1
|
Botkin JR, Curtin SJ. Transcriptome analysis of resistant and susceptible Medicago truncatula genotypes in response to spring black stem and leaf spot disease. BMC PLANT BIOLOGY 2024; 24:720. [PMID: 39075348 PMCID: PMC11285230 DOI: 10.1186/s12870-024-05444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Ascochyta blights cause yield losses in all major legume crops. Spring black stem (SBS) and leaf spot disease is a major foliar disease of Medicago truncatula and Medicago sativa (alfalfa) caused by the necrotrophic fungus Ascochyta medicaginicola. This present study sought to identify candidate genes for SBS disease resistance for future functional validation. We employed RNA-seq to profile the transcriptomes of a resistant (HM078) and susceptible (A17) genotype of M. truncatula at 24, 48, and 72 h post inoculation. Preliminary microscopic examination showed reduced pathogen growth on the resistant genotype. In total, 192 and 2,908 differentially expressed genes (DEGs) were observed in the resistant and susceptible genotype, respectively. Functional enrichment analysis revealed the susceptible genotype engaged in processes in the cell periphery and plasma membrane, as well as flavonoid biosynthesis whereas the resistant genotype utilized calcium ion binding, cell wall modifications, and external encapsulating structures. Candidate genes for disease resistance were selected based on the following criteria; among the top ten upregulated or downregulated genes in the resistant genotype, upregulated over time in the resistant genotype, hormone pathway genes, plant disease resistance genes, receptor-like kinases, contrasting expression profiles in QTL for disease resistance, and upregulated genes in enriched pathways. Overall, 22 candidate genes for SBS disease resistance were identified with support from the literature. These genes will be sources for future targeted mutagenesis and candidate gene validation potentially helping to improve disease resistance to this devastating foliar pathogen.
Collapse
Affiliation(s)
- Jacob R Botkin
- Plant Science Research Unit, United States Department of Agriculture, St Paul, MN, 55108, USA
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Shaun J Curtin
- Plant Science Research Unit, United States Department of Agriculture, St Paul, MN, 55108, USA.
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA.
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA.
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, MN, 55108, USA.
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
2
|
Zhang P, Nde J, Eliaz Y, Jennings N, Cieplak P, Cheung MS. Chemistry-informed Machine Learning Explains Calcium-binding Proteins' Fuzzy Shape for Communicating Changes in the Atomic States of Calcium Ions. ARXIV 2024:arXiv:2407.17017v1. [PMID: 39108291 PMCID: PMC11302678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Proteins' fuzziness are features for communicating changes in cell signaling instigated by binding with secondary messengers, such as calcium ions, associated with the coordination of muscle contraction, neurotransmitter release, and gene expression. Binding with the disordered parts of a protein, calcium ions must balance their charge states with the shape of calcium-binding proteins and their versatile pool of partners depending on the circumstances they transmit, but it is unclear whether the limited experimental data available can be used to train models to accurately predict the charges of calcium-binding protein variants. Here, we developed a chemistry-informed, machine-learning algorithm that implements a game theoretic approach to explain the output of a machine-learning model without the prerequisite of an excessively large database for high-performance prediction of atomic charges. We used the ab initio electronic structure data representing calcium ions and the structures of the disordered segments of calcium-binding peptides with surrounding water molecules to train several explainable models. Network theory was used to extract the topological features of atomic interactions in the structurally complex data dictated by the coordination chemistry of a calcium ion, a potent indicator of its charge state in protein. With our designs, we provided a framework of explainable machine learning model to annotate atomic charges of calcium ions in calcium-binding proteins with domain knowledge in response to the chemical changes in an environment based on the limited size of scientific data in a genome space.
Collapse
Affiliation(s)
- Pengzhi Zhang
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, TX, USA
| | - Jules Nde
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Yossi Eliaz
- Department of Physics, University of Houston, Houston, TX, USA
- Computer Science Department, HIT Holon Institute of Technology, Holon, Israel
| | | | - Piotr Cieplak
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Margaret S Cheung
- Department of Physics, University of Washington, Seattle, WA, USA
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
3
|
Greene D, Shiferaw Y. Identifying Key Binding Interactions Between the Cardiac L-Type Calcium Channel and Calmodulin Using Molecular Dynamics Simulations. J Phys Chem B 2024; 128:6097-6111. [PMID: 38870543 PMCID: PMC11215769 DOI: 10.1021/acs.jpcb.4c02251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Defects in the binding of the calcium sensing protein calmodulin (CaM) to the L-type calcium channel (CaV1.2) or to the ryanodine receptor type 2 (RyR2) can lead to dangerous cardiac arrhythmias with distinct phenotypes, such as long-QT syndrome (LQTS) and catecholaminergic ventricular tachycardia (CPVT). Certain CaM mutations lead to LQTS while other mutations lead to CPVT, but the mechanisms by which a specific mutation can lead to each disease phenotype are not well-understood. In this study, we use long, 2 μs molecular dynamics simulations and a multitrajectory approach to identify the key binding interactions between the IQ domain of CaV1.2 and CaM. Five key interactions are found between CaV1.2 and CaM in the C-lobe, 1 in the central linker, and 2 in the N-lobe. In addition, while 5 key interactions appear between residues 120-149 in the C-lobe of CaM when it interacts with CaV1.2, only 1 key interaction is found within this region of CaM when it interacts with the RyR2. We show that this difference in the distribution of key interactions correlates with the known distribution of CaM mutations that lead to LQTS or CPVT. This correlation suggests that a disruption of key binding interactions is a plausible mechanism that can lead to these two different disease phenotypes.
Collapse
Affiliation(s)
- D’Artagnan Greene
- Department of Physics and
Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, California 91330-8268, United States of
America
| | - Yohannes Shiferaw
- Department of Physics and
Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, California 91330-8268, United States of
America
| |
Collapse
|
4
|
Lugano D, Barrett L, Westerheide SD, Kee Y. Multifaceted roles of CCAR family proteins in the DNA damage response and cancer. Exp Mol Med 2024; 56:59-65. [PMID: 38172598 PMCID: PMC10834508 DOI: 10.1038/s12276-023-01139-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 01/05/2024] Open
Abstract
The cell cycle apoptosis regulator (CCAR) family of proteins consists of two proteins, CCAR1 and CCAR2, that play a variety of roles in cellular physiology and pathology. These multidomain proteins are able to perform multiple interactions and functions, playing roles in processes such as stress responses, metabolism, and the DNA damage response. The evolutionary conservation of CCAR family proteins allows their study in model organisms such as Caenorhabditis elegans, where a role for CCAR in aging was revealed. This review particularly highlights the multifaceted roles of CCAR family proteins and their implications in the DNA damage response and in cancer biology.
Collapse
Affiliation(s)
- D Lugano
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, FL, 33647, USA
| | - L Barrett
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, FL, 33647, USA
| | - S D Westerheide
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, FL, 33647, USA
| | - Y Kee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno-Joongang-daero, Dalseong-gun, Daegu, 42988, Republic of Korea.
| |
Collapse
|
5
|
Dos Santos M, de Faria MT, da Silva JO, Gandra IB, Ribeiro AJ, Silva KA, Nogueira LM, Machado JM, da Silveira Mariano RM, Gonçalves AAM, Ludolf F, Candia-Puma MA, Chávez-Fumagalli MA, Campos-da-Paz M, Giunchetti RC, Galdino AS. A Mini-Review on Elisa-Based Diagnosis of Schistosomiasis. Curr Mol Med 2024; 24:585-598. [PMID: 37143281 DOI: 10.2174/1566524023666230504140828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Schistosomiasis is a neglected tropical parasitic disease caused by trematode worms of the genus schistosoma, which affects approximately 240 million people worldwide. the diagnosis of the disease can be performed by parasitological, molecular, and/or immunological methods, however, the development of new diagnostic methods still essential to guide policy decisions, monitor disease trends and assess the effectiveness of interventions. OBJECTIVE in this sense, the current work summarizes the findings of a systematic review regarding antigens applied in the enzyme-linked immunosorbent assay test, which were patented and published over the last ten years. METHODS the literature search strategy used medical subject heading (mesh) terms to define as descriptors. "schistosoma mansoni" was used in arrangement with the descriptors "immunoassay", "enzyme-linked immunosorbent assay", "elisa", and "antigens", using the "and" connector. the patent search was done using keywords, including diagnosis and schistosoma or schistosomiasis or schistosome. several databases were employed for the patent search, such as intellectual property national institute; european patent office; the united states patent and trademark office; patent scope, and google patents. RESULTS forty-one articles were retrieved, of which only five met the eligibility criteria. seventeen patents were taken from the databases, and a brief description of the most relevant inventions is given here. CONCLUSION schistosomiasis is considered the most important helminthic disease in worldwide. therefore, it is important to of searching for and develops diagnostic methods based on serology to reduce morbidity and mortality caused by the disease.
Collapse
Affiliation(s)
- Michelli Dos Santos
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São Joao Del-Rei, Sebastião Gonçalves Coelho, Divinópolis, 400, 35501-296, MG, Brazil
| | - Mariana Teixeira de Faria
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São Joao Del-Rei, Sebastião Gonçalves Coelho, Divinópolis, 400, 35501-296, MG, Brazil
| | - Jonatas Oliveira da Silva
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São Joao Del-Rei, Sebastião Gonçalves Coelho, Divinópolis, 400, 35501-296, MG, Brazil
| | - Isadora Braga Gandra
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São Joao Del-Rei, Sebastião Gonçalves Coelho, Divinópolis, 400, 35501-296, MG, Brazil
| | - Anna Julia Ribeiro
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São Joao Del-Rei, Sebastião Gonçalves Coelho, Divinópolis, 400, 35501-296, MG, Brazil
| | - Kamila Alves Silva
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São Joao Del-Rei, Sebastião Gonçalves Coelho, Divinópolis, 400, 35501-296, MG, Brazil
| | - Lais Moreira Nogueira
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São Joao Del-Rei, Sebastião Gonçalves Coelho, Divinópolis, 400, 35501-296, MG, Brazil
| | - Juliana Martins Machado
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São Joao Del-Rei, Sebastião Gonçalves Coelho, Divinópolis, 400, 35501-296, MG, Brazil
| | - Reysla Maria da Silveira Mariano
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Ana Alice Maia Gonçalves
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Fernanda Ludolf
- Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Mayron Antonio Candia-Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Umacollo, Arequipa, 04000, Peru
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Umacollo, Arequipa, 04000, Peru
| | - Mariana Campos-da-Paz
- Laboratório de Bioativos & NanoBiotecnologia, Universidade Federal de São João Del-Rei, Sebastião Gonçalves Coelho, Divinópolis, 400, 35501-296, MG, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Alexsandro Sobreira Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São Joao Del-Rei, Sebastião Gonçalves Coelho, Divinópolis, 400, 35501-296, MG, Brazil
| |
Collapse
|
6
|
Kubick N, Paszkiewicz J, Bieńkowska I, Ławiński M, Horbańczuk JO, Sacharczuk M, Mickael ME. Investigation of Mutated in Colorectal Cancer (MCC) Gene Family Evolution History Indicates a Putative Role in Th17/Treg Differentiation. Int J Mol Sci 2023; 24:11940. [PMID: 37569317 PMCID: PMC10418881 DOI: 10.3390/ijms241511940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The MCC family of genes plays a role in colorectal cancer development through various immunological pathways, including the Th17/Treg axis. We have previously shown that MCC1 but not MCC2 plays a role in Treg differentiation. Our understanding of the genetic divergence patterns and evolutionary history of the MCC family in relation to its function, in general, and the Th17/Treg axis, in particular, remains incomplete. In this investigation, we explored 12 species' genomes to study the phylogenetic origin, structure, and functional specificity of this family. In vertebrates, both MCC1 and MCC2 homologs have been discovered, while invertebrates have a single MCC homolog. We found MCC homologs as early as Cnidarians and Trichoplax, suggesting that the MCC family first appeared 741 million years ago (Ma), whereas MCC divergence into the MCC1 and MCC2 families occurred at 540 Ma. In general, we did not detect significant positive selection regulating MCC evolution. Our investigation, based on MCC1 structural similarity, suggests that they may play a role in the evolutionary changes in Tregs' emergence towards complexity, including the ability to utilize calcium for differentiation through the use of the EFH calcium-binding domain. We also found that the motif NPSTGE was highly conserved in MCC1, but not in MCC2. The NPSTGE motif binds KEAP1 with high affinity, suggesting an Nrf2-mediated function for MCC1. In the case of MCC2, we found that the "modifier of rudimentary" motif is highly conserved. This motif contributes to the regulation of alternative splicing. Overall, our study sheds light on how the evolution of the MCC family is connected to its function in regulating the Th17/Treg axis.
