1
|
Bols ML, Ma J, Rammal F, Plessers D, Wu X, Navarro-Jaén S, Heyer AJ, Sels BF, Solomon EI, Schoonheydt RA. In Situ UV-Vis-NIR Absorption Spectroscopy and Catalysis. Chem Rev 2024; 124:2352-2418. [PMID: 38408190 DOI: 10.1021/acs.chemrev.3c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
This review highlights in situ UV-vis-NIR range absorption spectroscopy in catalysis. A variety of experimental techniques identifying reaction mechanisms, kinetics, and structural properties are discussed. Stopped flow techniques, use of laser pulses, and use of experimental perturbations are demonstrated for in situ studies of enzymatic, homogeneous, heterogeneous, and photocatalysis. They access different time scales and are applicable to different reaction systems and catalyst types. In photocatalysis, femto- and nanosecond resolved measurements through transient absorption are discussed for tracking excited states. UV-vis-NIR absorption spectroscopies for structural characterization are demonstrated especially for Cu and Fe exchanged zeolites and metalloenzymes. This requires combining different spectroscopies. Combining magnetic circular dichroism and resonance Raman spectroscopy is especially powerful. A multitude of phenomena can be tracked on transition metal catalysts on various supports, including changes in oxidation state, adsorptions, reactions, support interactions, surface plasmon resonances, and band gaps. Measurements of oxidation states, oxygen vacancies, and band gaps are shown on heterogeneous catalysts, especially for electrocatalysis. UV-vis-NIR absorption is burdened by broad absorption bands. Advanced analysis techniques enable the tracking of coking reactions on acid zeolites despite convoluted spectra. The value of UV-vis-NIR absorption spectroscopy to catalyst characterization and mechanistic investigation is clear but could be expanded.
Collapse
Affiliation(s)
- Max L Bols
- Laboratory for Chemical Technology (LCT), University of Ghent, Technologiepark Zwijnaarde 125, 9052 Ghent, Belgium
| | - Jing Ma
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Fatima Rammal
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Dieter Plessers
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Xuejiao Wu
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Sara Navarro-Jaén
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Alexander J Heyer
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Bert F Sels
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Robert A Schoonheydt
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
2
|
Müller N, Banu R, Loxha A, Schrenk F, Lindenthal L, Rameshan C, Pittenauer E, Llorca J, Timoshenko J, Marini C, Barrabés N. Dynamic behaviour of platinum and copper dopants in gold nanoclusters supported on ceria catalysts. Commun Chem 2023; 6:277. [PMID: 38110481 PMCID: PMC10728199 DOI: 10.1038/s42004-023-01068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023] Open
Abstract
Understanding the behaviour of active catalyst sites at the atomic level is crucial for optimizing catalytic performance. Here, the evolution of Pt and Cu dopants in Au25 clusters on CeO2 supports is investigated in the water-gas shift (WGS) reaction, using operando XAFS and DRIFTS. Different behaviour is observed for the Cu and Pt dopants during the pretreatment and reaction. The Cu migrates and builds clusters on the support, whereas the Pt creates single-atom active sites on the surface of the cluster, leading to better performance. Doping with both metals induces strong interactions and pretreatment and reaction conditions lead to the growth of the Au clusters, thereby affecting their catalytic behaviour. This highlights importance of understanding the behaviour of atoms at different stages of catalyst evolution. These insights into the atomic dynamics at the different stages are crucial for the precise optimisation of catalysts, which ultimately enables improved catalytic performance.
Collapse
Affiliation(s)
- Nicole Müller
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/165, 1060, Vienna, Austria
| | - Rareş Banu
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/165, 1060, Vienna, Austria
| | - Adea Loxha
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/165, 1060, Vienna, Austria
| | - Florian Schrenk
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/165, 1060, Vienna, Austria
- Chair of Physical Chemistry, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700, Leoben, Austria
| | - Lorenz Lindenthal
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/165, 1060, Vienna, Austria
- Chair of Physical Chemistry, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700, Leoben, Austria
| | - Christoph Rameshan
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/165, 1060, Vienna, Austria
- Chair of Physical Chemistry, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700, Leoben, Austria
| | - Ernst Pittenauer
- Institute of Analytics, TU Wien, Getreidemarkt 9/165, 1060, Vienna, Austria
| | - Jordi Llorca
- Institute of Energy Technologies and Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019, Barcelona, Spain
| | - Janis Timoshenko
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Carlo Marini
- ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, 08290, Cerdanyola del Valles, Barcelona, Spain
| | - Noelia Barrabés
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/165, 1060, Vienna, Austria.
