32630138 PMCID: PMC7407671 DOI: 10.3390/polym12071475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 01/09/2023] Open
Abstract
Creating strong joints between dissimilar materials for high-performance hybrid products places high demands on modern adhesives. Traditionally, adhesion relies on the compatibility between surfaces, often requiring the use of primers and thick bonding layers to achieve stable joints. The coatings of polymer brushes enable the compatibilization of material surfaces through precise control over surface chemistry, facilitating strong adhesion through a nanometer-thin layer. Here, we give a detailed account of our research on adhesion promoted by polymer brushes along with examples from industrial applications. We discuss two fundamentally different adhesive mechanisms of polymer brushes, namely (1) physical bonding via entanglement and (2) chemical bonding. The former mechanism is demonstrated by e.g., the strong bonding between poly(methyl methacrylate) (PMMA) brush coated stainless steel and bulk PMMA, while the latter is shown by e.g., the improved adhesion between silicone and titanium substrates, functionalized by a hydrosilane-modified poly(hydroxyethyl methacrylate) (PHEMA) brush. This review establishes that the clever design of polymer brushes can facilitate strong bonding between metals and various polymer materials or compatibilize fillers or nanoparticles with otherwise incompatible polymeric matrices. To realize the full potential of polymer brush functionalized materials, we discuss the progress in the synthesis of polymer brushes under ambient and scalable industrial conditions, and present recent developments in atom transfer radical polymerization for the large-scale production of brush-modified materials.
Collapse
Affiliation(s)
- Kristian Birk Buhl
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK 8000 Aarhus C, Denmark; (K.B.B.); (A.H.A.); (J.P.N.)
| | - Asger Holm Agergaard
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK 8000 Aarhus C, Denmark; (K.B.B.); (A.H.A.); (J.P.N.)
| | | | - Jakob Pagh Nikolajsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK 8000 Aarhus C, Denmark; (K.B.B.); (A.H.A.); (J.P.N.)
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Steen Uttrup Pedersen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Kim Daasbjerg
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK 8000 Aarhus C, Denmark; (K.B.B.); (A.H.A.); (J.P.N.)
- Radisurf ApS, Arresoevej 5B, DK-8240 Risskov, Denmark
| |
Collapse
|
3
|
Optical assay of trypsin using a one-dimensional plasmonic grating of gelatin-modified poly(methacrylic acid). Mikrochim Acta 2020; 187:280. [PMID: 32314022 DOI: 10.1007/s00604-020-04251-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/30/2020] [Indexed: 01/06/2023]
Abstract
The geometry of resonant absorbers (RA) is varied by tryptic digestion to design a probe platform. The process includes fabrication of a line array of poly(methacrylic acid) (PMAA) brush as an RA, tailed by the immobilization of gelatin. The gelatin-modified PMAA RA is a kind of one-dimensional plasmonic grating, possessing an optical feature with a characteristic absorption peak. The growth of gelatin on PMAA RA resulted in a blue shift of the absorption peak from 465 to 263 nm. Trypsin catalyzes the hydrolysis of peptide bonds, breaking down gelatin into smaller peptides causing the change in geometry of RA. The gelatin of RA was digested in a wide linear range of activity of trypsin from 34 to 1088 U mL-1 resulting in a red shift of the absorption peak of RA from 263 to 474 nm within 10 min. The limit of detection achieved is 11 U mL-1 with ca. 1.9% standard deviation and 101.4% recovery of spiked serum samples. The chemical selectivity of the trypsin assay is evidenced by motoring the changes in a shift of the absorption peak of gelatin-modified PMAA RA using chymotrypsin and horseradish peroxidase. Graphical abstract Schematic representation of synthesis route of 1D gelatin grating on silicon surface for trypsin probing.