Collapse
Affiliation(s)
- Norwin Kubick
- Department of Biology, Institute of Plant Science and Microbiology, Univeristy of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany;
| | - Justyna Paszkiewicz
- Department of Health, John Paul II University of Applied Sciences in Biala Podlaska, Sidorska 95/97, 21-500 Biała Podlaska, Poland;
| | - Irmina Bieńkowska
- Institute of Animal Biotechnology and Genetics, Polish Academy of Science, Postępu 36A, 05-552 Jastrzębiec, Poland; (I.B.); (M.Ł.); (J.O.H.)
| | - Michał Ławiński
- Institute of Animal Biotechnology and Genetics, Polish Academy of Science, Postępu 36A, 05-552 Jastrzębiec, Poland; (I.B.); (M.Ł.); (J.O.H.)
- Department of General Surgery, Gastroenterology and Oncology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Jarosław Olav Horbańczuk
- Institute of Animal Biotechnology and Genetics, Polish Academy of Science, Postępu 36A, 05-552 Jastrzębiec, Poland; (I.B.); (M.Ł.); (J.O.H.)
| | - Mariusz Sacharczuk
- Institute of Animal Biotechnology and Genetics, Polish Academy of Science, Postępu 36A, 05-552 Jastrzębiec, Poland; (I.B.); (M.Ł.); (J.O.H.)
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, l Banacha 1, 02-697 Warsaw, Poland
| | - Michel Edwar Mickael
- Institute of Animal Biotechnology and Genetics, Polish Academy of Science, Postępu 36A, 05-552 Jastrzębiec, Poland; (I.B.); (M.Ł.); (J.O.H.)
- PM Research Center, Väpnaregatan 22, 58649 Linköping, Sweden
| |
Collapse
|
7
|
Lai P, Yang X, Li YH, Yin YL, Yao Q, Huang S, Fan YY, Song JK, Zhao GH. Characterization of CpCaM, a protein potentially involved in the growth of Cryptosporidium parvum. Parasitol Res 2023; 122:989-996. [PMID: 36879147 DOI: 10.1007/s00436-023-07803-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
Cryptosporidium parvum is an important apicomplexan parasite causing severe diarrhea in both humans and animals. Calmodulin (CaM), a multifunctional and universal calcium-binding protein, contributes to the growth and development of apicomplexan parasites, but the role of CaM in C. parvum remains unknown. In this study, the CaM of C. parvum encoded by the cgd2_810 gene was expressed in Escherichia coli, and the biological functions of CpCaM were preliminarily investigated. The transcriptional level of the cgd2_810 gene peaked at 36 h post infection (pi), and the CpCaM protein was mainly located around the nucleus of the whole oocysts, in the middle of sporozoites and around the nucleus of merozoites. Anti-CpCaM antibody reduced the invasion of C. parvum sporozoites by 30.69%. The present study indicates that CpCaM is potentially involved in the growth of C. parvum. Results of the study expand our knowledge on the interaction between host and Cryptosporidium.
Collapse
Affiliation(s)
- Peng Lai
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xin Yang
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yun-Hui Li
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yan-Ling Yin
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Qian Yao
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Shuang Huang
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Ying-Ying Fan
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Jun-Ke Song
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| | - Guang-Hui Zhao
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
8
|
Alam MS, Leyva D, Michelin W, Fernandez-Lima F, Miksovska J. Distinct mechanism of Tb 3+ and Eu 3+ binding to NCS1. Phys Chem Chem Phys 2023; 25:9500-9512. [PMID: 36938969 PMCID: PMC10840756 DOI: 10.1039/d2cp05765d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Lanthanides have been frequently used as biomimetic compounds for NMR and fluorescence studies of Ca2+ binding proteins due to having similar physical properties and coordination geometry to Ca2+ ions. Here we report that a member of the neuronal calcium sensor family, neuronal calcium sensor 1, complexes with two lanthanide ions Tb3+ and Eu3+. The affinity for Tb3+ is nearly 50 times higher than that for Ca2+ (Kd,Tb3+ = 0.002 ± 0.0001 μM and Kd, Ca2+ = 91 nM) whereas Eu3+ binding is notably weaker, Kd,Eu3+ = 26 ± 1 μM. Interestingly, despite having identical charge and similar ionic radii, Tb3+ and Eu3+ ions exhibit a distinct binding stoichiometry for NCS1 with one Eu3+ and two Tb3+ ions bound per NCS1 monomer, as demonstrated in fluorescence titration and mass spectrometry studies. These results suggest that the lanthanides' affinity for the individual EF hands is fine-tuned by a small variation in the ion charge density as well as EF hand binding loop amino acid sequence. As observed previously for other lanthanide:protein complexes, the emission intensity of Ln3+ is enhanced upon complexation with the protein, likely due to the displacement of water molecules by oxygen atoms from the coordinating amino acid residues. The overall shape of the Tb3+NCS1 and Eu3+NCS1 monomer shows high levels of similarity compared to the Ca2+ bound protein based on their collision cross section. However, the distinct occupation of EF hands impacts NCS1 oligomerization and affinity for the D2R peptide that mimics the NCS1 binding site on the D2R receptor. Specifically, the Tb3+NCS1 complex populates the dimer and has comparable affinity for the D2R peptide, whereas Eu3+ bound NCS1 remains in the monomeric form with a negligible affinity for the D2R peptide.
Collapse
Affiliation(s)
- Md Shofiul Alam
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - Dennys Leyva
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - Woodline Michelin
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| |
Collapse
|
9
|
Watanabe M, Okamoto M, Komichi S, Huang H, Matsumoto S, Moriyama K, Ohshima J, Abe S, Morita M, Ali M, Takebe K, Kozaki I, Fujimoto A, Kanie K, Kato R, Uto K, Ebara M, Yamawaki-Ogata A, Narita Y, Takahashi Y, Hayashi M. Novel Functional Peptide for Next-Generation Vital Pulp Therapy. J Dent Res 2023; 102:322-330. [PMID: 36415061 PMCID: PMC9989233 DOI: 10.1177/00220345221135766] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although vital pulp therapy should be performed by promoting the wound-healing capacity of dental pulp, existing pulp-capping materials were not developed with a focus on the pulpal repair process. In previous investigations of wound healing in dental pulp, we found that organic dentin matrix components (DMCs) were degraded by matrix metalloproteinase-20, and DMC degradation products containing protein S100A7 (S100A7) and protein S100A8 (S100A8) promoted the pulpal wound-healing process. However, the direct use of recombinant proteins as pulp-capping materials may cause clinical problems or lead to high medical costs. Thus, we hypothesized that functional peptides derived from recombinant proteins could solve the problems associated with direct use of such proteins. In this study, we identified functional peptides derived from the protein S100 family and investigated their effects on dental pulp tissue. We first performed amino acid sequence alignments of protein S100 family members from several mammalian sources, then identified candidate peptides. Next, we used a peptide array method that involved human dental pulp stem cells (hDPSCs) to evaluate the mineralization-inducing ability of each peptide. Our results supported the selection of 4 candidate functional peptides derived from proteins S100A8 and S100A9. Direct pulp-capping experiments in a rat model demonstrated that 1 S100A8-derived peptide induced greater tertiary dentin formation compared with the other peptides. To investigate the mechanism underlying this induction effect, we performed liquid chromatography-tandem mass spectrometry analysis using hDPSCs and the S100A8-derived peptide; the results suggested that this peptide promotes tertiary dentin formation by inhibiting inflammatory responses. In addition, this peptide was located in a hairpin region on the surface of S100A8 and could function by direct interaction with other molecules. In summary, this study demonstrated that a S100A8-derived functional peptide promoted wound healing in dental pulp; our findings provide insights for the development of next-generation biological vital pulp therapies.
Collapse
Affiliation(s)
- M Watanabe
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - M Okamoto
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S Komichi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - H Huang
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S Matsumoto
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - K Moriyama
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - J Ohshima
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S Abe
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - M Morita
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - M Ali
- Department of Restorative Dentistry, Faculty of Dentistry, University of Khartoum, Khartoum, Sudan
| | - K Takebe
- Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - I Kozaki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Aichi, Japan
| | - A Fujimoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Aichi, Japan
| | - K Kanie
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Aichi, Japan.,Department of Biotechnology and Chemistry, Faculty of Engineering, Kindai University, Hiroshima, Japan
| | - R Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Aichi, Japan
| | - K Uto
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - M Ebara
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - A Yamawaki-Ogata
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Y Narita
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Y Takahashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - M Hayashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
10
|
Role of calcium-sensor proteins in cell membrane repair. Biosci Rep 2023; 43:232522. [PMID: 36728029 PMCID: PMC9970828 DOI: 10.1042/bsr20220765] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
Cell membrane repair is a critical process used to maintain cell integrity and survival from potentially lethal chemical, and mechanical membrane injury. Rapid increases in local calcium levels due to a membrane rupture have been widely accepted as a trigger for multiple membrane-resealing models that utilize exocytosis, endocytosis, patching, and shedding mechanisms. Calcium-sensor proteins, such as synaptotagmins (Syt), dysferlin, S100 proteins, and annexins, have all been identified to regulate, or participate in, multiple modes of membrane repair. Dysfunction of membrane repair from inefficiencies or genetic alterations in these proteins contributes to diseases such as muscular dystrophy (MD) and heart disease. The present review covers the role of some of the key calcium-sensor proteins and their involvement in membrane repair.
Collapse
|
11
|
Kaewman P, Nudmamud-Thanoi S, Thongleart J, Charoenlappanit S, Roytrakul S, Thanoi S. Differential protein expression of GABA A receptor alpha 1 subunit and calbindin in rat spermatozoa associated with proteomic analysis in testis following methamphetamine administration. PLoS One 2023; 18:e0273888. [PMID: 36598915 DOI: 10.1371/journal.pone.0273888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
Methamphetamine (METH) can induce spermatogenesis impairment, testicular apoptosis, and abnormal sperm quality. It also promotes changes in the expression of receptors for sex hormones and neurotransmitters, including GABA receptors in the testis. Proteomic assessment focusing on proteins involved in the calcium signalling pathway in the testis can facilitate diagnostic factors contributing to testicular and sperm functions, especially those related to spermatogenesis and fertilisation. In this study, we proposed to determine the localisation and differential expression of GABA A receptor alpha 1 subunit (GABA A-α1) in the spermatozoa of METH-administered rats. The differential proteomic profile of the testis was also observed by focusing on proteins in the KEGG pathways belonging to the calcium signalling pathway. There were 212 differentially expressed proteins in the rat testis, based on the cut-off value of 1.2-fold change. Most of those proteins, 13 proteins, were classified in the calcium signalling pathway, including 4 down-regulated and 9 up-regulated proteins. An immunolocalisation study of the GABA A-α1 receptor and calbindin revealed their localisation in the equatorial segment of the head in the rat spermatozoa. The expression of calbindin is also found in the middle piece of sperm. An increase in GABA A-α1 receptor in rat spermatozoa was correlated with an increase in abnormal sperm motility and morphology after methamphetamine exposure. Moreover, calbindin expression in sperm decreased in METH-administered rats. All our findings demonstrate that METH influences intracellular calcium homeostasis by acting through the calcium signalling pathway-associated proteins. Moreover, it might disrupt ion homeostasis in sperm through the GABA A-α1 receptor and calbindin, triggering a change in intracellular calcium and chloride ions. These changes may cause abnormalities in spermatogenesis, testicular apoptosis, and sperm quality impairment.