| |
Collapse
|
3
|
Suchodol M, Vejayan H, Zhou X, Jiang B, Guo H, Beck RD. Probing Water Dissociation and Oxygen Replacement on Partially Oxygen-Covered Cu(111) by Reflection Absorption Infrared Spectroscopy. J Phys Chem Lett 2023; 14:7848-7853. [PMID: 37625113 PMCID: PMC10494224 DOI: 10.1021/acs.jpclett.3c02004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
The presence of chemisorbed oxygen on the Cu(111) surface is known to strongly reduce the activation barrier for water dissociation as compared to bare Cu(111). Here, we present direct experimental evidence for the hydrogen abstraction mechanism responsible for the facile H2O dissociation on an O/Cu(111) surface using reflection absorption infrared spectroscopy (RAIRS) in combination with isotopically labeled reactants. We also observe that chemisorbed hydroxyl species produced by water dissociation on the O/Cu(111) surface undergo an efficient hydrogen atom transfer from trapped water molecules, leading to the rapid replacement of the initial oxygen isotope coverage and the detection of only a single hydroxyl isotopologue on the surface, in apparent contradiction with the hydrogen abstraction mechanism. In the presence of Cu2O oxide islands on the O/Cu(111) surface, water dissociation occurs selectively at the edges of those islands, leading to the self-assembly of isotopically ordered structures.
Collapse
Affiliation(s)
- Mateusz Suchodol
- Institute
for Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Harmina Vejayan
- Institute
for Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Xueyao Zhou
- Key
Laboratory of Precision and Intelligent Chemistry, Department of Chemical
Physics, Key Laboratory of Surface and Interface Chemistry and Energy
Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bin Jiang
- Key
Laboratory of Precision and Intelligent Chemistry, Department of Chemical
Physics, Key Laboratory of Surface and Interface Chemistry and Energy
Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hua Guo
- Department
of Chemistry and Chemical Biology, University
of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Rainer D. Beck
- Institute
for Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Li Z, Wang M, Jia Y, Du R, Li T, Zheng Y, Chen M, Qiu Y, Yan K, Zhao WW, Wang P, Waterhouse GIN, Dai S, Zhao Y, Chen G. CeO 2/Cu 2O/Cu Tandem Interfaces for Efficient Water-Gas Shift Reaction Catalysis. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37339248 DOI: 10.1021/acsami.3c06386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Metal-oxide interfaces on Cu-based catalysts play very important roles in the low-temperature water-gas shift reaction (LT-WGSR). However, developing catalysts with abundant, active, and robust Cu-metal oxide interfaces under LT-WGSR conditions remains challenging. Herein, we report the successful development of an inverse copper-ceria catalyst (Cu@CeO2), which exhibited very high efficiency for the LT-WGSR. At a reaction temperature of 250 °C, the LT-WGSR activity of the Cu@CeO2 catalyst was about three times higher than that of a pristine Cu catalyst without CeO2. Comprehensive quasi-in situ structural characterizations indicated that the Cu@CeO2 catalyst was rich in CeO2/Cu2O/Cu tandem interfaces. Reaction kinetics studies and density functional theory (DFT) calculations revealed that the Cu+/Cu0 interfaces were the active sites for the LT-WGSR, while adjacent CeO2 nanoparticles play a key role in activating H2O and stabilizing the Cu+/Cu0 interfaces. Our study highlights the role of the CeO2/Cu2O/Cu tandem interface in regulating catalyst activity and stability, thus contributing to the development of improved Cu-based catalysts for the LT-WGSR.
Collapse
Affiliation(s)
- Zhengjian Li
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Mingzhi Wang
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yanyan Jia
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Ruian Du
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Tan Li
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yanping Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Mingshu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Yongcai Qiu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Keyou Yan
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Pei Wang
- College of Science, Huazhong Agricultural University, Wuhan 430074, PR China
| | | | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yun Zhao
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
5
|
Shen X, Li Z, Xu J, Li W, Tao Y, Ran J, Yang Z, Sun K, Yao S, Wu Z, Rac V, Rakic V, Du X. Upgrading the low temperature water gas shift reaction by integrating plasma with a CuOx/CeO2 catalyst. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Graciani J, Grinter DC, Ramírez PJ, Palomino RM, Xu F, Waluyo I, Stacchiola D, Fdez Sanz J, Senanayake SD, Rodriguez JA. Conversion of CO 2 to Methanol and Ethanol on Pt/CeO x/TiO 2(110): Enabling Role of Water in C–C Bond Formation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jesús Graciani
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Departamento de Química Física, Universidad de Sevilla, Sevilla 41012, Spain
| | - David C. Grinter
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Diamond Light Source, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Pedro J. Ramírez
- Facultad de Ciencias, Universidad Central de Venezuela, 1020-A Caracas, Venezuela
- Zoneca-CENEX, R&D Laboratories, Alta Vista, 64770 Monterrey, México
| | - Robert M. Palomino
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Fang Xu
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Iradwikanari Waluyo
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Dario Stacchiola
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Javier Fdez Sanz
- Departamento de Química Física, Universidad de Sevilla, Sevilla 41012, Spain
| | - Sanjaya D. Senanayake
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - José A. Rodriguez
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
7
|
Zhang S, Liu Y, Zhang M, Ma Y, Hu J, Qu Y. Sustainable production of hydrogen with high purity from methanol and water at low temperatures. Nat Commun 2022; 13:5527. [PMID: 36130943 PMCID: PMC9492729 DOI: 10.1038/s41467-022-33186-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/06/2022] [Indexed: 11/08/2022] Open
Abstract
Carbon neutrality initiative has stimulated the development of the sustainable methodologies for hydrogen generation and safe storage. Aqueous-phase reforming methanol and H2O (APRM) has attracted the particular interests for their high gravimetric density and easy availability. Thus, to efficiently release hydrogen and significantly suppress CO generation at low temperatures without any additives is the sustainable pursuit of APRM. Herein, we demonstrate that the dual-active sites of Pt single-atoms and frustrated Lewis pairs (FLPs) on porous nanorods of CeO2 enable the efficient additive-free H2 generation with a low CO (0.027%) through APRM at 120 °C. Mechanism investigations illustrate that the Pt single-atoms and Lewis acidic sites cooperatively promote the activation of methanol. With the help of a spontaneous water dissociation on FLPs, Pt single-atoms exhibit a significantly improved reforming of *CO to promote H2 production and suppress CO generation. This finding provides a promising path towards the flexible hydrogen utilizations.
