1
|
Cao D, Wu S, Xi C, Li D, Zhu K, Zhang Z, Gong H, Luo Q, Yang J. Preparation of long single-strand DNA concatemers for high-level fluorescence in situ hybridization. Commun Biol 2021; 4:1224. [PMID: 34697406 PMCID: PMC8545947 DOI: 10.1038/s42003-021-02762-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 10/07/2021] [Indexed: 12/02/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) is a powerful tool to visualize transcripts in fixed cells and tissues. Despite the recent advances in FISH detection methods, it remains challenging to achieve high-level FISH imaging with a simple workflow. Here, we introduce a method to prepare long single-strand DNA concatemers (lssDNAc) through a controllable rolling-circle amplification (CRCA). Prepared lssDNAcs are used to develop AmpFISH workflows. In addition, we present its applications in different scenarios. AmpFISH shows the following advantages: 1) enhanced FISH signal-to-noise ratio (SNR) up to 160-fold compared with single-molecule FISH; 2) simultaneous detection of FISH signals and fluorescent proteins or immunofluorescence (IF) in tissues; 3) simple workflows; and 4) cost-efficiency. In brief, AmpFISH provides convenient and versatile tools for sensitive RNA/DNA detection and to gain useful information on cellular molecules using simple workflows.
Collapse
Affiliation(s)
- Dongjian Cao
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Sa Wu
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Caili Xi
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Dong Li
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Kaiheng Zhu
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zhihong Zhang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Hui Gong
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Qingming Luo
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
| | - Jie Yang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
2
|
Heterodimers of metal nanoparticles: synthesis, properties, and biological applications. Mikrochim Acta 2021; 188:345. [PMID: 34537870 DOI: 10.1007/s00604-021-05002-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Heterodimers of metal nanoparticles consist of two metals, come in many sizes and adopt various shapes. They offer unique properties due to the presence of two metals and have the extraordinary flexibility needed to serve as a multipurpose platform for diverse applications in areas including photonics, sensing, and catalysis. Heterodimer nanoparticles contain different metals that contribute to extraordinary surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), and catalytic properties. These properties make them versatile molecules that can be used in intracellular imaging, as antibacterial agents, as photocatalytic and biological macromolecules and for the detection of chemical substances. Moreover, heterodimer nanoparticles are composed of the two metals within larger molecules that provide more choices for modification and application. In this review, we briefly summarize the lesser-known aspects of heterodimers, including some of their properties, and present concrete examples of recent progress in synthesis and applications. This review provides a perspective on achievements and suggests a framework for future research with a focus on the synthesis and application of heterodimers. We also explore the possible applications of heterodimer nanoparticles based on their unique properties.
Collapse
|
3
|
Dong Y, Yao C, Zhu Y, Yang L, Luo D, Yang D. DNA Functional Materials Assembled from Branched DNA: Design, Synthesis, and Applications. Chem Rev 2020; 120:9420-9481. [DOI: 10.1021/acs.chemrev.0c00294] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yuhang Dong
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Yi Zhu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Lu Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Dan Luo
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
4
|
Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Käll M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li JF, Ling XY, Maier SA, Mayerhöfer T, Moskovits M, Murakoshi K, Nam JM, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlücker S, Tay LL, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzán LM. Present and Future of Surface-Enhanced Raman Scattering. ACS NANO 2020; 14:28-117. [PMID: 31478375 PMCID: PMC6990571 DOI: 10.1021/acsnano.9b04224] [Citation(s) in RCA: 1441] [Impact Index Per Article: 360.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/03/2019] [Indexed: 04/14/2023]
Abstract
The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.