Collapse
Affiliation(s)
- Paweena Kaewman
- School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sutisa Nudmamud-Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, Thailand
| | - Jitnapar Thongleart
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sawanya Charoenlappanit
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Samur Thanoi
- School of Medical Sciences, University of Phayao, Phayao, Thailand
| |
Collapse
|
12
|
Young BD, Cook ME, Costabile BK, Samanta R, Zhuang X, Sevdalis SE, Varney KM, Mancia F, Matysiak S, Lattman E, Weber DJ. Binding and Functional Folding (BFF): A Physiological Framework for Studying Biomolecular Interactions and Allostery. J Mol Biol 2022; 434:167872. [PMID: 36354074 PMCID: PMC10871162 DOI: 10.1016/j.jmb.2022.167872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
EF-hand Ca2+-binding proteins (CBPs), such as S100 proteins (S100s) and calmodulin (CaM), are signaling proteins that undergo conformational changes upon increasing intracellular Ca2+. Upon binding Ca2+, S100 proteins and CaM interact with protein targets and induce important biological responses. The Ca2+-binding affinity of CaM and most S100s in the absence of target is weak (CaKD > 1 μM). However, upon effector protein binding, the Ca2+ affinity of these proteins increases via heterotropic allostery (CaKD < 1 μM). Because of the high number and micromolar concentrations of EF-hand CBPs in a cell, at any given time, allostery is required physiologically, allowing for (i) proper Ca2+ homeostasis and (ii) strict maintenance of Ca2+-signaling within a narrow dynamic range of free Ca2+ ion concentrations, [Ca2+]free. In this review, mechanisms of allostery are coalesced into an empirical "binding and functional folding (BFF)" physiological framework. At the molecular level, folding (F), binding and folding (BF), and BFF events include all atoms in the biomolecular complex under study. The BFF framework is introduced with two straightforward BFF types for proteins (type 1, concerted; type 2, stepwise) and considers how homologous and nonhomologous amino acid residues of CBPs and their effector protein(s) evolved to provide allosteric tightening of Ca2+ and simultaneously determine how specific and relatively promiscuous CBP-target complexes form as both are needed for proper cellular function.
Collapse
Affiliation(s)
- Brianna D Young
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mary E Cook
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Brianna K Costabile
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Riya Samanta
- Biophysics Graduate Program, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Xinhao Zhuang
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Spiridon E Sevdalis
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kristen M Varney
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Silvina Matysiak
- Biophysics Graduate Program, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Eaton Lattman
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - David J Weber
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; The Institute of Bioscience and Biotechnology Research (IBBR), Rockville, MD 20850, USA.
| |
Collapse
|
13
|
Lougee MG, Pagar VV, Kim HJ, Pancoe SX, Chia WK, Mach RH, Garcia BA, Petersson EJ. Harnessing the intrinsic photochemistry of isoxazoles for the development of chemoproteomic crosslinking methods. Chem Commun (Camb) 2022; 58:9116-9119. [PMID: 35880535 PMCID: PMC9922157 DOI: 10.1039/d2cc02263j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The intrinsic photochemistry of the isoxazole, a common heterocycle in medicinal chemistry, can be applied to offer an alternative to existing strategies using more perturbing, extrinsic photo-crosslinkers. The utility of isoxazole photo-crosslinking is demonstrated in a wide range of biologically relevant experiments, including common proteomics workflows.
Collapse
Affiliation(s)
- Marshall G. Lougee
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Vinayak Vishnu Pagar
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA. .,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Samantha X. Pancoe
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - W. Kit Chia
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Robert H. Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
14
|
Rodríguez-Durán J, Gallardo JP, Alba Soto CD, Gómez KA, Potenza M. The Kinetoplastid-Specific Protein TcCAL1 Plays Different Roles During In Vitro Differentiation and Host-Cell Invasion in Trypanosoma cruzi. Front Cell Infect Microbiol 2022; 12:901880. [PMID: 35846750 PMCID: PMC9280158 DOI: 10.3389/fcimb.2022.901880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
In the pathogen Typanosoma cruzi, the calcium ion (Ca2+) regulates key processes for parasite survival. However, the mechanisms decoding Ca2+ signals are not fully identified or understood. Here, we investigate the role of a hypothetical Ca2+-binding protein named TcCAL1 in the in vitro life cycle of T. cruzi. Results showed that the overexpression of TcCAL1 fused to a 6X histidine tag (TcCAL1-6xHis) impaired the differentiation of epimastigotes into metacyclic trypomastigotes, significantly decreasing metacyclogenesis rates. When the virulence of transgenic metacyclic trypomastigotes was explored in mammalian cell invasion assays, we found that the percentage of infection was significantly higher in Vero cells incubated with TcCAL1-6xHis-overexpressing parasites than in controls, as well as the number of intracellular amastigotes. Additionally, the percentage of Vero cells with adhered metacyclic trypomastigotes significantly increased in samples incubated with TcCAL1-6xHis-overexpressing parasites compared with controls. In contrast, the differentiation rates from metacyclic trypomastigotes to axenic amastigotes or the epimastigote proliferation in the exponential phase of growth have not been affected by TcCAL1-6xHis overexpression. Based on our findings, we speculate that TcCAL1 exerts its function by sequestering intracellular Ca2+ by its EF-hand motifs (impairing metacyclogenesis) and/or due to an unknown activity which could be amplified by the ion binding (promoting cell invasion). This work underpins the importance of studying the kinetoplastid-specific proteins with unknown functions in pathogen parasites.
Collapse
Affiliation(s)
- Jessica Rodríguez-Durán
- Laboratorio de Biología e Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor Torres”—CONICET, Buenos Aires, Argentina
| | - Juan Pablo Gallardo
- Laboratorio de Biología e Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor Torres”—CONICET, Buenos Aires, Argentina
| | - Catalina Dirney Alba Soto
- Instituto de Microbiología y Parasitología Médica, Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Karina Andrea Gómez
- Laboratorio de Biología e Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor Torres”—CONICET, Buenos Aires, Argentina
| | - Mariana Potenza
- Laboratorio de Biología e Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor Torres”—CONICET, Buenos Aires, Argentina
- *Correspondence: Mariana Potenza, ;
| |
Collapse
|
15
|
Alam MS, Azam S, Pham K, Leyva D, Fouque KJD, Fernandez-Lima F, Miksovska J. Nanomolar affinity of EF-hands in neuronal calcium sensor 1 for bivalent cations Pb2+, Mn2+ and Hg2. Metallomics 2022; 14:6601456. [PMID: 35657675 DOI: 10.1093/mtomcs/mfac039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022]
Abstract
Abiogenic metals Pb and Hg are highly toxic since chronic and/or acute exposure often leads to severe neuropathologies. Mn2+ is an essential metal ion but in excess can impair neuronal function. In this study, we address in vitro the interactions between neuronal calcium sensor 1 (NCS1) and divalent cations. Results showed that non-physiological ions (Pb2+, Mn2+ and Hg2+) bind to EF-hands in NCS1 with nanomolar affinity and lower equilibrium dissociation constant than the physiological Ca2+ ion. (Kd,Pb2+ = 7.0±1.0 nM; Kd,Mn2+ = 34.0±6.0 nM; Kd, Hg2+ = 0.5±0.1 nM and 27.0±13.0 nM and Kd,Ca2+ = 96.0±48.0 nM). Native ultra-high resolution mass spectrometry (FT-ICR MS) and trapped ion mobility spectrometry - mass spectrometry (nESI-TIMS-MS) studies provided the NCS1-metal complex compositions - up to four Ca2+ or Mn2+ ions and three Pb2+ ions (M⋅Pb1-3Ca1-3, M⋅Mn1-4Ca1-2, and M⋅Ca1-4) were observed in complex - and similarity across the mobility profiles suggests that the overall native structure is preserved regardless of the number and type of cations. However, the non-physiological metal ions (Pb2+, Mn2+, and Hg2+) binding to NCS1 leads to more efficient quenching of Trp emission and a decrease in W30 and W103 solvent exposure compared to the apo and Ca2+ bound form, although the secondary structural rearrangement and exposure of hydrophobic sites are analogous to those for Ca2+ bound protein. Only Pb2+ and Hg2+ binding to EF-hands leads to the NCS1 dimerization whereas Mn2+ bound NCS1 remains in the monomeric form, suggesting that other factors in addition to metal ion coordination, are required for protein dimerization.
Collapse
Affiliation(s)
- Md Shofiul Alam
- Department of Chemistry and Biochemistry, Florida International University, Miami FL 33199USA
| | - Samiol Azam
- Department of Chemistry and Biochemistry, Florida International University, Miami FL 33199USA
| | - Khoa Pham
- Department of Chemistry and Biochemistry, Florida International University, Miami FL 33199USA
| | - Dennys Leyva
- Department of Chemistry and Biochemistry, Florida International University, Miami FL 33199USA
| | - Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami FL 33199USA.,Biomolecular Sciences Institute, Florida International University, Miami, 33199USA
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami FL 33199USA.,Biomolecular Sciences Institute, Florida International University, Miami, 33199USA
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry, Florida International University, Miami FL 33199USA.,Biomolecular Sciences Institute, Florida International University, Miami, 33199USA
| |
Collapse
|
16
|
Kayastha BB, Kubo A, Burch-Konda J, Dohmen RL, McCoy JL, Rogers RR, Mares S, Bevere J, Huckaby A, Witt W, Peng S, Chaudhary B, Mohanty S, Barbier M, Cook G, Deng J, Patrauchan MA. EF-hand protein, EfhP, specifically binds Ca 2+ and mediates Ca 2+ regulation of virulence in a human pathogen Pseudomonas aeruginosa. Sci Rep 2022; 12:8791. [PMID: 35614085 PMCID: PMC9132961 DOI: 10.1038/s41598-022-12584-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Calcium (Ca2+) is well known as a second messenger in eukaryotes, where Ca2+ signaling controls life-sustaining cellular processes. Although bacteria produce the components required for Ca2+ signaling, little is known about the mechanisms of bacterial Ca2+ signaling. Previously, we have identified a putative Ca2+-binding protein EfhP (PA4107) with two canonical EF-hand motifs and reported that EfhP mediates Ca2+ regulation of virulence factors production and infectivity in Pseudomonas aeruginosa, a human pathogen causing life-threatening infections. Here, we show that EfhP selectively binds Ca2+ with 13.7 µM affinity, and that mutations at the +X and -Z positions within each or both EF-hand motifs abolished Ca2+ binding. We also show that the hydrophobicity of EfhP increased in a Ca2+-dependent manner, however no such response was detected in the mutated proteins. 15 N-NMR showed Ca2+-dependent chemical shifts in EfhP confirming Ca2+-binding triggered structural rearrangements in the protein. Deletion of efhP impaired P. aeruginosa survival in macrophages and virulence in vivo. Disabling EfhP Ca2+ binding abolished Ca2+ induction of pyocyanin production in vitro. These data confirm that EfhP selectively binds Ca2+, which triggers its structural changes required for the Ca2+ regulation of P. aeruginosa virulence, thus establishing the role of EfhP as a Ca2+ sensor.
Collapse
Affiliation(s)
- Biraj B Kayastha
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Aya Kubo
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jacob Burch-Konda
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Rosalie L Dohmen
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jacee L McCoy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Rendi R Rogers
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Sergio Mares
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Justin Bevere
- Vaccine Development Center at West Virginia University, Morgantown, WV, 26506, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Annalisa Huckaby
- Vaccine Development Center at West Virginia University, Morgantown, WV, 26506, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - William Witt
- Vaccine Development Center at West Virginia University, Morgantown, WV, 26506, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Shuxia Peng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Bharat Chaudhary
- Department of Chemistry, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Smita Mohanty
- Department of Chemistry, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Mariette Barbier
- Vaccine Development Center at West Virginia University, Morgantown, WV, 26506, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Gabriel Cook
- Department of Chemistry, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
17
|
Alesci A, Pergolizzi S, Capillo G, Lo Cascio P, Lauriano ER. Rodlet cells in kidney of goldfish (Carassius auratus, Linnaeus 1758): A light and confocal microscopy study. Acta Histochem 2022; 124:151876. [PMID: 35303512 DOI: 10.1016/j.acthis.2022.151876] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023]
Abstract
Rodlet cells (RCs) have always been an enigma for scientists. RCs have been given a variety of activities over the years, including ion transport, osmoregulation, and sensory function. These cells, presumably as members of the granulocyte line, are present only in teleosts and play a role in the innate immune response. RCs are migratory cells found in a variety of organs, including skin, vascular, digestive, uropoietic, reproductive, and respiratory systems, and present distinct physical properties that make them easily recognizable in tissues and organs. The development of RCs can be divided into four stages: granular, transitional, mature, and ruptured, having different morphological characteristics. Our study aims to characterize the different stages of these cells by histomorphological and histochemical techniques. Furthermore, we characterized these cells at all stages with peroxidase and fluorescence immunohistochemical techniques using different antibodies: S100, tubulin, α-SMA, piscidin, and for the first time TLR-2. From our results, the immunoreactivity of these cells to the antibodies performed may confirm that RCs play a role in fish defense mechanisms, helping to expand the state of the art on immunology and immune cells of teleosts.