Collapse
|
4
|
Su SK, Lin FP, Huang CF, Lu CH, Chen JK. Coordination between Surface Lattice Resonances of Poly(glycidyl Methacrylate) Line Array and Surface Plasmon Resonances of CdS Quantum on Silicon Surface. Polymers (Basel) 2019; 11:E558. [PMID: 30960542 PMCID: PMC6473753 DOI: 10.3390/polym11030558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/08/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022] Open
Abstract
In this work, a unique hybrid system is proposed for one-dimensional gratings comprising of poly(glycidyl methacrylate) (PGMA) brushes and CdS quantum dots (CQDs). Generally, the emission of QDs is too weak to be observed in a dry state. Plasmonic resonances of the grating structures can be used to enhance the light emission or absorption of CQDs. The interaction between PGMA plasmonic nanostructures and inorganic CQDs plays a crucial role in engineering the light harvest, notably for optoelectronic applications. Extinction measurements of the hybrid system consisting of a PGMA grating and CQDs are reported. We designed one-dimensional gratings with various resolutions to tune the absorptance peaks of grating. PGMA grating grafted from a 1.5 µm resolution of trench arrays of photoresist exhibited absorptance peak at 395 nm, close to the absorption peak of CQDs, resulting in the photoluminescence enhancement of CQDs on the grating due to high charge carriers' recombination rate. Generally, the emission of quantum dots occurs under irradiation at characteristic wavelengths. Immobilizing QDs on the grating facilitates the emission of QDs under irradiation of full-wavelength light. Furthermore, the PGMA gratings with CQDs were immersed in various solvents to change the geometries resulting the shift of absorptance peak of grating. The proposed method could be applied for sensing the nature of the surrounding media and vice versa, as well as for various media of solvents.
Collapse
Affiliation(s)
- Shuenn-Kung Su
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Feng-Ping Lin
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Chih-Feng Huang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Chien-Hsing Lu
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung 40705, Taiwan.
- Ph. D. Program in Translational Medicine, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Jem-Kun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
- Taiwan Building Technology Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
5
|
Fabrication of device with poly(N-isopropylacrylamide)-b-ssDNA copolymer brush for resistivity study. J Nanobiotechnology 2017; 15:68. [PMID: 28982368 PMCID: PMC5629771 DOI: 10.1186/s12951-017-0303-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/23/2017] [Indexed: 11/10/2022] Open
Abstract
In this study, we grafted bromo-terminated poly(N-isopropylacrylamide) (PNIPAAm) brushes onto thin gold films deposited on silicon, and then reacted with NaN3 to produce azido-terminated PNIPAAm brushes. A probe sequence of single-stranded DNA (ssDNA) with a 4-pentynoic acid succinimidyl ester unit was grafted onto the azido-terminated PNIPAAm brushes through a click reaction, resulting in the formation of block copolymer brushes. The PNIPAAm-b-ssDNA copolymer brushes formed supramolecular complexes stabilized by bio-multiple hydrogen bonds (BMHBs), which enhanced the proton transfer and thereby decreased the resistivity of the structures. In addition, the optimal operation window for DNA detection ranges from 0 to 0.2 M of NaCl concentration. Therefore, the specimens were prepared in the PBS solution at 150 mM NaCl concentration for target hybridization. The supramolecular complex state of the PNIPAAm-b-ssDNA copolymer brushes transformed into the phase-separated state after the hybridization with 0.5 ng/µL of its target DNA sequence owing to the competition between BMHBs and complementary hydrogen bonds. This phase transformation of the PNIPAAm and probe segments inhibited the proton transfer and significantly increased the resistivity at 25 °C. Moreover, there were no significant changes in the resistivity of the copolymer brushes after hybridization with the target sequence at 45 °C. These results indicated that the phase-separated state of the PNIPAAm-b-ssDNA copolymer brushes, which was generally occurred above the LCST, can be substantially generated after hybridization with its target DNA sequence. By performing the controlled experiments, in the same manner, using another sequence with lengths similar to that of the target sequence without complementarity. In addition, the sequences featuring various degrees of complementarity were exploited to verify the phase separation behavior inside the PNIPAAm-b-ssDNA copolymer thin film.
Collapse
|
6
|
Zeng JR, Cheng CC, Lee AW, Wei PL, Chen JK. Visualization platform of one-dimensional gratings of tethered polyvinyltetrazole brushes on silicon surfaces for sensing of Cr(III). Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2294-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 603] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Liu YZ, Manivannan K, Lee AW, Huang YJ, Wei PL, Chen JK. Identification of DNA single-base mismatches by resistivity of poly(N-isopropylacrylamide)-block-ssDNA copolymer brush films at dual temperatures. RSC Adv 2017. [DOI: 10.1039/c6ra28270a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The resistivity of tethered PNIPAAm-b-ssDNA copolymer brushes can be exploited to detect a label-free target by homogeneous complexation and phase separation.