Collapse
Affiliation(s)
- Judith Langer
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | | | - Javier Aizpurua
- Materials
Physics Center (CSIC-UPV/EHU), and Donostia
International Physics Center, Paseo Manuel de Lardizabal 5, Donostia-San
Sebastián 20018, Spain
| | - Ramon A. Alvarez-Puebla
- Departamento
de Química Física e Inorgánica and EMaS, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Baptiste Auguié
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Guillermo C. Bazan
- Department
of Materials and Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106-9510, United States
| | - Steven E. J. Bell
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Anja Boisen
- Department
of Micro- and Nanotechnology, The Danish National Research Foundation
and Villum Foundation’s Center for Intelligent Drug Delivery
and Sensing Using Microcontainers and Nanomechanics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Alexandre G. Brolo
- Department
of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3 V6, Canada
- Center
for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jaebum Choo
- Department
of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Dana Cialla-May
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Volker Deckert
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Laura Fabris
- Department
of Materials Science and Engineering, Rutgers
University, 607 Taylor Road, Piscataway New Jersey 08854, United States
| | - Karen Faulds
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - F. Javier García de Abajo
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
- The Barcelona
Institute of Science and Technology, Institut
de Ciencies Fotoniques, Castelldefels (Barcelona) 08860, Spain
| | - Royston Goodacre
- Department
of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Duncan Graham
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Amanda J. Haes
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Christy L. Haynes
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christian Huck
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Tamitake Itoh
- Nano-Bioanalysis
Research Group, Health Research Institute, National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan
| | - Mikael Käll
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Janina Kneipp
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str. 2, Berlin-Adlershof 12489, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hua Kuang
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Eric C. Le Ru
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Hiang Kwee Lee
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jian-Feng Li
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Yi Ling
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Stefan A. Maier
- Chair in
Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Thomas Mayerhöfer
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Martin Moskovits
- Department
of Chemistry & Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North 10 West 8, Kita-ku, Sapporo,
Hokkaido 060-0810, Japan
| | - Jwa-Min Nam
- Department
of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Yukihiro Ozaki
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | | | - Jorge Perez-Juste
- Departamento
de Química Física and CINBIO, University of Vigo, Vigo 36310, Spain
| | - Juergen Popp
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Annemarie Pucci
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Stephanie Reich
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Bin Ren
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Timur Shegai
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Sebastian Schlücker
- Physical
Chemistry I, Department of Chemistry and Center for Nanointegration
Duisburg-Essen, University of Duisburg-Essen, Essen 45141, Germany
| | - Li-Lin Tay
- National
Research Council Canada, Metrology Research
Centre, Ottawa K1A0R6, Canada
| | - K. George Thomas
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram, Vithura Thiruvananthapuram 695551, India
| | - Zhong-Qun Tian
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Richard P. Van Duyne
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Department of Biomedical Engineering, and
Department of Chemistry, Duke University, 101 Science Drive, Box 90281, Durham, North Carolina 27708, United States
| | - Yue Wang
- Department
of Chemistry, College of Sciences, Northeastern
University, Shenyang 110819, China
| | - Katherine A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Chuanlai Xu
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Hongxing Xu
- School
of Physics and Technology and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yikai Xu
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Yuko S. Yamamoto
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Bing Zhao
- State Key
Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
5
|
Ha M, Kim JH, You M, Li Q, Fan C, Nam JM. Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures. Chem Rev 2019; 119:12208-12278. [PMID: 31794202 DOI: 10.1021/acs.chemrev.9b00234] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plasmonic nanostructures possessing unique and versatile optoelectronic properties have been vastly investigated over the past decade. However, the full potential of plasmonic nanostructure has not yet been fully exploited, particularly with single-component homogeneous structures with monotonic properties, and the addition of new components for making multicomponent nanoparticles may lead to new-yet-unexpected or improved properties. Here we define the term "multi-component nanoparticles" as hybrid structures composed of two or more condensed nanoscale domains with distinctive material compositions, shapes, or sizes. We reviewed and discussed the designing principles and synthetic strategies to efficiently combine multiple components to form hybrid nanoparticles with a new or improved plasmonic functionality. In particular, it has been quite challenging to precisely synthesize widely diverse multicomponent plasmonic structures, limiting realization of the full potential of plasmonic heterostructures. To address this challenge, several synthetic approaches have been reported to form a variety of different multicomponent plasmonic nanoparticles, mainly based on heterogeneous nucleation, atomic replacements, adsorption on supports, and biomolecule-mediated assemblies. In addition, the unique and synergistic features of multicomponent plasmonic nanoparticles, such as combination of pristine material properties, finely tuned plasmon resonance and coupling, enhanced light-matter interactions, geometry-induced polarization, and plasmon-induced energy and charge transfer across the heterointerface, were reported. In this review, we comprehensively summarize the latest advances on state-of-art synthetic strategies, unique properties, and promising applications of multicomponent plasmonic nanoparticles. These plasmonic nanoparticles including heterostructured nanoparticles and composite nanostructures are prepared by direct synthesis and physical force- or biomolecule-mediated assembly, which hold tremendous potential for plasmon-mediated energy transfer, magnetic plasmonics, metamolecules, and nanobiotechnology.