Collapse
|
18
|
Konietzny A, Grendel J, Kadek A, Bucher M, Han Y, Hertrich N, Dekkers DHW, Demmers JAA, Grünewald K, Uetrecht C, Mikhaylova M. Caldendrin and myosin V regulate synaptic spine apparatus localization via ER stabilization in dendritic spines. EMBO J 2022; 41:e106523. [PMID: 34935159 PMCID: PMC8844991 DOI: 10.15252/embj.2020106523] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022] Open
Abstract
Excitatory synapses of principal hippocampal neurons are frequently located on dendritic spines. The dynamic strengthening or weakening of individual inputs results in structural and molecular diversity of dendritic spines. Active spines with large calcium ion (Ca2+ ) transients are frequently invaded by a single protrusion from the endoplasmic reticulum (ER), which is dynamically transported into spines via the actin-based motor myosin V. An increase in synaptic strength correlates with stable anchoring of the ER, followed by the formation of an organelle referred to as the spine apparatus. Here, we show that myosin V binds the Ca2+ sensor caldendrin, a brain-specific homolog of the well-known myosin V interactor calmodulin. While calmodulin is an essential activator of myosin V motor function, we found that caldendrin acts as an inhibitor of processive myosin V movement. In mouse and rat hippocampal neurons, caldendrin regulates spine apparatus localization to a subset of dendritic spines through a myosin V-dependent pathway. We propose that caldendrin transforms myosin into a stationary F-actin tether that enables the localization of ER tubules and formation of the spine apparatus in dendritic spines.
Collapse
Affiliation(s)
- Anja Konietzny
- RG OptobiologyInstitute of BiologyHumboldt Universität zu BerlinBerlinGermany
- Guest Group Neuronal Protein TransportCenter for Molecular NeurobiologyZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jasper Grendel
- RG OptobiologyInstitute of BiologyHumboldt Universität zu BerlinBerlinGermany
- Guest Group Neuronal Protein TransportCenter for Molecular NeurobiologyZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Alan Kadek
- Leibniz Institute for Experimental Virology (HPI)HamburgGermany
- European XFEL GmbHSchenefeldGermany
| | - Michael Bucher
- RG OptobiologyInstitute of BiologyHumboldt Universität zu BerlinBerlinGermany
- Guest Group Neuronal Protein TransportCenter for Molecular NeurobiologyZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Yuhao Han
- RG OptobiologyInstitute of BiologyHumboldt Universität zu BerlinBerlinGermany
- Guest Group Neuronal Protein TransportCenter for Molecular NeurobiologyZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
| | - Nathalie Hertrich
- RG OptobiologyInstitute of BiologyHumboldt Universität zu BerlinBerlinGermany
- Guest Group Neuronal Protein TransportCenter for Molecular NeurobiologyZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | | | | - Kay Grünewald
- Leibniz Institute for Experimental Virology (HPI)HamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Department of ChemistryUniversity of HamburgHamburgGermany
| | - Charlotte Uetrecht
- Leibniz Institute for Experimental Virology (HPI)HamburgGermany
- European XFEL GmbHSchenefeldGermany
- Centre for Structural Systems BiologyHamburgGermany
| | - Marina Mikhaylova
- RG OptobiologyInstitute of BiologyHumboldt Universität zu BerlinBerlinGermany
- Guest Group Neuronal Protein TransportCenter for Molecular NeurobiologyZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
19
|
Larionova MD, Wu L, Eremeeva EV, Natashin PV, Gulnov DV, Nemtseva EV, Liu D, Liu Z, Vysotski ES. Crystal structure of semisynthetic obelin-v. Protein Sci 2022; 31:454-469. [PMID: 34802167 PMCID: PMC8819848 DOI: 10.1002/pro.4244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 02/03/2023]
Abstract
Coelenterazine-v (CTZ-v), a synthetic derivative with an additional benzyl ring, yields a bright bioluminescence of Renilla luciferase and its "yellow" mutant with a significant shift in the emission spectrum toward longer wavelengths, which makes it the substrate of choice for deep tissue imaging. Although Ca2+ -regulated photoproteins activated with CTZ-v also display red-shifted light emission, in contrast to Renilla luciferase their bioluminescence activities are very low, which makes photoproteins activated by CTZ-v unusable for calcium imaging. Here, we report the crystal structure of Ca2+ -regulated photoprotein obelin with 2-hydroperoxycoelenterazine-v (obelin-v) at 1.80 Å resolution. The structures of obelin-v and obelin bound with native CTZ revealed almost no difference; only the minor rearrangement in hydrogen-bond pattern and slightly increased distances between key active site residues and some atoms of 2-hydroperoxycoelenterazine-v were found. The fluorescence quantum yield (ΦFL ) of obelin bound with coelenteramide-v (0.24) turned out to be even higher than that of obelin with native coelenteramide (0.19). Since both obelins are in effect the enzyme-substrate complexes containing the 2-hydroperoxy adduct of CTZ-v or CTZ, we reasonably assume the chemical reaction mechanisms and the yields of the reaction products (ΦR ) to be similar for both obelins. Based on these findings we suggest that low bioluminescence activity of obelin-v is caused by the low efficiency of generating an electronic excited state (ΦS ). In turn, the low ΦS value as compared to that of native CTZ might be the result of small changes in the substrate microenvironment in the obelin-v active site.
Collapse
Affiliation(s)
- Marina D. Larionova
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia,iHuman Institute, ShanghaiTech UniversityShanghaiChina
| | - Lijie Wu
- iHuman Institute, ShanghaiTech UniversityShanghaiChina
| | - Elena V. Eremeeva
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia,Institute of Fundamental Biology and Biotechnology, Siberian Federal UniversityKrasnoyarskRussia
| | - Pavel V. Natashin
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia
| | - Dmitry V. Gulnov
- Institute of Fundamental Biology and Biotechnology, Siberian Federal UniversityKrasnoyarskRussia
| | - Elena V. Nemtseva
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia,Institute of Fundamental Biology and Biotechnology, Siberian Federal UniversityKrasnoyarskRussia
| | - Dongsheng Liu
- iHuman Institute, ShanghaiTech UniversityShanghaiChina
| | - Zhi‐Jie Liu
- iHuman Institute, ShanghaiTech UniversityShanghaiChina,School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| | - Eugene S. Vysotski
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia
| |
Collapse
|
20
|
Borisenko I, Daugavet M, Ereskovsky A, Lavrov A, Podgornaya O. Novel protein from larval sponge cells, ilborin, is related to energy turnover and calcium binding and is conserved among marine invertebrates. Open Biol 2022; 12:210336. [PMID: 35193395 PMCID: PMC8864356 DOI: 10.1098/rsob.210336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sponges (phylum Porifera) are early-branching animals, whose outwardly simple body plan is underlain by a complex genetic repertoire. The transition from a mobile larva to an attached filter-feeding organism occurs by metamorphosis, a process accompanied by a radical change of the body plan and cell transdifferentiation. The continuity between larval cells and adult tissues is still obscure. In a previous study, we have produced polyclonal antibodies against the major protein of the flagellated cells covering the larva of the sponge Halisarca dujardini, used them to trace the fate of these cells and shown that the larval flagellated cells transdifferentiate into the choanocytes. In the present work, we identified the sequence of this novel protein, which we named ilborin. A search in the open databases showed that multiple orthologues of the newly identified protein are present in sponges, cnidarians, flatworms, ctenophores and echinoderms, but none of them has been described yet. Ilborin has two conserved domains: triosephosphate isomerase-barrel, which has enzymatic activity against macroergic compounds, and canonical EF-hand, which binds calcium. mRNA of ilborin is expressed in the larval flagellated cells. We suggest that the new protein is involved in the calcium-mediated regulation of energy metabolism, whose activation precedes metamorphosis.
Collapse
Affiliation(s)
- Ilya Borisenko
- Department of Embryology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Maria Daugavet
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Alexander Ereskovsky
- Department of Embryology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia,Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Université d' Aix-Marseille, CNRS, IRD, Marseille, France,Evolution of Morphogenesis Laboratory, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Andrey Lavrov
- Pertsov White Sea Biological Station, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Podgornaya
- Department of Embryology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia,Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
21
|
Arévalo-Salina EL, Osuna J, Flores H, Saab-Rincon G. Engineering a calcium-dependent conformational change in Calbindin D 9k by secondary elements replacement. Arch Biochem Biophys 2021; 714:109065. [PMID: 34710387 DOI: 10.1016/j.abb.2021.109065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
EF-hand is a common motif in Ca2+-binding proteins, some of which present a conformational change upon Ca2+-binding, a relevant property for signal transduction. In the present work, we investigated the behavior of Calbindin D9k, a modulator protein with a high affinity for Ca2+ but structurally insensitive to its presence. Its non-canoncal N-terminal EF-hand was replaced by chimeric motifs, containing increasing structural elements from the sensor troponin C SCIII motif. We demonstrated that the loop and helix II were the necessary elements for a conformational change promoted by calcium in chimeric Calbindin D9k. Fusion of the isolated chimeric motifs to an activity reporter gene showed the loop as the minimal element to promote a conformational change. The discrepancy between these results is discussed in the light of inter-motif interactions and helix I participation in modulating the Ca2+ affinity and restricting motif conformation.
Collapse
Affiliation(s)
- Emma L Arévalo-Salina
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico
| | - Joel Osuna
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico
| | - Humberto Flores
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico
| | - Gloria Saab-Rincon
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico.
| |
Collapse
|
22
|
Silvers R, Stephan JR, Griffin RG, Nolan EM. Molecular Basis of Ca(II)-Induced Tetramerization and Transition-Metal Sequestration in Human Calprotectin. J Am Chem Soc 2021; 143:18073-18090. [PMID: 34699194 PMCID: PMC8643164 DOI: 10.1021/jacs.1c06402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human calprotectin (CP, S100A8/S100A9 oligomer, MRP8/MRP14 oligomer) is an abundant innate immune protein that contributes to the host metal-withholding response. Its ability to sequester transition metal nutrients from microbial pathogens depends on a complex interplay of Ca(II) binding and self-association, which converts the αβ heterodimeric apo protein into a Ca(II)-bound (αβ)2 heterotetramer that displays enhanced transition metal affinities, antimicrobial activity, and protease stability. A paucity of structural data on the αβ heterodimer has hampered molecular understanding of how Ca(II) binding enables CP to exert its metal-sequestering innate immune function. We report solution NMR data that reveal how Ca(II) binding affects the structure and dynamics of the CP αβ heterodimer. These studies provide a structural model in which the apo αβ heterodimer undergoes conformational exchange and switches between two states, a tetramerization-incompetent or "inactive" state and a tetramerization-competent or "active" state. Ca(II) binding to the EF-hands of the αβ heterodimer causes the active state to predominate, resulting in self-association and formation of the (αβ)2 heterotetramer. Moreover, Ca(II) binding causes local and allosteric ordering of the His3Asp and His6 metal-binding sites. Ca(II) binding to the noncanonical EF-hand of S100A9 positions (A9)D30 and organizes the His3Asp site. Remarkably, Ca(II) binding causes allosteric effects in the C-terminal region of helix αIV of S100A9, which stabilize the α-helicity at positions H91 and H95 and thereby organize the functionally versatile His6 site. Collectively, this study illuminates the molecular basis for how CP responds to high extracellular Ca(II) concentrations, which enables its metal-sequestering host-defense function.
Collapse
Affiliation(s)
- Robert Silvers
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Jules R. Stephan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert G. Griffin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
23
|
O'Neill AM, Worthing KA, Kulkarni N, Li F, Nakatsuji T, McGrosso D, Mills RH, Kalla G, Cheng JY, Norris JM, Pogliano K, Pogliano J, Gonzalez DJ, Gallo RL. Antimicrobials from a feline commensal bacterium inhibit skin infection by drug-resistant S. pseudintermedius. eLife 2021; 10:66793. [PMID: 34664551 PMCID: PMC8592530 DOI: 10.7554/elife.66793] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022] Open
Abstract
Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is an important emerging zoonotic pathogen that causes severe skin infections. To combat infections from drug-resistant bacteria, the transplantation of commensal antimicrobial bacteria as a therapeutic has shown clinical promise. We screened a collection of diverse staphylococcus species from domestic dogs and cats for antimicrobial activity against MRSP. A unique strain (S. felis C4) was isolated from feline skin that inhibited MRSP and multiple gram-positive pathogens. Whole genome sequencing and mass spectrometry revealed several secreted antimicrobials including a thiopeptide bacteriocin micrococcin P1 and phenol-soluble modulin beta (PSMβ) peptides that exhibited antimicrobial and anti-inflammatory activity. Fluorescence and electron microscopy revealed that S. felis antimicrobials inhibited translation and disrupted bacterial but not eukaryotic cell membranes. Competition experiments in mice showed that S. felis significantly reduced MRSP skin colonization and an antimicrobial extract from S. felis significantly reduced necrotic skin injury from MRSP infection. These findings indicate a feline commensal bacterium that could be utilized in bacteriotherapy against difficult-to-treat animal and human skin infections.