Collapse
Affiliation(s)
- Yi-Zu Liu
- Department of Materials Science and Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| | - Karthikeyan Manivannan
- Department of Materials Science and Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| | - Ai-Wei Lee
- Department of Anatomy and Cell Biology
- School of Medicine
- College of Medicine
- Taipei Medical University
- Taipei 110
| | - Yan-Jiun Huang
- Department of Surgery
- College of Medicine
- Division of Colorectal Surgery
- Taipei Medical University Hospital
- Taipei Medical University
| | - Po-Li Wei
- Cancer Center
- Division of General Surgery
- Department of Surgery
- Taipei Medical University Hospital
- College of Medicine
| | - Jem-Kun Chen
- Department of Materials Science and Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| |
Collapse
|
9
|
Panzarasa G, Soliveri G, Sparnacci K, Ardizzone S. Patterning of polymer brushes made easy using titanium dioxide: direct and remote photocatalytic lithography. Chem Commun (Camb) 2015; 51:7313-6. [DOI: 10.1039/c5cc00255a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Titanium dioxide photocatalytic lithography of initiator functionalized surfaces is proved for the realization of micropatterned polymer brushes.
Collapse
Affiliation(s)
- G. Panzarasa
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale “Amedeo Avogadro”
- Viale T. Michel 11
- 15100 Alessandria
- Italy
| | - G. Soliveri
- Dipartimento di Chimica
- Università degli Studi di Milano
- 20133 Milano
- Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM)
| | - K. Sparnacci
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale “Amedeo Avogadro”
- Viale T. Michel 11
- 15100 Alessandria
- Italy
| | - S. Ardizzone
- Dipartimento di Chimica
- Università degli Studi di Milano
- 20133 Milano
- Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM)
| |
Collapse
|
10
|
Yang HW, Lee AW, Huang CH, Chen JK. Characterization of poly(N-isopropylacrylamide)-nucleobase supramolecular complexes featuring bio-multiple hydrogen bonds. SOFT MATTER 2014; 10:8330-8340. [PMID: 25196131 DOI: 10.1039/c4sm01496k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study we employed poly(N-isopropylacrylamide) (PNIPAAm) as a matrix that we hybridized with five different nucleobase units (adenine, thymine, uracil, guanine, cytosine) to generate PNIPAAm-nucleobase supramolecular complexes (PNSCs) stabilized through bio-multiple hydrogen bonds (BMHBs). These nucleobase units interacted with PNIPAAm through BMHBs of various strengths, leading to competition between the BMHBs and the intramolecular hydrogen bonds (HBs) of PNIPAAm. The changes in morphology, crystalline structure, and thermoresponsive behavior of PNIPAAm were related to the strength of its BMHBs with the nucleobases. The strengths of the BMHBs followed the order guanine > adenine > thymine > cytosine > uracil, as verified through analyses of Fourier transform infrared spectra, lower critical solution temperatures, and inter-association equilibrium constants. The PNSCs also exhibited remarkable improvements in conductivity upon the formation of BMHBs, which facilitated proton transport. The neat PNIPAAm film was an insulator, but it transformed into a semiconductor after hybridizing with the nucleobases. In particular, the resistivity of the PNIPAAm-guanine supramolecular complex decreased to 1.35 × 10(5) ohm cm. The resistivity of the PNIPAAm-cytosine supramolecular complex increased significantly from 5.83 × 10(6) to 3 × 10(8) ohm cm upon increasing the temperature from 40 to 50 °C, suggesting that this material might have applicability in thermo-sensing. The ability to significantly improve the conductivity of hydrogels through such a simple approach involving BMHBs might facilitate their use as novel materials in bioelectronics.