Collapse
Affiliation(s)
- Minji Ha
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Jae-Ho Kim
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Myunghwa You
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Qian Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Jwa-Min Nam
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| |
Collapse
|
6
|
Mei S, Staub M, Li CY. Directed Nanoparticle Assembly through Polymer Crystallization. Chemistry 2019; 26:349-361. [PMID: 31374132 DOI: 10.1002/chem.201903022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Indexed: 11/11/2022]
Abstract
Nanoparticles can be assembled into complex structures and architectures by using a variety of methods. In this review, we discuss recent progress of using polymer crystallization (particularly polymer single crystals, PSCs) to direct nanoparticle assembly. PSCs have been extensively studied since 1957. Mainly appearing as quasi-two-dimensional (2D) lamellae, PSCs are typically used as model systems to determine polymer crystalline structures, or as markers to investigate the crystallization process. Recent research has demonstrated that they can also be used as nanoscale functional materials. Herein, we show that nanoparticles can be directed to assemble into complex shapes by using in situ or ex situ polymer crystal growth. End-functionalized polymers can crystallize into 2D nanosheet PSCs, which are used to conjugate with complementary nanoparticles, leading to a nanosandwich structure. These nanosandwiches can find interesting applications for catalysis, surface-enhanced Raman spectroscopy, and nanomotors. Dissolution of the nanosandwich leads to the formation of Janus nanoparticles, providing a unique method for asymmetric nanoparticle synthesis.
Collapse
Affiliation(s)
- Shan Mei
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Mark Staub
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Christopher Y Li
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| |
Collapse
|
7
|
Yin F, Liu L, Sun X, Hou L, Lu Y, Xue Q, Lin T, Li X, Li CZ. A facile deoxyuridine/biotin-modified molecular beacon for simultaneous detection of proteins and nucleic acids via a label-free and background-eliminated fluorescence assay. Analyst 2019; 144:5504-5510. [PMID: 31389925 DOI: 10.1039/c9an01016e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Simultaneous detection of different types of cancer biomarkers (nucleic acids and proteins) could facilitate early diagnosis of cancer and clinical treatment. Herein, a simultaneous detection platform of proteins and nucleic acids has been developed using a single substrate probe combining a label-free and background-eliminated fluorescence assay. Telomerase and telomerase RNA (TR) were chosen as the models. The molecular beacon (dU-BIO-HP) that contains deoxyuridine/biotin in its side arm, a TR recognition sequence in the loop and a telomerase substrate primer at the stem end was ingeniously designed. In the presence of telomerase, the stem of dU-BIO-HP is elongated by the addition of telomere repeats complementary to the assistant DNA. Furthermore, the formed dsDNA performed as engaging primers to initiate a SDA reaction, generating abundant G-quadruplex monomers. Similarly, on TR, the hybridization between TR and dU-BIO-HP can open its stem, triggering another SDA reaction, producing abundant short ssDNAs. With the G-quadruplex binding with ZnPPIX and ssDNA binding with SG for specific fluorescence responses, the label-free multiple detection can be achieved. In our strategy, the deoxyuridine of dU-BIO-HP acts as a barrier to block the DNA extension due to its strong inhibitory effects on DNA polymerase activity and to make sure that the two SDA reactions occurred independently. The biotin of dU-BIO-HP enables the reduction of the background from the binding between SG, ZnPPIX and dU-BIO-HP through streptavidin-biotin interaction. This method showed an excellent sensitivity with telomerase and TR detection limit of 2.18 HeLa cells per mL and 0.16 × 10-12 M, respectively. Furthermore, the telomerase and TR in different cell lines have been evaluated as powerful tools for biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Fei Yin
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Liqi Liu
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Xia Sun
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Laiyong Hou
- Rencheng People's Hospital of Jining City, China
| | - Yu Lu
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Qingwang Xue
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Tong Lin
- Department of Biomedical Engineering, Florida International University, 10555 West Flalger Street, Miami, Florida 33174, USA.