Collapse
Affiliation(s)
- Alan M O'Neill
- Department of Dermatology, University of California, San Diego, San Diego, United States
| | - Kate A Worthing
- College of Veterinary Medicine, University of Arizona, Oro Valley, United States
| | - Nikhil Kulkarni
- Department of Dermatology, University of California, San Diego, San Diego, United States
| | - Fengwu Li
- Department of Dermatology, University of California, San Diego, San Diego, United States
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California, San Diego, San Diego, United States
| | - Dominic McGrosso
- Department of Pharmacology, University of California, San Diego, San Diego, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, United States
| | - Robert H Mills
- Department of Pharmacology, University of California, San Diego, San Diego, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, United States
| | - Gayathri Kalla
- Division of Biological Sciences, University of California, San Diego, San Diego, United States
| | - Joyce Y Cheng
- Department of Dermatology, University of California, San Diego, San Diego, United States
| | - Jacqueline M Norris
- Sydney School of Veterinary Science, University of Sydney, Sydney, Australia
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, San Diego, United States
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, San Diego, United States
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, San Diego, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, United States
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, San Diego, United States
| |
Collapse
|
24
|
Pienkowski T, Kowalczyk T, Kretowski A, Ciborowski M. A review of gliomas-related proteins. Characteristics of potential biomarkers. Am J Cancer Res 2021; 11:3425-3444. [PMID: 34354853 PMCID: PMC8332856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023] Open
Abstract
Brain tumors are one of the most commonly diagnosed cancers of the central nervous system. Of all diagnosed malignant tumors, 80% are gliomas. An unequivocal diagnosis of gliomas is not always simple, and there is a great need for research to find new treatment options and diagnostic approaches. This paper is focused on the glioma-related protein profiles as compared to healthy brain tissue, which is reflected in multiple correlations between biological aspects that influence proliferation, apoptosis evasion and the invasiveness of neoplastic cells. The work presents the possibilities of facilitating clinical practice with proteomic biomarkers, which offer a wider diagnostic spectrum and reduce the margin of mistake in histopathological or imaging diagnostic methods. In fact, many changes in the body's homeostasis can be overlooked due to the lack of symptoms or their non-specificity. Nevertheless, a single marker has limited reliability in distinguishing a particular tumor subtype, since the increased or decreased level of the protein of interest may differ between the stages or locations of the tumor. Moreover, the correlations between proposed proteins - presented in this paper - may help clinicians to choose the most optimal therapy, and estimate its effectiveness, or indicate new therapeutic targets affecting disrupted biochemical pathways.
Collapse
Affiliation(s)
- Tomasz Pienkowski
- Clinical Research Center, Medical University of Bialystok M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Tomasz Kowalczyk
- Clinical Research Center, Medical University of Bialystok M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Adam Kretowski
- Clinical Research Center, Medical University of Bialystok M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Center, Medical University of Bialystok M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| |
Collapse
|
25
|
The S100 Protein Family as Players and Therapeutic Targets in Pulmonary Diseases. Pulm Med 2021; 2021:5488591. [PMID: 34239729 PMCID: PMC8214497 DOI: 10.1155/2021/5488591] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
The S100 protein family consists of over 20 members in humans that are involved in many intracellular and extracellular processes, including proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation, tissue repair, and migration/invasion. Although there are structural similarities between each member, they are not functionally interchangeable. The S100 proteins function both as intracellular Ca2+ sensors and as extracellular factors. Dysregulated responses of multiple members of the S100 family are observed in several diseases, including the lungs (asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, cystic fibrosis, pulmonary hypertension, and lung cancer). To this degree, extensive research was undertaken to identify their roles in pulmonary disease pathogenesis and the identification of inhibitors for several S100 family members that have progressed to clinical trials in patients for nonpulmonary conditions. This review outlines the potential role of each S100 protein in pulmonary diseases, details the possible mechanisms observed in diseases, and outlines potential therapeutic strategies for treatment.
Collapse
|
26
|
Chaudhary H, Iashchishyn IA, Romanova NV, Rambaran MA, Musteikyte G, Smirnovas V, Holmboe M, Ohlin CA, Svedružić ŽM, Morozova-Roche LA. Polyoxometalates as Effective Nano-inhibitors of Amyloid Aggregation of Pro-inflammatory S100A9 Protein Involved in Neurodegenerative Diseases. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26721-26734. [PMID: 34080430 PMCID: PMC8289188 DOI: 10.1021/acsami.1c04163] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Pro-inflammatory and amyloidogenic S100A9 protein is central to the amyloid-neuroinflammatory cascade in neurodegenerative diseases. Polyoxometalates (POMs) constitute a diverse group of nanomaterials, which showed potency in amyloid inhibition. Here, we have demonstrated that two selected nanosized niobium POMs, Nb10 and TiNb9, can act as potent inhibitors of S100A9 amyloid assembly. Kinetics analysis based on ThT fluorescence experiments showed that addition of either Nb10 or TiNb9 reduces the S100A9 amyloid formation rate and amyloid quantity. Atomic force microscopy imaging demonstrated the complete absence of long S100A9 amyloid fibrils at increasing concentrations of either POM and the presence of only round-shaped and slightly elongated aggregates. Molecular dynamics simulation revealed that both Nb10 and TiNb9 bind to native S100A9 homo-dimer by forming ionic interactions with the positively charged Lys residue-rich patches on the protein surface. The acrylamide quenching of intrinsic fluorescence showed that POM binding does not perturb the Trp 88 environment. The far and near UV circular dichroism revealed no large-scale perturbation of S100A9 secondary and tertiary structures upon POM binding. These indicate that POM binding involves only local conformational changes in the binding sites. By using intrinsic and 8-anilino-1-naphthalene sulfonate fluorescence titration experiments, we found that POMs bind to S100A9 with a Kd of ca. 2.5 μM. We suggest that the region, including Lys 50 to Lys 54 and characterized by high amyloid propensity, could be the key sequences involved in S1009 amyloid self-assembly. The inhibition and complete hindering of S100A9 amyloid pathways may be used in the therapeutic applications targeting the amyloid-neuroinflammatory cascade in neurodegenerative diseases.
Collapse
Affiliation(s)
- Himanshu Chaudhary
- Department
of Medical Biochemistry and Biophysics, Umeå University, Umeå 90187, Sweden
| | - Igor A. Iashchishyn
- Department
of Medical Biochemistry and Biophysics, Umeå University, Umeå 90187, Sweden
| | - Nina V. Romanova
- Department
of Medical Biochemistry and Biophysics, Umeå University, Umeå 90187, Sweden
| | | | - Greta Musteikyte
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Vytautas Smirnovas
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Michael Holmboe
- Department
of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - C. André Ohlin
- Department
of Chemistry, Umeå University, 90187 Umeå, Sweden
| | | | - Ludmilla A. Morozova-Roche
- Department
of Medical Biochemistry and Biophysics, Umeå University, Umeå 90187, Sweden
- . Tel.: +46736205283. Fax: +46907865283
| |
Collapse
|
27
|
Venestatin from parasitic helminths interferes with receptor for advanced glycation end products (RAGE)-mediated immune responses to promote larval migration. PLoS Pathog 2021; 17:e1009649. [PMID: 34081755 PMCID: PMC8205142 DOI: 10.1371/journal.ppat.1009649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/15/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Parasitic helminths can reside in humans owing to their ability to disrupt host protective immunity. Receptor for advanced glycation end products (RAGE), which is highly expressed in host skin, mediates inflammatory responses by regulating the expression of pro-inflammatory cytokines and endothelial adhesion molecules. In this study, we evaluated the effects of venestatin, an EF-hand Ca2+-binding protein secreted by the parasitic helminth Strongyloides venezuelensis, on RAGE activity and immune responses. Our results demonstrated that venestatin bound to RAGE and downregulated the host immune response. Recombinant venestatin predominantly bound to the RAGE C1 domain in a Ca2+-dependent manner. Recombinant venestatin effectively alleviated RAGE-mediated inflammation, including footpad edema in mice, and pneumonia induced by an exogenous RAGE ligand. Infection experiments using S. venezuelensis larvae and venestatin silencing via RNA interference revealed that endogenous venestatin promoted larval migration from the skin to the lungs in a RAGE-dependent manner. Moreover, endogenous venestatin suppressed macrophage and neutrophil accumulation around larvae. Although the invasion of larvae upregulated the abundance of RAGE ligands in host skin tissues, mRNA expression levels of tumor necrosis factor-α, cyclooxygenase-2, endothelial adhesion molecules vascular cell adhesion protein-1, intracellular adhesion molecule-1, and E-selectin were suppressed by endogenous venestatin. Taken together, our results indicate that venestatin suppressed RAGE-mediated immune responses in host skin induced by helminthic infection, thereby promoting larval migration. The anti-inflammatory mechanism of venestatin may be targeted for the development of anthelminthics and immunosuppressive agents for the treatment of RAGE-mediated inflammatory diseases. Parasitic helminths have evolved smart strategies to thrive in diverse hosts. For example, parasitic helminths secrete various immunomodulators in the host to establish successful tissue migration to their reproductive niche and chronic parasitism. Identification and functional analyses have revealed these immunomodulators may have potential therapeutic effects in the treatment of immune-related diseases. However, few immunomodulators from parasitic helminths have been identified and analyzed to date. In this study, we determined that venestatin, an EF-hand Ca2+-binding protein secreted by the parasitic nematode Strongyloides venezuelensis, bound to receptor for advanced glycation end products (RAGE), a host pro-inflammatory receptor, which downregulated RAGE-mediated inflammatory responses. S. venezuelensis larvae successfully migrated to their niche owing to the anti-inflammatory functions of venestatin. Venestatin could provide a novel therapeutic target for the treatment of RAGE-mediated inflammatory diseases, such as Alzheimer’s disease, rheumatoid arthritis, asthma, ulcerative colitis, and diabetes.
Collapse
|
28
|
Taherkhani S, Suzuki K, Ruhee RT. A Brief Overview of Oxidative Stress in Adipose Tissue with a Therapeutic Approach to Taking Antioxidant Supplements. Antioxidants (Basel) 2021; 10:594. [PMID: 33924341 PMCID: PMC8069597 DOI: 10.3390/antiox10040594] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022] Open
Abstract
One of the leading causes of obesity associated with oxidative stress (OS) is excessive consumption of nutrients, especially fast-foods, and a sedentary lifestyle, characterized by the ample accumulation of lipid in adipose tissue (AT). When the body needs energy, the lipid is broken down into glycerol (G) and free fatty acids (FFA) during the lipolysis process and transferred to various tissues in the body. Materials secreted from AT, especially adipocytokines (interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α)) and reactive oxygen species (ROS), are impressive in causing inflammation and OS of AT. There are several ways to improve obesity, but researchers have highly regarded the use of antioxidant supplements due to their neutralizing properties in removing ROS. In this review, we have examined the AT response to OS to antioxidant supplements focusing on animal studies. The results are inconsistent due to differences in the study duration and diversity in animals (strain, age, and sex). Therefore, there is a need for different studies, especially in humans.