Collapse
Affiliation(s)
- Hsiu-Wen Yang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Sec 4, Keelung Rd, Taipei, 106, Taiwan, Republic of China.
| | | | | | | |
Collapse
|
11
|
Chen JK, Chang CJ. Fabrications and Applications of Stimulus-Responsive Polymer Films and Patterns on Surfaces: A Review. MATERIALS (BASEL, SWITZERLAND) 2014; 7:805-875. [PMID: 28788489 PMCID: PMC5453090 DOI: 10.3390/ma7020805] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/10/2014] [Accepted: 01/16/2014] [Indexed: 11/17/2022]
Abstract
In the past two decades, we have witnessed significant progress in developing high performance stimuli-responsive polymeric materials. This review focuses on recent developments in the preparation and application of patterned stimuli-responsive polymers, including thermoresponsive layers, pH/ionic-responsive hydrogels, photo-responsive film, magnetically-responsive composites, electroactive composites, and solvent-responsive composites. Many important new applications for stimuli-responsive polymers lie in the field of nano- and micro-fabrication, where stimuli-responsive polymers are being established as important manipulation tools. Some techniques have been developed to selectively position organic molecules and then to obtain well-defined patterned substrates at the micrometer or submicrometer scale. Methods for patterning of stimuli-responsive hydrogels, including photolithography, electron beam lithography, scanning probe writing, and printing techniques (microcontact printing, ink-jet printing) were surveyed. We also surveyed the applications of nanostructured stimuli-responsive hydrogels, such as biotechnology (biological interfaces and purification of biomacromoles), switchable wettability, sensors (optical sensors, biosensors, chemical sensors), and actuators.
Collapse
Affiliation(s)
- Jem-Kun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 106, Taiwan.
| | - Chi-Jung Chang
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Seatwen, Taichung 40724, Taiwan.
| |
Collapse
|
12
|
Chen JK, Wang JH, Cheng CC, Chang JY. Reversibly thermoswitchable two-dimensional periodic gratings prepared from tethered poly(N-isopropylacrylamide) on silicon surfaces. ACS APPLIED MATERIALS & INTERFACES 2013; 5:2959-2966. [PMID: 23534909 DOI: 10.1021/am4010072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this study we used atom transfer radical polymerization to graft poly(N-isopropylacrylamide) (PNIPAAm) onto flat Si substrates. We then applied very large-scale integration and reactive ion etching sequentially to generate 200-nm-scale hole arrays of tethered PNIPAAm as two-dimensional periodic concave gratings (2DPCGs) on the Si surfaces. The hole array structures of tethered PNIPAAm could be created and erased reversibly at 25 and 40 °C, respectively, leading to significant changes in the effective refractive index (neff). The values of neff of the 2DPCGs were related to the depth of their holes generated after etching for various times, resulting in a color change from blue to red that could be observed by the naked eye at incident angles of 10-20°. Moreover, we used effective-medium theory to calculate the filling factors of air inside the 2DPCGs to verify the structural changes of the tethered PNIPAAm. Such designed 2DPCGs of thermorespective hydrogel films have potential applications in temperature-responsive optical devices [e.g., as antireflection structured surfaces (ARSs)] that operate at both visible and near-infrared wavelengths.
Collapse
Affiliation(s)
- Jem-Kun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Road, Taipei, 106, Taiwan, Republic of China.
| | | | | | | |
Collapse
|
13
|
Bellido E, Domingo N, Ojea-Jiménez I, Ruiz-Molina D. Structuration and integration of magnetic nanoparticles on surfaces and devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:1465-1491. [PMID: 22467627 DOI: 10.1002/smll.201101456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 11/07/2011] [Indexed: 05/31/2023]
Abstract
Different experimental approaches used for structuration of magnetic nanoparticles on surfaces are reviewed. Nanoparticles tend to organize on surfaces through self-assembly mechanisms controlled by non-covalent interactions which are modulated by their shape, size and morphology as well as by other external parameters such as the nature of the solvent or the capping layer. Further control on the structuration can be achieved by the use of external magnetic fields or other structuring techniques, mainly lithographic or atomic force microscopy (AFM)-based techniques. Moreover, results can be improved by chemical functionalization or the use of biological templates. Chemical functionalization of the nanoparticles and/or the surface ensures a proper stability as well as control of the formation of a (sub)monolayer. On the other hand, the use of biological templates facilitates the structuration of several families of nanoparticles, which otherwise may be difficult to form, simply by establishing the experimental conditions required for the structuration of the organic capsule. All these experimental efforts are directed ultimately to the integration of magnetic nanoparticles in sensors which constitute the future generation of hybrid magnetic devices.