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Chen-Zhong Li
- Department of Biomedical Engineering, Florida International University, 10555 West Flalger Street, Miami, Florida 33174, USA.
| |
Collapse
|
8
|
Ohata Y, Sugimoto H, Fujii M. Assembling silicon quantum dots into wires, networks and rods via metal ion bridges. NANOSCALE 2018; 10:7597-7604. [PMID: 29638232 DOI: 10.1039/c8nr00631h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Wires and networks of Si quantum dots (QDs) with a length of over 1 μm and a width of ∼30 nm are produced by bridging Si QDs with metal ions in solution. It is shown that the width of the wires is almost independent of the preparation parameters and is always about 30 nm, except for the case when Si QDs larger than 30 nm are used, while the length of the wires depends strongly on the kinds of ions, the amount of ions and the amount of Si QDs in a solution. In addition to the microscopic size assemblies, macroscopic size rods of Si QDs with a width of ∼20 μm are produced by using Zn2+ ions. The XPS analyses reveal that Si QDs are connected to each other via a ZnO layer in the rod. The rods have much higher conductivity and photo-response than Si QD solids produced without metal ions.
Collapse
Affiliation(s)
- Yuki Ohata
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan.
| | | | | |
Collapse
|
9
|
Zhao Y, Sun M, Ma W, Kuang H, Xu C. Biological Molecules-Governed Plasmonic Nanoparticle Dimers with Tailored Optical Behaviors. J Phys Chem Lett 2017; 8:5633-5642. [PMID: 29094951 DOI: 10.1021/acs.jpclett.7b01781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Self-assembly opens new avenues to direct the organization of nanoparticles (NPs) into discrete structures with predefined configuration and association numbers. Plasmonic NP dimers provide a well-defined system for investigating the plasmonic coupling and electromagnetic (EM) interaction in arrays of NPs. The programmability and structural plasticity of biomolecules offers a convenient platform for constructing of NP dimers in a controllable way. Plasmonic coupling of NPs enables dimers to exhibit tunable optical properties, such as surface-enhanced Raman scattering (SERS), chirality, photoluminescence, and electrochemiluminescence (ECL) properties, which can be tailored by altering the biomolecules, the building blocks with distinct compositions, sizes and morphology, the interparticle distances, as well as the geometric configuration of the constituent NPs. An overview of recent developments in biological molecules-governed NP dimers, the tailored optical behaviors, and challenges in enhancing optical signals and proposing plasmonic biosensors are discussed in this Perspective.
Collapse
Affiliation(s)
- Yuan Zhao
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, and ‡International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology , Wuxi, Jiangsu 214122, People's Republic of China
| | - Maozhong Sun
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, and ‡International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology , Wuxi, Jiangsu 214122, People's Republic of China
| | - Wei Ma
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, and ‡International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology , Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua Kuang
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, and ‡International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology , Wuxi, Jiangsu 214122, People's Republic of China
| | - Chuanlai Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, and ‡International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology , Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
10
|
Ma W, Xu L, de Moura AF, Wu X, Kuang H, Xu C, Kotov NA. Chiral Inorganic Nanostructures. Chem Rev 2017; 117:8041-8093. [DOI: 10.1021/acs.chemrev.6b00755] [Citation(s) in RCA: 485] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - André F. de Moura
- Department
of Chemistry, Federal University of São Carlos, CP 676, CEP 13.565-905, São Carlos, SP, Brazil
| | | | | | | | | |
Collapse
|
11
|
Eguchi Y, Kato T, Tanaka T, Maruyama T. A DNA–gold nanoparticle hybrid hydrogel network prepared by enzymatic reaction. Chem Commun (Camb) 2017; 53:5802-5805. [DOI: 10.1039/c7cc02435e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report a DNA–gold nanoparticle (AuNP) hydrogel in which the AuNPs crosslink enzymatically synthesized DNA.