Collapse
Affiliation(s)
- Shima Taherkhani
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht 4199843653, Iran
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| | - Ruheea Taskin Ruhee
- Gradute School of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| |
Collapse
|
29
|
Lin QT, Lee R, Feng AL, Kim MS, Stathopulos PB. The leucine zipper EF-hand containing transmembrane protein-1 EF-hand is a tripartite calcium, temperature, and pH sensor. Protein Sci 2021; 30:855-872. [PMID: 33576522 DOI: 10.1002/pro.4042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Abstract
Leucine Zipper EF-hand containing transmembrane protein-1 (LETM1) is an inner mitochondrial membrane protein that mediates mitochondrial calcium (Ca2+ )/proton exchange. The matrix residing carboxyl (C)-terminal domain contains a sequence identifiable EF-hand motif (EF1) that is highly conserved among orthologues. Deletion of EF1 abrogates LETM1 mediated mitochondrial Ca2+ flux, highlighting the requirement of EF1 for LETM1 function. To understand the mechanistic role of this EF-hand in LETM1 function, we characterized the biophysical properties of EF1 in isolation. Our data show that EF1 exhibits α-helical secondary structure that is augmented in the presence of Ca2+ . Unexpectedly, EF1 features a weak (~mM), but specific, apparent Ca2+ -binding affinity, consistent with the canonical Ca2+ coordination geometry, suggested by our solution NMR. The low affinity is, at least in part, due to an Asp at position 12 of the binding loop, where mutation to Glu increases the affinity by ~4-fold. Further, the binding affinity is sensitive to pH changes within the physiological range experienced by mitochondria. Remarkably, EF1 unfolds at high and low temperatures. Despite these unique EF-hand properties, Ca2+ binding increases the exposure of hydrophobic regions, typical of EF-hands; however, this Ca2+ -induced conformational change shifts EF1 from a monomer to higher order oligomers. Finally, we showed that a second, putative EF-hand within LETM1 is unreactive to Ca2+ either in isolation or tandem with EF1. Collectively, our data reveal that EF1 is structurally and biophysically responsive to pH, Ca2+ and temperature, suggesting a role as a multipartite environmental sensor within LETM1.
Collapse
Affiliation(s)
- Qi-Tong Lin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Rachel Lee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Allen L Feng
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Michael S Kim
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Radiation Oncology, Dalhousie University, Halifax, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
30
|
Knöckel J, Dundas K, Yang ASP, Galaway F, Metcalf T, Gemert GJV, Sauerwein RW, Rayner JC, Billker O, Wright GJ. Systematic Identification of Plasmodium Falciparum Sporozoite Membrane Protein Interactions Reveals an Essential Role for the p24 Complex in Host Infection. Mol Cell Proteomics 2021; 20:100038. [PMID: 33515807 PMCID: PMC7950211 DOI: 10.1074/mcp.ra120.002432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Sporozoites are a motile form of malaria-causing Plasmodium falciparum parasites that migrate from the site of transmission in the dermis through the bloodstream to invade hepatocytes. Sporozoites interact with many cells within the host, but the molecular identity of these interactions and their role in the pathology of malaria is poorly understood. Parasite proteins that are secreted and embedded within membranes are known to be important for these interactions, but our understanding of how they interact with each other to form functional complexes is largely unknown. Here, we compile a library of recombinant proteins representing the repertoire of cell surface and secreted proteins from the P. falciparum sporozoite and use an assay designed to detect extracellular interactions to systematically identify complexes. We identify three protein complexes including an interaction between two components of the p24 complex that is involved in the trafficking of glycosylphosphatidylinositol-anchored proteins through the secretory pathway. Plasmodium parasites lacking either gene are strongly inhibited in the establishment of liver-stage infections. These findings reveal an important role for the p24 complex in malaria pathogenesis and show that the library of recombinant proteins represents a valuable resource to investigate P. falciparum sporozoite biology.
Collapse
Key Words
- avexis, avidity-based extracellular interaction screen
- csp, circumsporozoite protein
- gpi, glycosylphosphatidylinositol
- hbs, hepes-buffered saline
- hek, human embryonic kidney
- ivis, in vivo imaging system
- msp, merozoite surface protein
- piesp15, parasite-infected erythrocyte surface protein 15
- spr, surface plasmon resonance
- trap, thrombospondin-related anonymous protein
Collapse
Affiliation(s)
- Julia Knöckel
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, United Kingdom; Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Kirsten Dundas
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, United Kingdom; Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Annie S P Yang
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Francis Galaway
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, United Kingdom; Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Tom Metcalf
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Geert-Jan van Gemert
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robert W Sauerwein
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Julian C Rayner
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Oliver Billker
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom; The Laboratory for Molecular Infection Medicine Sweden (MIMS) and Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, United Kingdom; Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom; Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom.
| |
Collapse
|
31
|
Andrews C, Xu Y, Kirberger M, Yang JJ. Structural Aspects and Prediction of Calmodulin-Binding Proteins. Int J Mol Sci 2020; 22:ijms22010308. [PMID: 33396740 PMCID: PMC7795363 DOI: 10.3390/ijms22010308] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 11/19/2022] Open
Abstract
Calmodulin (CaM) is an important intracellular protein that binds Ca2+ and functions as a critical second messenger involved in numerous biological activities through extensive interactions with proteins and peptides. CaM’s ability to adapt to binding targets with different structures is related to the flexible central helix separating the N- and C-terminal lobes, which allows for conformational changes between extended and collapsed forms of the protein. CaM-binding targets are most often identified using prediction algorithms that utilize sequence and structural data to predict regions of peptides and proteins that can interact with CaM. In this review, we provide an overview of different CaM-binding proteins, the motifs through which they interact with CaM, and shared properties that make them good binding partners for CaM. Additionally, we discuss the historical and current methods for predicting CaM binding, and the similarities and differences between these methods and their relative success at prediction. As new CaM-binding proteins are identified and classified, we will gain a broader understanding of the biological processes regulated through changes in Ca2+ concentration through interactions with CaM.
Collapse
Affiliation(s)
- Corey Andrews
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (C.A.); (Y.X.)
| | - Yiting Xu
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (C.A.); (Y.X.)
| | - Michael Kirberger
- Chemistry Division, Georgia Gwinnett College, Lawrenceville, GA 30043, USA;
| | - Jenny J. Yang
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (C.A.); (Y.X.)
- Correspondence: ; Tel.: +1-4044135520
| |
Collapse
|
32
|
Antimicrobial peptides: bridging innate and adaptive immunity in the pathogenesis of psoriasis. Chin Med J (Engl) 2020; 133:2966-2975. [PMID: 33237697 PMCID: PMC7752697 DOI: 10.1097/cm9.0000000000001240] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial peptides (AMPs) are small molecules produced by a myriad of cells and play important roles not only in protecting against infections and sustaining skin barrier homeostasis but also in contributing to immune dysregulation under pathological conditions. Recently, increasing evidence has indicated that AMPs, including cathelicidin (LL-37), human β-defensins, S100 proteins, lipocalin 2, and RNase 7, are highly expressed in psoriatic skin lesions. These peptides broadly regulate immunity by interacting with various immune cells and linking innate and adaptive immune responses during the progression of psoriasis. In this review, we summarize the recent findings regarding AMPs in the pathogenesis of psoriasis with a main focus on their immunomodulatory abilities.
Collapse
|
33
|
Raghunathan V, Fan G, Kittai AS, Okada C, Danilov AV, Spurgeon SE. A novel somatic PLCG2 variant associated with resistance to BTK and SYK inhibition in chronic lymphocytic leukemia. Eur J Haematol 2020; 106:294-297. [PMID: 33089525 DOI: 10.1111/ejh.13538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 11/27/2022]
Abstract
The treatment of chronic lymphocytic leukemia (CLL) has been transformed by the use of targeted small molecules inhibiting components of the B cell receptor (BCR) signaling pathway (Haematologica, 103, 2018 and e204; Curr Hematol Malig Rep, 14, 2019, 302). Chief among these is ibrutinib, an irreversible inhibitor of Bruton tyrosine kinase (BTK), which produces deep, durable responses in CLL with good tolerability (Haematologica, 103, 2018 and e204). Though prolonged exposure to the drug can exert selective pressure on CLL cells and allow for the emergence of drug-resistant clones, primary ibrutinib treatment failure is rare (Expert Rev Hematol, 11 and 2018, 185; N Engl J Med, 370, 2014 and 2352; N Engl J Med, 373, 2015 and 25, 2425; Blood, 128, 2016 and 2199). Activating mutations in the gene PLCG2, which encodes a downstream target of BTK, appear to enable constitutive BCR signaling and have been associated with ibrutinib resistance (Int J Cancer, 146 and 2020, 85; J Clin Oncol, 35, 2017 and 1437; Blood, 126, 2015 and 61). In recent years, novel investigational agents have targeted other components of the BCR pathway. Among these is entospletinib, an orally bioavailable, selective inhibitor of splenic tyrosine kinase (SYK) (Blood, 126, 2015 and 1744), which lies upstream of the enzyme phospholipase C-gamma-2 (PLCG2). Here, we describe a patient who was found to harbor a novel somatic variant of PLCG2 and experienced a lack of treatment response to both ibrutinib and entospletinib.
Collapse
Affiliation(s)
- Vikram Raghunathan
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR, USA
| | - Guang Fan
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Adam S Kittai
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Craig Okada
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR, USA
| | - Alexey V Danilov
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Stephen E Spurgeon
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
34
|
A Calcium Sensor Discovered in Bluetongue Virus Nonstructural Protein 2 Is Critical for Virus Replication. J Virol 2020; 94:JVI.01099-20. [PMID: 32759321 PMCID: PMC7527055 DOI: 10.1128/jvi.01099-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
After entering the host cells, viruses use cellular host factors to ensure a successful virus replication process. For replication in infected cells, members of the Reoviridae family form inclusion body-like structures known as viral inclusion bodies (VIB) or viral factories. Bluetongue virus (BTV) forms VIBs in infected cells through nonstructural protein 2 (NS2), a phosphoprotein. An important regulatory factor critical for VIB formation is phosphorylation of NS2. In our study, we discovered a characteristic calcium-binding EF-hand-like motif in NS2 and found that the calcium binding preferentially affects phosphorylation level of the NS2 and has a role in regulating VIB assembly. Many viruses use specific viral proteins to bind calcium ions (Ca2+) for stability or to modify host cell pathways; however, to date, no Ca2+ binding protein has been reported in bluetongue virus (BTV), the causative agent of bluetongue disease in livestock. Here, using a comprehensive bioinformatics screening, we identified a putative EF-hand-like Ca2+ binding motif in the carboxyl terminal region of BTV nonstructural phosphoprotein 2 (NS2). Subsequently, using a recombinant NS2, we demonstrated that NS2 binds Ca2+ efficiently and that Ca2+ binding was perturbed when the Asp and Glu residues in the motif were substituted by alanine. Using circular dichroism analysis, we found that Ca2+ binding by NS2 triggered a helix-to-coil secondary structure transition. Further, cryo-electron microscopy in the presence of Ca2+ revealed that NS2 forms helical oligomers which, when aligned with the N-terminal domain crystal structure, suggest an N-terminal domain that wraps around the C-terminal domain in the oligomer. Further, an in vitro kinase assay demonstrated that Ca2+ enhanced the phosphorylation of NS2 significantly. Importantly, mutations introduced at the Ca2+ binding site in the viral genome by reverse genetics failed to allow recovery of viable virus, and the NS2 phosphorylation level and assembly of viral inclusion bodies (VIBs) were reduced. Together, our data suggest that NS2 is a dedicated Ca2+ binding protein and that calcium sensing acts as a trigger for VIB assembly, which in turn facilitates virus replication and assembly. IMPORTANCE After entering the host cells, viruses use cellular host factors to ensure a successful virus replication process. For replication in infected cells, members of the Reoviridae family form inclusion body-like structures known as viral inclusion bodies (VIB) or viral factories. Bluetongue virus (BTV) forms VIBs in infected cells through nonstructural protein 2 (NS2), a phosphoprotein. An important regulatory factor critical for VIB formation is phosphorylation of NS2. In our study, we discovered a characteristic calcium-binding EF-hand-like motif in NS2 and found that the calcium binding preferentially affects phosphorylation level of the NS2 and has a role in regulating VIB assembly.
Collapse
|
35
|
Cracchiolo OM, Geremia DK, Corcelli SA, Serrano AL. Hydrogen Bond Exchange and Ca2+ Binding of Aqueous N-Methylacetamide Revealed by 2DIR Spectroscopy. J Phys Chem B 2020; 124:6947-6954. [DOI: 10.1021/acs.jpcb.0c02444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Olivia M. Cracchiolo
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Danielle K. Geremia
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Steven A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Arnaldo L. Serrano
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
36
|
Li T, Xu Y, Shi Y, Chen J, Lin S, Zhu J, Xu X, Lu L, Zou H. Genome-wide analysis of DNA methylation identifies S100A13 as an epigenetic biomarker in individuals with chronic (≥ 30 years) type 2 diabetes without diabetic retinopathy. Clin Epigenetics 2020; 12:77. [PMID: 32493412 PMCID: PMC7268721 DOI: 10.1186/s13148-020-00871-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/21/2020] [Indexed: 01/13/2023] Open
Abstract
Background This study aimed to determine the epigenetic biomarkers of diabetic retinopathy (DR) in subjects with type 2 diabetes mellitus (T2DM). This retrospective study is based on the Shanghai Xinjing community prevention and treatment administrative system of chronic diseases. The subjects enrolled herein were T2DM patients who had undergone long-term follow-up evaluation in the system. Two consecutive studies were conducted. In the discovery cohort, among 19 subjects who had developed DR with a DM duration < 3 years and 21 subjects without DR > 30 years after being diagnosed with DM, an Infinium Human Methylation 850 Beadchip was used to identify differential methylation regions (DMRs) and differential methylation sites (DMSs). The function of the genes was assessed through KEGG enrichment analysis, Gene Ontology (GO) analysis, and pathway network analysis. In the replication cohort, 87 DR patients with a short DM duration and 89 patients without DR over a DM duration > 20 years were compared to assess the association between DMSs and DR upon pyrosequencing. Results A total of 34 DMRs were identified. Genes containing DMSs with the top 5 highest beta value differences between DR and non-DR participants were located on chromosome 1 and were present in the S100A13 gene, which was associated with 71 GO terms. Two S100A13 gene sites, i.e., cg02873163 and cg11343894, displayed a good correlation with DR on pyrosequencing. Conclusions DMSs in the S100A13 gene may be potential biomarkers of DR.