Collapse
Affiliation(s)
- Elena Bellido
- Centro de Investigación en Nanociencia y Nanotecnología, (Esfera UAB. Campus UAB, Cerdanyola del Vallès, Spain
| | | | | | | |
Collapse
|
14
|
Chen JK, Pai PC, Chang JY, Fan SK. pH-responsive one-dimensional periodic relief grating of polymer brush-gold nanoassemblies on silicon surface. ACS APPLIED MATERIALS & INTERFACES 2012; 4:1935-1947. [PMID: 22423620 DOI: 10.1021/am201632e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this work, we focus on the fabrication of the nanoassemblies consisting of the poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) brushes and gold nanoparticles (AuNPs). The employed process involves grafting of the PDMAEMA chains on an underlying substrate in a brush conformation followed by the immobilization of surface functionalized AuNPs by means of physical interaction (electrostatic attraction, entanglement, and hydrogen bonding). Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and UV-vis spectroscopy have been employed to characterize the prepared PDMAEMA-AuNP nanoassemblies. Polymer brushes possessing various thicknesses have been found to suppress the nanoparticles' aggregation and, hence, facilitate the surface coverage. Furthermore, we patterned the PDMAEMA-AuNP nanoassemblies as an one-dimensional periodic relief grating (OPRG). The subwavelength structure of OPRG has the optical features including artificial refractive index, form birefringence and resonance and band gap effects. A mean refractive index of the PDMAEMA-AuNP nanoassemblies can be controlled by the filling factors of the OPRG structure, so that a desired distribution of refractive index of the polymer brushes-gold OPRG under various stimuli can be realized. The employed approach is simple and highly versatile for the modification of surfaces with a wide range of NPs.
Collapse
Affiliation(s)
- Jem-Kun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, Republic of China.
| | | | | | | |
Collapse
|
15
|
Chen JK, Qui JQ, Fan SK, Kuo SW, Ko FH, Chu CW, Chang FC. Using colloid lithography to fabricate silicon nanopillar arrays on silicon substrates. J Colloid Interface Sci 2011; 367:40-8. [PMID: 22104277 DOI: 10.1016/j.jcis.2011.10.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 09/15/2011] [Accepted: 10/17/2011] [Indexed: 11/29/2022]
Abstract
In this study, we partially grafted geminal silanol groups in the protecting organic shells on the surfaces of gold nanoparticles (AuNPs) and then assembled the alkyl-AuNP-Si(OH)(4) particles onto the surfaces of silicon (Si) wafers. The density of assembled AuNPs on the Si surface was adjusted by varying the geminal silanol group content on the AuNP surface; at its optimal content, it approached the high assembly density (0.0254 particles/nm(2)) of an AuNP assembled monolayer. Using reactive-ion etching (RIE) with the templates as masks, we transferred the patterned AuNP assemblies to form large-area, size-tunable, Si nanopillar arrays, the assembly density of which was controlled by the dimensions of the AuNPs. Using this colloidal lithography (CL) process, we could generate Si nanopillars having sub-10-nm diameters and high aspect ratios. The water contact angles of the high-aspect-ratio Si nanopillars approached 150°. We used another fabrication process, involving electron beam lithography and oxygen plasma treatment, to generate hydrophilic 200-nm-resolution line patterns on a Si surface to assemble the AuNPs into 200-nm-resolution dense lines for use as an etching mask. Subsequent CL provided a patterned Si nanopillar array having a feature size of 200 nm on the Si surface. Using this approach, it was possible to pattern sub-10-nm Si nanopillar arrays having densities as high as 0.0232 nm(-2).
Collapse
Affiliation(s)
- Jem-Kun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan, ROC.