Collapse
Affiliation(s)
- Yuka Eguchi
- Department of Chemical Science and Engineering
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
| | - Tomoharu Kato
- Department of Chemical Science and Engineering
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
| |
Collapse
|
12
|
Liu J, Xi Z. Synthesis of Poly Linear shRNA Expression Cassettes Through Branch-PCR. ACTA ACUST UNITED AC 2016; 66:16.5.1-16.5.8. [PMID: 27584702 DOI: 10.1002/cpnc.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A facile and universal strategy to construct the poly linear small hairpin RNA (shRNA) expression cassettes with multiple shRNA transcription templates through polymerase chain reaction with flexible branched primers (branch-PCR) is described in this protocol. Double-stranded RNA (dsRNA) is not stable enough for the study of RNA interference (RNAi) delivery in mammalian cells. Therefore, the more stable shRNA transcription template is employed to produce the endogenous transcribed dsRNA. Then, the covalent crosslinked linear shRNA expression cassettes are constructed through the branch-PCR for the long-lasting RNAi effect in this protocol. The branched primer pair is efficiently synthesized through classic click chemistry. In one step of PCR, the much more stable poly linear shRNA expression cassettes can be produced in large scale. This strategy of efficient synthesis of the poly linear gene expression cassettes can also be applied in the field for other target gene delivery. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Jianbing Liu
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide, Nankai University, Tianjin, China
| | - Zhen Xi
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide, Nankai University, Tianjin, China
| |
Collapse
|
13
|
Mishra S, Saadat D, Kwon O, Lee Y, Choi WS, Kim JH, Yeo WH. Recent advances in salivary cancer diagnostics enabled by biosensors and bioelectronics. Biosens Bioelectron 2016; 81:181-197. [PMID: 26946257 DOI: 10.1016/j.bios.2016.02.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/12/2016] [Accepted: 02/14/2016] [Indexed: 01/05/2023]
Abstract
There is a high demand for a non-invasive, rapid, and highly accurate tool for disease diagnostics. Recently, saliva based diagnostics for the detection of specific biomarkers has drawn significant attention since the sample extraction is simple, cost-effective, and precise. Compared to blood, saliva contains a similar variety of DNA, RNA, proteins, metabolites, and microbiota that can be compiled into a multiplex of cancer detection markers. The salivary diagnostic method holds great potential for early-stage cancer diagnostics without any complicated and expensive procedures. Here, we review various cancer biomarkers in saliva and compare the biomarkers efficacy with traditional diagnostics and state-of-the-art bioelectronics. We summarize biomarkers in four major groups: genomics, transcriptomics, proteomics, and metabolomics/microbiota. Representative bioelectronic systems for each group are summarized based on various stages of a cancer. Systematic study of oxidative stress establishes the relationship between macromolecules and cancer biomarkers in saliva. We also introduce the most recent examples of salivary diagnostic electronics based on nanotechnologies that can offer rapid, yet highly accurate detection of biomarkers. A concluding section highlights areas of opportunity in the further development and applications of these technologies.
Collapse
Affiliation(s)
- Saswat Mishra
- Department of Mechanical and Nuclear Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Darius Saadat
- School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, USA
| | - Ohjin Kwon
- Department of Mechanical and Nuclear Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Yongkuk Lee
- Department of Mechanical and Nuclear Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Woon-Seop Choi
- School of Display Engineering, Hoseo University, Asan, Republic of Korea
| | - Jong-Hoon Kim
- School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, USA.
| | - Woon-Hong Yeo
- Department of Mechanical and Nuclear Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; Center for Rehabilitation Science and Engineering, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
14
|
Liu J, Wang R, Ma D, Ouyang D, Xi Z. Efficient construction of stable gene nanoparticles through polymerase chain reaction with flexible branched primers for gene delivery. Chem Commun (Camb) 2016; 51:9208-11. [PMID: 25952052 DOI: 10.1039/c5cc01788b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Flexible branched primers were designed to construct stable gene nanoparticles with multiple target gene copies through polymerase chain reaction, which can be used as an efficient transcription template in eukaryotic cells for gene delivery.