Collapse
Affiliation(s)
- Tao Li
- Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, No. 380, Kangding Road, Shanghai, 200040, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi Xu
- Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, No. 380, Kangding Road, Shanghai, 200040, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiaotong University, Shanghai, China
| | - Jianhua Chen
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Senlin Lin
- Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, No. 380, Kangding Road, Shanghai, 200040, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianfeng Zhu
- Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, No. 380, Kangding Road, Shanghai, 200040, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xian Xu
- Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, No. 380, Kangding Road, Shanghai, 200040, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lina Lu
- Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, No. 380, Kangding Road, Shanghai, 200040, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haidong Zou
- Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, No. 380, Kangding Road, Shanghai, 200040, China. .,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
37
|
Eberhardt EL, Ludlam AV, Tan Z, Cianfrocco MA. Miro: A molecular switch at the center of mitochondrial regulation. Protein Sci 2020; 29:1269-1284. [PMID: 32056317 PMCID: PMC7255519 DOI: 10.1002/pro.3839] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/24/2022]
Abstract
The orchestration of mitochondria within the cell represents a critical aspect of cell biology. At the center of this process is the outer mitochondrial membrane protein, Miro. Miro coordinates diverse cellular processes by regulating connections between organelles and the cytoskeleton that range from mediating contacts between the endoplasmic reticulum and mitochondria to the regulation of both actin and microtubule motor proteins. Recently, a number of cell biological, biochemical, and protein structure studies have helped to characterize the myriad roles played by Miro. In addition to answering questions regarding Miro's function, these studies have opened the door to new avenues in the study of Miro in the cell. This review will focus on summarizing recent findings for Miro's structure, function, and activity while highlighting key questions that remain unanswered.
Collapse
Affiliation(s)
- Emily L. Eberhardt
- Life Sciences Institute, Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
- Cellular and Molecular Biology ProgramUniversity of MichiganAnn ArborMichigan
| | - Anthony V. Ludlam
- Life Sciences Institute, Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
| | - Zhenyu Tan
- Life Sciences Institute, Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
- Biophysics ProgramUniversity of MichiganAnn ArborMichigan
| | - Michael A. Cianfrocco
- Life Sciences Institute, Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
| |
Collapse
|
38
|
Kubis-Kubiak A, Dyba A, Piwowar A. The Interplay between Diabetes and Alzheimer's Disease-In the Hunt for Biomarkers. Int J Mol Sci 2020; 21:ijms21082744. [PMID: 32326589 PMCID: PMC7215807 DOI: 10.3390/ijms21082744] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 02/07/2023] Open
Abstract
The brain is an organ in which energy metabolism occurs most intensively and glucose is an essential and dominant energy substrate. There have been many studies in recent years suggesting a close relationship between type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD) as they have many pathophysiological features in common. The condition of hyperglycemia exposes brain cells to the detrimental effects of glucose, increasing protein glycation and is the cause of different non-psychiatric complications. Numerous observational studies show that not only hyperglycemia but also blood glucose levels near lower fasting limits (72 to 99 mg/dL) increase the incidence of AD, regardless of whether T2DM will develop in the future. As the comorbidity of these diseases and earlier development of AD in T2DM sufferers exist, new AD biomarkers are being sought for etiopathogenetic changes associated with early neurodegenerative processes as a result of carbohydrate disorders. The S100B protein seem to be interesting in this respect as it may be a potential candidate, especially important in early diagnostics of these diseases, given that it plays a role in both carbohydrate metabolism disorders and neurodegenerative processes. It is therefore necessary to clarify the relationship between the concentration of the S100B protein and glucose and insulin levels. This paper draws attention to a valuable research objective that may in the future contribute to a better diagnosis of early neurodegenerative changes, in particular in subjects with T2DM and may be a good basis for planning experiments related to this issue as well as a more detailed explanation of the relationship between the neuropathological disturbances and changes of glucose and insulin concentrations in the brain.
Collapse
Affiliation(s)
- Adriana Kubis-Kubiak
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50367 Wroclaw, Poland;
- Correspondence:
| | - Aleksandra Dyba
- Students Science Club of the Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50367 Wroclaw, Poland;
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50367 Wroclaw, Poland;
| |
Collapse
|
39
|
Permyakov SE, Yundina EN, Kazakov AS, Permyakova ME, Uversky VN, Permyakov EA. Mouse S100G protein exhibits properties characteristic of a calcium sensor. Cell Calcium 2020; 87:102185. [PMID: 32114281 DOI: 10.1016/j.ceca.2020.102185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/10/2020] [Accepted: 02/21/2020] [Indexed: 01/09/2023]
Abstract
Bovine S100 G (calbindin D9k, small Ca2+-binding protein of the EF-hand superfamily) is considered as a calcium buffer protein; i.e., the binding of Ca2+ practically does not change its general conformation. A set of experimental approaches has been used to study structural properties of apo- and Ca2+-loaded forms of mouse S100 G (81.4% identity in amino acid sequence with bovine S100 G). This analysis revealed that, in contrast to bovine S100 G, the removal of calcium ions increases α-helices content of mouse S100 G protein and enhances its accessibility to digestion by α-chymotrypsin. Furthermore, mouse apo-S100 G is characterized by a decreased surface hydrophobicity and reduced tendency for oligomerization. Such behavior is typical of calcium sensor proteins. Apo-state of mouse S100 G still has rather compact structure, which can be cooperatively unfolded by temperature and GdnHCl. Computational analysis of amino acid sequences of S100 G proteins shows that these proteins could be in a disordered state upon a removal of the bound calcium ions. The experimental data show that, although mouse apo-S100 G is flexible compared to the Ca2+-loaded state, the apo-form is not completely disordered and preserves some cooperatively meting structure. The origin of the unexpectedly high stability of mouse S100 G can be rationalized by an exceptionally strong association of its N- and C-terminal parts containing the EF-hands I and II, respectively.
Collapse
Affiliation(s)
- Sergei E Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Elena N Yundina
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexei S Kazakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Maria E Permyakova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Vladimir N Uversky
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| | - Eugene A Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
40
|
Role of S100 proteins in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118677. [PMID: 32057918 DOI: 10.1016/j.bbamcr.2020.118677] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 02/09/2020] [Indexed: 12/16/2022]
Abstract
The S100 family of proteins contains 25 known members that share a high degree of sequence and structural similarity. However, only a limited number of family members have been characterized in depth, and the roles of other members are likely undervalued. Their importance should not be underestimated however, as S100 family members function to regulate a diverse array of cellular processes including proliferation, differentiation, inflammation, migration and/or invasion, apoptosis, Ca2+ homeostasis, and energy metabolism. Here we detail S100 target protein interactions that underpin the mechanistic basis to their function, and discuss potential intervention strategies targeting S100 proteins in both preclinical and clinical situations.
Collapse
|
41
|
Liang S, Fuchs S, Mymrikov EV, Stulz A, Kaiser M, Heerklotz H, Hunte C. Calcium affects CHP1 and CHP2 conformation and their interaction with sodium/proton exchanger 1. FASEB J 2020; 34:3253-3266. [DOI: 10.1096/fj.201902093r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/10/2019] [Accepted: 12/23/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Shuo Liang
- Institute for Biochemistry and Molecular Biology ZBMZ, Faculty of Medicine University of Freiburg Freiburg Germany
- Faculty of Biology University of Freiburg Freiburg Germany
| | - Simon Fuchs
- Institute for Biochemistry and Molecular Biology ZBMZ, Faculty of Medicine University of Freiburg Freiburg Germany
- Faculty of Biology University of Freiburg Freiburg Germany
| | - Evgeny V. Mymrikov
- Institute for Biochemistry and Molecular Biology ZBMZ, Faculty of Medicine University of Freiburg Freiburg Germany
- CIBSS ‐ Centre for Integrative Biological Signalling Studies University of Freiburg Freiburg Germany
| | - Anja Stulz
- Department of Pharmaceutical Technology and Biopharmacy University of Freiburg Freiburg Germany
| | - Michael Kaiser
- Department of Pharmaceutical Technology and Biopharmacy University of Freiburg Freiburg Germany
| | - Heiko Heerklotz
- CIBSS ‐ Centre for Integrative Biological Signalling Studies University of Freiburg Freiburg Germany
- Department of Pharmaceutical Technology and Biopharmacy University of Freiburg Freiburg Germany
- Leslie Dan Faculty of Pharmacy University of Toronto Toronto Canada
- BIOSS Centre for Biological Signalling Studies University of Freiburg Freiburg Germany
| | - Carola Hunte
- Institute for Biochemistry and Molecular Biology ZBMZ, Faculty of Medicine University of Freiburg Freiburg Germany
- CIBSS ‐ Centre for Integrative Biological Signalling Studies University of Freiburg Freiburg Germany
- BIOSS Centre for Biological Signalling Studies University of Freiburg Freiburg Germany
| |
Collapse
|
42
|
Schwaller B. Cytosolic Ca 2+ Buffers Are Inherently Ca 2+ Signal Modulators. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035543. [PMID: 31308146 DOI: 10.1101/cshperspect.a035543] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
For precisely regulating intracellular Ca2+ signals in a time- and space-dependent manner, cells make use of various components of the "Ca2+ signaling toolkit," including Ca2+ entry and Ca2+ extrusion systems. A class of cytosolic Ca2+-binding proteins termed Ca2+ buffers serves as modulators of such, mostly short-lived Ca2+ signals. Prototypical Ca2+ buffers include parvalbumins (α and β isoforms), calbindin-D9k, calbindin-D28k, and calretinin. Although initially considered to function as pure Ca2+ buffers, that is, as intracellular Ca2+ signal modulators controlling the shape (amplitude, decay, spread) of Ca2+ signals, evidence has accumulated that calbindin-D28k and calretinin have additional Ca2+ sensor functions. These other functions are brought about by direct interactions with target proteins, thereby modulating their targets' function/activity. Dysregulation of Ca2+ buffer expression is associated with several neurologic/neurodevelopmental disorders including autism spectrum disorder (ASD) and schizophrenia. In some cases, the presence of these proteins is presumed to confer a neuroprotective effect, as evidenced in animal models of Parkinson's or Alzheimer's disease.
Collapse
Affiliation(s)
- Beat Schwaller
- Department of Anatomy, Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
43
|
Abstract
Ca2+ binding proteins (CBP) are of key importance for calcium to play its role as a pivotal second messenger. CBP bind Ca2+ in specific domains, contributing to the regulation of its concentration at the cytosol and intracellular stores. They also participate in numerous cellular functions by acting as Ca2+ transporters across cell membranes or as Ca2+-modulated sensors, i.e. decoding Ca2+ signals. Since CBP are integral to normal physiological processes, possible roles for them in a variety of diseases has attracted growing interest in recent years. In addition, research on CBP has been reinforced with advances in the structural characterization of new CBP family members. In this chapter we have updated a previous review on CBP, covering in more depth potential participation in physiopathological processes and candidacy for pharmacological targets in many diseases. We review intracellular CBP that contain the structural EF-hand domain: parvalbumin, calmodulin, S100 proteins, calcineurin and neuronal Ca2+ sensor proteins (NCS). We also address intracellular CBP lacking the EF-hand domain: annexins, CBP within intracellular Ca2+ stores (paying special attention to calreticulin and calsequestrin), proteins that contain a C2 domain (such as protein kinase C (PKC) or synaptotagmin) and other proteins of interest, such as regucalcin or proprotein convertase subtisilin kexins (PCSK). Finally, we summarise the latest findings on extracellular CBP, classified according to their Ca2+ binding structures: (i) EF-hand domains; (ii) EGF-like domains; (iii) ɣ-carboxyl glutamic acid (GLA)-rich domains; (iv) cadherin domains; (v) Ca2+-dependent (C)-type lectin-like domains; (vi) Ca2+-binding pockets of family C G-protein-coupled receptors.