| | | | | | | | | | | | | |
Collapse
|
16
|
Chen JK, Qui JQ. Nanowires of 3-D cross-linked gold nanoparticle assemblies behave as thermosensors on silicon substrates. Colloid Polym Sci 2011. [DOI: 10.1007/s00396-011-2503-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Patterning nanocluster polystyrene brushes grafted from initiator cores on silicon surfaces by lithography processing. Colloid Polym Sci 2011. [DOI: 10.1007/s00396-011-2450-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Chen JK, Li JY. Synthesis of tethered poly(N-isopropylacrylamide) for detection of breast cancer recurrence DNA. J Colloid Interface Sci 2011; 358:454-61. [PMID: 21481404 DOI: 10.1016/j.jcis.2011.03.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/16/2011] [Accepted: 03/16/2011] [Indexed: 10/18/2022]
Abstract
We have grafted temperature-responsive tethered poly(N-isopropylacrylamide) (PNIPAAm) onto silicon surfaces through atom transfer radical polymerization (ATRP) as a medium to extract human genomic DNA molecules from a biological specimen, namely human blood incorporating target DNA (hgDNA584) and control DNA (hgDNA528) at concentrations of 0.5, 1, and 50 ng μL(-1). The variable adhesion forces of the tethered PNIPAAm brushes on the surfaces were used to capture and release DNA molecules through changes in temperature. After amplifying the signal of the hgDNA584 and hgDNA528 strands released from the tethered PNIPAAm on the substrate using the polymerase chain reaction (PCR), we identified these DNA macromolecules using agarose gel electrophoresis. The accuracy of the detection of hgDNA584 and hgDNA528 was controlled through the design of specific primers in the PCR process. The quantities of these two DNA molecules obtained through the capture and release from tethered PNIPAAm brushes under temperature tuning conditions were sufficient for them to be amplified recognizably, suggesting that this approach could be used in miniaturized lab-on-a-chip cartridges for rapid disease diagnosis.
Collapse
Affiliation(s)
- Jem-Kun Chen
- Department of Polymer Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 106, Taiwan, ROC.
| | | |
Collapse
|
19
|
Chen JK, Chen TY. Fabrication of high-aspect-ratio poly(2-hydroxyethyl methacrylate) brushes patterned on silica surfaces by very-large-scale integration process. J Colloid Interface Sci 2011; 355:359-67. [DOI: 10.1016/j.jcis.2010.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/02/2010] [Accepted: 12/03/2010] [Indexed: 10/18/2022]
|
20
|
Chen TY, Chen JK. Ferritin immobilization on patterned poly(2-hydroxyethyl methacrylate) brushes on silicon surfaces from colloid system. Colloid Polym Sci 2011; 289:433-445. [PMID: 21461041 PMCID: PMC3040805 DOI: 10.1007/s00396-010-2370-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/21/2010] [Accepted: 12/28/2010] [Indexed: 11/29/2022]
Abstract
In this paper, we describe a graft polymerization/solvent immersion method for generating poly(2-hydroxyethyl methacrylate) (PHEMA) brushes in various patterns. We used a novel fabrication process, involving very-large-scale integration and oxygen plasma treatment, to generate well-defined patterns of polymerized PHEMA on patterned Si(100) surfaces. We observed brush- and mushroom-like regions for the PHEMA brushes, with various pattern resolutions, after immersing wafers presenting lines of these polymers in MeOH and n-hexane, respectively. The interaction between PHEMA and ferritin protein sheaths in MeOH and n-hexane (good and poor solvent for PHEMA, respectively) was used to capture and release ferritins from fluidic system. The “tentacles” behaver for PHEMA brushes was found through various solvents in fluidic system. Using high-resolution scanning electron microscopy, we observed patterned ferritin Fe cores on the Si surface after pyrolysis of the patterned PHEMA brushes and ferritin protein sheaths, which verify the “tentacles” behaver for PHEMA brushes.
Collapse
Affiliation(s)
- Tsung-Yen Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Sec 4, Keelung Rd, Taipei, 106 Taiwan Republic of China
| | | |
Collapse
|
21
|
Jia X, Jiang X, Liu R, Yin J. Facile approach to patterned binary polymer brush through photolithography and surface-initiated photopolymerization. ACS APPLIED MATERIALS & INTERFACES 2010; 2:1200-1205. [PMID: 20361774 DOI: 10.1021/am100035d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Taking advantage of the photobleaching and co-initiating properties of the dendritic thioxanthone (TX) photoinitiator, we developed a general and facile approach to fabricate patterned binary polymer brushes by combining photolithography and surface-initiated photopolymerization (SIPP). The dendritic TX photoinitiator monolayer was immobilized covalently on a silicon slide surface, followed by photobleaching through a mask. The resulting slides could initiate photopolymerization of methyl methacrylate (MMA) to generate a patterned poly (methyl methacrylate) (PMMA) brush, and subsequently initiate styrene (St) in the presence of TX to obtain patterned binary poly (methyl methacrylate)-polystyrene (PMMA-PS) brushes. This general and facile method could be of use in large-scale patterned binary polymer brush fabrication.
Collapse
Affiliation(s)
- Xinyan Jia
- Shanghai Jiao Tong University, People's Republic of China
| | | | | | | |
Collapse
|