Collapse
Affiliation(s)
- Jianbing Liu
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide (Tianjin), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.
| | | | | | | | | |
Collapse
|
15
|
Ma W, Xu L, Wang L, Kuang H, Xu C. Orientational nanoparticle assemblies and biosensors. Biosens Bioelectron 2015; 79:220-36. [PMID: 26708241 DOI: 10.1016/j.bios.2015.12.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/06/2015] [Accepted: 12/12/2015] [Indexed: 02/01/2023]
Abstract
Assemblies of nanoparticles (NPs) have regional correlated properties with new features compared to individual NPs or random aggregates. The orientational NP assembly contributes greatly to the collective interaction of individual NPs with geometrical dependence. Therefore, orientational NPs assembly techniques have emerged as promising tools for controlling inorganic NPs spatial structures with enhanced interesting properties. The research fields of orientational NP assembly have developed rapidly with characteristics related to the different methods used, including chemical, physical and biological techniques. The current and potential applications, important challenges remain to be investigated. An overview of recent developments in orientational NPs assemblies, the multiple strategies, biosensors and challenges will be discussed in this review.
Collapse
Affiliation(s)
- Wei Ma
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Liguang Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Libing Wang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
16
|
Ahn J, Shin YB, Lee J, Kim MG. Human alpha-fetal protein immunoassay using fluorescence suppression with fluorescent-bead/antibody conjugate and enzymatic reaction. Biosens Bioelectron 2015; 71:115-120. [DOI: 10.1016/j.bios.2015.03.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 10/23/2022]
|
17
|
Li Y, Miao X, Ling L. Triplex DNA: A new platform for polymerase chain reaction-based biosensor. Sci Rep 2015; 5:13010. [PMID: 26268575 PMCID: PMC4534768 DOI: 10.1038/srep13010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/10/2015] [Indexed: 01/20/2023] Open
Abstract
Non - specific PCR amplification and DNA contamination usually accompany with PCR process, to overcome these problems, here we establish a sensor for thrombin by sequence - specific recognition of the PCR product with molecular beacon through triplex formation. Probe A and probe B were designed for the sensor, upon addition of thrombin, two probes hybridized to each other and the probe B was extended in the presence of Klenow Fragment polymerase and dNTPs. The PCR amplification occurred with further addition of Taq DNA Polymerase and two primers, the PCR product was recognized by molecular beacon through triplex formation. The fluorescence intensity increased with the logarithm of the concentration of thrombin over the range from 1.0 × 10−12 M to 1.0 × 10−7 M, with a detection limit of 261 fM. Moreover, the effect of DNA contamination and non - specific amplification could be ignored completely in the proposed strategy.
Collapse
Affiliation(s)
- Yubin Li
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Xiangmin Miao
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Liansheng Ling
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
18
|
Miao P, Tang Y, Wang B, Yin J, Ning L. Signal amplification by enzymatic tools for nucleic acids. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Yao T, Wang S, Li D, Dou J. Four homobinuclear lanthanide complexes with 3-D coordination networks based on 3-methyloxysalicylaldoxime: syntheses, crystal structures, and properties. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1009451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Tiantian Yao
- AuthorCommentAuthorCommentShandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, PR China
| | - Suna Wang
- AuthorCommentAuthorCommentShandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, PR China
| | - Dacheng Li
- AuthorCommentAuthorCommentShandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, PR China
| | - Jianmin Dou
- AuthorCommentAuthorCommentShandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, PR China
| |
Collapse
|
20
|
|
21
|
Yan W, Xu L, Ma W, Liu L, Wang L, Kuang H, Xu C. Pyramidal sensor platform with reversible chiroptical signals for DNA detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4293-4297. [PMID: 24989032 DOI: 10.1002/smll.201401641] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Indexed: 06/03/2023]
Abstract
A heterogeneous chiral sensor for DNA detection is demonstrated by post-assembly system reconfiguration for two types of NPs pyramids. In the presence of target DNA, two types of NPs pyramids undergo dynamic reconfiguration or dissociation process which functions as an off-on or on-off switch towards CD signals changes. Under optimized conditions, the detection limit of this approach can reach to 3.4 aM with no involvement of amplification process.