Collapse
|
44
|
Simanon N, Adisakwattana P, Thiangtrongjit T, Limpanont Y, Chusongsang P, Chusongsang Y, Anuntakarun S, Payungporn S, Ampawong S, Reamtong O. Phosphoproteomics analysis of male and female Schistosoma mekongi adult worms. Sci Rep 2019; 9:10012. [PMID: 31292487 PMCID: PMC6620315 DOI: 10.1038/s41598-019-46456-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/28/2019] [Indexed: 02/02/2023] Open
Abstract
Schistosoma mekongi is one of the major causative agents of human schistosomiasis in Southeast Asia. Praziquantel is now the only drug available for treatment and there are serious concerns about parasite resistance to it. Therefore, a dataset of schistosome targets is necessary for drug development. Phosphorylation regulates signalling pathways to control cellular processes that are important for the parasite's growth and reproduction. Inhibition of key phosphoproteins may reduce the severity of schistosomiasis. In this research, we studied the phosphoproteomes of S. mekongi male and female adult worms by using computational and experimental approaches. Using a phosphoproteomics approach, we determined that 88 and 44 phosphoproteins were male- and female-biased, respectively. Immunohistochemistry using anti-phosphoserine antibodies demonstrated phosphorylation on the tegument and muscle of male S. mekongi worms and on the vitelline gland and gastrointestinal tract of female worms. This research revealed S. mekongi sex-dependent phosphoproteins. Our findings provide a better understanding of the role of phosphorylation in S. mekongi and could be integrated with information from other Schistosoma species to facilitate drug and vaccine development.
Collapse
Affiliation(s)
- Nattapon Simanon
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Phiraphol Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Yupa Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Songtham Anuntakarun
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
45
|
Heizmann CW. S100 proteins: Diagnostic and prognostic biomarkers in laboratory medicine. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1197-1206. [DOI: 10.1016/j.bbamcr.2018.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/12/2018] [Indexed: 01/04/2023]
|
46
|
Sikdar S, Ghosh M, Adak A, Chakrabarti J. Structural and dynamic responses of calcium ion binding loop residues in metallo-proteins. Biophys Chem 2019; 252:106207. [PMID: 31252378 DOI: 10.1016/j.bpc.2019.106207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
Abstract
Conformational changes in bio-molecular systems are fundamental to several biological processes. It is important to study changes in responses of underlying microscopic variables, like dihedral angles as conformational change takes place. We perform all-atom simulations and modelling via Langevin equation to illustrate the changes in structural and dynamic responses of dihedral angles of calcium ion binding residues of different proteins in metal ion free (apo) and bound (holo) states. The equilibrium distributions of dihedral angles in apo- and holo-states represent structural response. Our studies show the presence of dihedrals with multiple peaks (isomeric states) separated by barrier heights is more frequent in apo- than in holo-state. The relaxation time-scale of dihedral fluctuations is found to increase linearly with decreasing barrier height due to more frequent barrier re-crossing events. The slow kinetic response of the dihedrals also contributes to slowing down of macro-scale fluctuations, which may be useful to understand kinetics of various bio-molecular processes.
Collapse
Affiliation(s)
- Samapan Sikdar
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India.
| | - Mahua Ghosh
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India
| | - Arunava Adak
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India
| | - J Chakrabarti
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India; The Thematic Unit of Excellence on Computational Materials Science, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India.
| |
Collapse
|
47
|
Heizmann CW. Ca 2+-Binding Proteins of the EF-Hand Superfamily: Diagnostic and Prognostic Biomarkers and Novel Therapeutic Targets. Methods Mol Biol 2019; 1929:157-186. [PMID: 30710273 DOI: 10.1007/978-1-4939-9030-6_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A multitude of Ca2+-sensor proteins containing the specific Ca2+-binding motif (helix-loop-helix, called EF-hand) are of major clinical relevance in a many human diseases. Measurements of troponin, the first intracellular Ca-sensor protein to be discovered, is nowadays the "gold standard" in the diagnosis of patients with acute coronary syndrome (ACS). Mutations have been identified in calmodulin and linked to inherited ventricular tachycardia and in patients affected by severe cardiac arrhythmias. Parvalbumin, when introduced into the diseased heart by gene therapy to increase contraction and relaxation speed, is considered to be a novel therapeutic strategy to combat heart failure. S100 proteins, the largest subgroup with the EF-hand protein family, are closely associated with cardiovascular diseases, various types of cancer, inflammation, and autoimmune pathologies. The intention of this review is to summarize the clinical importance of this protein family and their use as biomarkers and potential drug targets, which could help to improve the diagnosis of human diseases and identification of more selective therapeutic interventions.
Collapse
Affiliation(s)
- Claus W Heizmann
- Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
48
|
Shawki HH, Ishikawa-Yamauchi Y, Kawashima A, Katoh Y, Matsuda M, Al-Soudy AS, Minisy FM, Kuno A, Gulibaikelamu X, Hirokawa T, Takahashi S, Oishi H. EFCAB2 is a novel calcium-binding protein in mouse testis and sperm. PLoS One 2019; 14:e0214687. [PMID: 30933994 PMCID: PMC6443151 DOI: 10.1371/journal.pone.0214687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/18/2019] [Indexed: 11/18/2022] Open
Abstract
Calcium-binding proteins regulate ion metabolism and the necessary signaling pathways for the maturational events of sperm. Our aim is to identify the novel calcium-binding proteins in testis. The gene EFCAB2 (GenBank NM_026626.3, NP_080902.1) was not previously examined, and its properties and exact mechanisms of action are unknown. In this study, we performed phylogenetic and structure prediction analyses of EFCAB2, which displays definitive structural features. Additionally, the distribution, localization, and calcium binding ability of mouse EFCAB2 were investigated. Results revealed extensive conservation of EFCAB2 among different eukaryotic orthologs. The constructed 3D model predicted that mouse EFCAB2 contains seven α-helices and two EF-hand motifs. The first EF-hand motif is located in N-terminal, while the second is located in C-terminal. By aligning the 3D structure of Ca2+-binding loops from EFCAB2 with calmodulin, we predicted six residues that might be involved in Ca2+ binding. The distribution of the Efcab2 mRNA, as determined by northern blotting, was detected only in the testis among mouse tissues. Native and recombinant EFCAB2 protein were detected by western blotting as one band at 20 kDa. In situ hybridization and immunohistochemical analyses showed its localization specifically in spermatogenic cells from primary spermatocytes to elongate spermatids within the seminiferous epithelium, but neither spermatogonia nor somatic cells were expressed. Moreover, EFCAB2 was specifically localized to the principal piece of cauda epididymal sperm flagellum. Furthermore, the analyses of purified recombinant EFCAB2 by Stains-all, ruthenium red staining, and by applying in vitro autoradiography assay showed that the physiological function of this protein is Ca2+ binding. These results suggested that EFCAB2 might be involved in the control of sperm flagellar movement. Altogether, here we describe about EFCAB2 as a novel calcium-binding protein in mouse testis and sperm.
Collapse
Affiliation(s)
- Hossam H. Shawki
- Department of Anatomy and Embryology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
- Department of Animal Genetic Resources, National Gene Bank, Giza, Egypt
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- * E-mail: (HHS); (AK)
| | - Yu Ishikawa-Yamauchi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akihiro Kawashima
- Department of Anatomy and Embryology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- * E-mail: (HHS); (AK)
| | - Yuki Katoh
- Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Manabu Matsuda
- Department of Arts and Sciences, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Al-Sayed Al-Soudy
- Department of Anatomy and Embryology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
- Department of Animal Genetic Resources, National Gene Bank, Giza, Egypt
| | - Fatma M. Minisy
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Pathology Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Xiafukaiti Gulibaikelamu
- Department of Anatomy and Embryology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Takatsugu Hirokawa
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Koutou-ku, Tokyo, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
49
|
Blaufuss PC, Gaylord TG, Sealey WM, Powell MS. Effects of high-soy diet on S100 gene expression in liver and intestine of rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2019; 86:764-771. [PMID: 30553891 DOI: 10.1016/j.fsi.2018.12.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/04/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
The current study examines expression of S100 genes, a group of calcium-sensing proteins poorly characterized in fishes. In mammals, these proteins are known to play roles beyond calcium-signaling, including mediation of inflammatory processes. Some S100 proteins also serve as biomarkers for a variety of autoinflammatory conditions. It is well known that salmonids exhibit varying degrees of intestinal enteritis when exposed to alternative feed ingredients containing antinutritional factors, with soybean meal (SBM) being one of the best characterized. The etiology of soy-caused distal enteritis isn't entirely understood but displays similar histopathological alterations to the gut observed in human mucosal inflammatory bowel diseases. We sought to determine if teleost S100 genes show a concomitant response like that observed in mammals, utilizing rainbow trout fed high-soy diets as a model for intestinal inflammation. We examined expression of fourteen known salmonid S100 genes in the liver, first segment of the mid-intestine (proximal intestine), and second segment of the mid-intestine (distal intestine). After 12 weeks on a high-soy diet containing 40% SBM, we observed upregulation of several S100 genes in the distal intestine (S100I2, A10a, V1, V2, and W), no changes in the proximal intestine, and downregulation of S100V2 in the liver. Overall, our results provide further knowledge of the expression of S100 genes and provide targets for future research regarding inflammatory processes in the rainbow trout gut.
Collapse
Affiliation(s)
- Patrick C Blaufuss
- Aquaculture Research Institute, University of Idaho, 3059F National Fish Hatchery Rd, Hagerman, ID, 83332, USA.
| | - T Gibson Gaylord
- Bozeman Fish Technology Center, USFWS, 4050 Bridger Canyon Rd, Bozeman, MT, 59715, USA
| | - Wendy M Sealey
- Bozeman Fish Technology Center, USFWS, 4050 Bridger Canyon Rd, Bozeman, MT, 59715, USA
| | - Madison S Powell
- Aquaculture Research Institute, University of Idaho, 3059F National Fish Hatchery Rd, Hagerman, ID, 83332, USA
| |
Collapse
|
50
|
Li M, Zhang W, Yang B. N‑(6‑Aminohexyl)‑5‑chloro‑1‑naphthalenesulfonamide, a centrin antagonist, inhibits Tb 3+/peptides-binding properties. J Inorg Biochem 2019; 193:15-24. [PMID: 30660047 DOI: 10.1016/j.jinorgbio.2019.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/07/2018] [Accepted: 01/06/2019] [Indexed: 10/27/2022]
Abstract
N‑(6‑Aminohexyl)‑5‑chloro‑1‑naphthalenesulfonamide (W-7), a kind of adjuvant chemotherapy, can bind to calmodulin and inhibit Ca2+/calmodulin-regulated enzyme activities and cell proliferation. Similar to calmodulin, euplotes octocarinatus centrin (EoCen) belongs to EF-hand superfamily of calcium-binding proteins. It is associated with nucleotide excision repair (NER), cell division cycle and ciliogenesis. In the present study, the comparative interaction of W-7 with EoCen was first examined by using various spectroscopic, calorimetric methods and molecular docking. The obtain results recommend that only one W-7 molecule is identified binding to the C-terminal hydrophobic pocket of centrin that normally plays a role in anchoring targets. Methyl groups of Ala126, Met141, Ile161 and M162 of C-terminal may react with W-7 chloronaphthalene ring, other aliphatic or aromatic side-chains in a deep hydrophobic pocket of protein. Circular dichroism (CD) and fluorescence lifetime experiments reveal that W-7 triggers a conformational change of centrin. As a result, W-7 is identified to be an antagonist of centrin. It appears to inhibit the centrin-mediated activation of target proteins by blocking the hydrophobic pocket. Moreover, the complex formation leads to affinity decrease of Tb3+ binding to C-terminal of protein and self-assembly affected. Our present study provides the first view of centrin recognizing a naphthalene-sulfonamide derivative. It is proposed that W-7 and its analogues can serve as a useful tool for research on the participation of centrin in biological processes and cell biology-related studies.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Taiyuan 030006, China; Department of Chemistry, Changzhi University, Changzhi 046011, China
| | - Wenlong Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Taiyuan 030006, China
| | - Binsheng Yang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Taiyuan 030006, China.
| |
Collapse
|