Collapse
Affiliation(s)
- Wenjing Yan
- State Key Lab of Food Science & Technology, School of Food Science & Technology, Jiangnan University, Wuxi, 214122, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhao Y, Xu L, Ma W, Liu L, Wang L, Kuang H, Xu C. Shell-programmed Au nanoparticle heterodimers with customized chiroptical activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4770-4777. [PMID: 25136975 DOI: 10.1002/smll.201401203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/05/2014] [Indexed: 06/03/2023]
Abstract
Chiral plasmonic assemblies with strong and tunable chiroptical activity are emerging materials yet challenging to fabricate. Moreover, shell-programmed chiroptical regulation is really rare. Here, the chiroptical activity of core-shell (CS) nanoparticles (NPs) heterodimers (HDs) with different types and thicknesses of the shell but featuring the same gap was exploited. It was found that the type of shell guided the position of the chiral peaks, and the shell thickness tuned the intensity but also moderately affected the wavelength shift at invariable interparticle distance. Shell deposition intensified the hot-spot chirality, and evidently guided the enantiomorphous chiral configuration, resulting in a startlingly intense, asymmetric, dipolar coupling strength. The magnitude of the chiroptical activity showed an 8-10 fold enhancement with a maximum anisotropy factor (g-factor) of 1.5 × 10(-2) . Shell-driven chiroptical regulation opens new avenues to feasibly fabricate chiroptically active materials with desired chiroptical response for the development of switchable recognition units for sensitive and various target detections.
Collapse
Affiliation(s)
- Yuan Zhao
- State Key Lab of Food Science & Technology and School of Food Science & Technology, Jiangnan University, Wuxi, 214122, PR China
| | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Tian Zhou
- Department of Materials Science and Engineering; Drexel University; Philadelphia Pennsylvania 19104
| | - Bin Dong
- Institute of Functional Nano & Soft Materials (FUNSOM); Soochow University; Suzhou Jiangsu 215123 China
| | - Hao Qi
- Department of Materials Science and Engineering; Drexel University; Philadelphia Pennsylvania 19104
| | - Shan Mei
- Department of Materials Science and Engineering; Drexel University; Philadelphia Pennsylvania 19104
| | - Christopher Y. Li
- Department of Materials Science and Engineering; Drexel University; Philadelphia Pennsylvania 19104
| |
Collapse
|
24
|
Abstract
As one of the most important and land-mark structures found in nature, a double helix consists of two congruent single helices with the same axis or a translation along the axis. This double helical structure renders the deoxyribonucleic acid (DNA) the crucial biomolecule in evolution and metabolism. DNA-like double helical nanostructures are probably the most fantastic yet ubiquitous geometry at the nanoscale level, which are expected to exhibit exceptional and even rather different properties due to the unique organization of the two single helices and their synergistic effect. The organization of nanomaterials into double helical structures is an emerging hot topic for nanomaterials science due to their promising exceptional unique properties and applications. This review focuses on the state-of-the-art research progress for the fabrication of double-helical nanostructures based on 'bottom-up' and 'top-down' strategies. The relevant nanoscale, mesoscale, and macroscopic scale fabrication methods, as well as the properties of the double helical nanostructures are included. Critical perspectives are devoted to the synthesis principles and potential applications in this emerging research area. A multidisciplinary approach from the scope of nanoscience, physics, chemistry, materials, engineering, and other application areas is still required to the well-controlled and large-scale synthesis, mechanism, property, and application exploration of double helical nanostructures.
Collapse
Affiliation(s)
- Meng-Qiang Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | | | | | | |
Collapse
|
25
|
Zhao Y, Xu L, Ma W, Wang L, Kuang H, Xu C, Kotov NA. Shell-engineered chiroplasmonic assemblies of nanoparticles for zeptomolar DNA detection. NANO LETTERS 2014; 14:3908-13. [PMID: 24857406 DOI: 10.1021/nl501166m] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
DNA-bridged pairs of seemingly spherical metallic nanoparticles (NPs) have chiral geometry due to the nonideal oblong shape of the particles and scissor-like conformation. Here we demonstrate that deposition of gold and silver shells around the NP heterodimers enables spectral modulation of their chiroplasmonic bands in 400-600 nm region and results in significantly enhanced optical activity with g-factors reaching 1.21 × 10(-2). The multimetal heterodimers optimized for coupling with the spin angular momentum of incident photons enable polymerase chain reaction (PCR)-based DNA detection at the zeptomolar level. This significant improvement in the sensitivity of detection is attributed to improvement of base pairing in the presence of NPs, low background for chiroplasmonic detection protocol, and enhancement of photon-plasmon coupling for light with helicity matching that of the twisted geometry of the heterodimers.
Collapse
Affiliation(s)
- Yuan Zhao
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, P. R. China
| | | | | | | | | | | | | |
Collapse
|
26
|
Hill LJ, Richey NE, Sung Y, Dirlam PT, Griebel JJ, Lavoie-Higgins E, Shim IB, Pinna N, Willinger MG, Vogel W, Benkoski JJ, Char K, Pyun J. Colloidal polymers from dipolar assembly of cobalt-tipped CdSe@CdS nanorods. ACS NANO 2014; 8:3272-3284. [PMID: 24645795 DOI: 10.1021/nn406104d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The synthesis of a modular colloidal polymer system based on the dipolar assembly of CdSe@CdS nanorods functionalized with a single cobalt nanoparticle "tip" (CoNP-tip) is reported. These heterostructured nanorods spontaneously self-assembled via magnetic dipolar associations of the cobalt domains. In these assemblies, CdSe@CdS nanorods were carried as densely grafted side chain groups along the dipolar NP chain to form bottlebrush-type colloidal polymers. Nanorod side chains strongly affected the conformation of individual colloidal polymer bottlebrush chains and the morphology of thin films. Dipolar CoNP-tipped nanorods were then used as "colloidal monomers" to form mesoscopic assemblies reminiscent of traditional copolymers possessing segmented and statistical compositions. Investigation of the phase behavior of colloidal polymer blends revealed the formation of mesoscopic phase separated morphologies from segmented colloidal copolymers. These studies demonstrated the ability to control colloidal polymer composition and morphology in a manner observed for classical polymer systems by synthetic control of heterostructured nanorod structure and harnessing interparticle dipolar associations.
Collapse
Affiliation(s)
- Lawrence J Hill
- Department of Chemistry and Biochemistry, University of Arizona , 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kuang H, Yin H, Liu L, Xu L, Ma W, Xu C. Asymmetric plasmonic aptasensor for sensitive detection of bisphenol A. ACS APPLIED MATERIALS & INTERFACES 2014; 6:364-369. [PMID: 24251810 DOI: 10.1021/am4043678] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A sensitive plasmonic chirality-based aptasensor for the detection of bisphenol A (BPA) was developed. Asymmetric plasmonic nanoparticle dimers were produced by the hybridization of a BPA aptamer and its complementary sequence modified nanoparticles. Under different concentrations of BPA, the intensity of the chiral signal was varied. A low limit of detection of 0.008 ng/mL was obtained in the range 0.02-5 ng/mL.
Collapse
Affiliation(s)
- Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | | | | | | | | | | |
Collapse
|
28
|
Zhao Y, Liu L, Kuang H, Wang L, Xu C. SERS-active Ag@Au core–shell NP assemblies for DNA detection. RSC Adv 2014. [DOI: 10.1039/c4ra11112e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SERS-active silver@gold (Ag@Au) core–shell nanoparticles (NPs) assemblies were fabricated by polymerase chain reaction (PCR) for the sensitive DNA detection.
Collapse
Affiliation(s)
- Yuan Zhao
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi, People's Republic of China
- The Key Lab of Food Colloids and Biotechnology
| | - Liqiang Liu
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi, People's Republic of China
| | - Libing Wang
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi, People's Republic of China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi, People's Republic of China
| |
Collapse
|