Collapse
Affiliation(s)
- Sai Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518057, Shenzhen, China
| | - Yuxuan Liu
- Center for Applied Chemical Research, Frontier Institute of Science and Technology, Xian Jiaotong University, 710049, Xian, China
| | - Mingkai Zhang
- Center for Applied Chemical Research, Frontier Institute of Science and Technology, Xian Jiaotong University, 710049, Xian, China
| | - Yuanyuan Ma
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, China
| | - Jun Hu
- School of Chemical Engineering, Northwest University, 710069, Xian, China.
| | - Yongquan Qu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, China.
| |
Collapse
|
8
|
Pal S, Dinda S, Ganguly S. A perspective on exploration of synthetic reaction pathways of stable metallocarboxylic acids and structural features of MCOOH moiety. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Chen JJ, Li XN, Liu QY, Wei GP, Yang Y, Li ZY, He SG. Water Gas Shift Reaction Catalyzed by Rhodium-Manganese Oxide Cluster Anions. J Phys Chem Lett 2021; 12:8513-8520. [PMID: 34463512 DOI: 10.1021/acs.jpclett.1c02267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fundamental understanding of the nature of active sites in real-life water gas shift (WGS) catalysts that can convert CO and H2O into CO2 and H2 is crucial to engineer related catalysts performing under ambient conditions. Herein, we identified that the WGS reaction can be, in principle, catalyzed by rhodium-manganese oxide clusters Rh2MnO1,2- in the gas phase at room temperature. This is the first example of the construction of such a potential catalysis in cluster science because it is challenging to discover clusters that can abstract the oxygen from H2O and then supply the anchored oxygen to oxidize CO. The WGS reaction was characterized by mass spectrometry, photoelectron spectroscopy, and quantum-chemical calculations. The coordinated oxygen in Rh2MnO1,2- is paramount for the generation of an electron-rich Mn+-Rh- bond that is critical to capture and reduce H2O and giving rise to a polarized Rh+-Rh- bond that functions as the real redox center to drive the WGS reaction.
Collapse
Affiliation(s)
- Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Gong-Ping Wei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
10
|
Tiwari M, Ramachandran C. Hydracyanation of acetylene on carbon intercalated gold clusters: Co-operativity and site specificity. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.138059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Rocchigiani L, Klooster WT, Coles SJ, Hughes DL, Hrobárik P, Bochmann M. Hydride Transfer to Gold: Yes or No? Exploring the Unexpected Versatility of Au⋅⋅⋅H−M Bonding in Heterobimetallic Dihydrides. Chemistry 2020; 26:8267-8280. [DOI: 10.1002/chem.202000016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Luca Rocchigiani
- School of ChemistryUniversity of East Anglia Norwich Research Park Norwich NR47TJ UK
| | - Wim T. Klooster
- National Crystallography ServiceSchool of ChemistryUniversity of Southampton Southampton SO171BJ UK
| | - Simon J. Coles
- National Crystallography ServiceSchool of ChemistryUniversity of Southampton Southampton SO171BJ UK
| | - David L. Hughes
- School of ChemistryUniversity of East Anglia Norwich Research Park Norwich NR47TJ UK
| | - Peter Hrobárik
- Department of Inorganic ChemistryFaculty of Natural SciencesComenius University 84215 Bratislava Slovakia
| | - Manfred Bochmann
- School of ChemistryUniversity of East Anglia Norwich Research Park Norwich NR47TJ UK
| |
Collapse
|
12
|
Nelson NC, Szanyi J. Heterolytic Hydrogen Activation: Understanding Support Effects in Water–Gas Shift, Hydrodeoxygenation, and CO Oxidation Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01059] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicholas C. Nelson
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - János Szanyi
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
13
|
Ceria-Based Catalysts Studied by Near Ambient Pressure X-ray Photoelectron Spectroscopy: A Review. Catalysts 2020. [DOI: 10.3390/catal10030286] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The development of better catalysts is a passionate topic at the forefront of modern science, where operando techniques are necessary to identify the nature of the active sites. The surface of a solid catalyst is dynamic and dependent on the reaction environment and, therefore, the catalytic active sites may only be formed under specific reaction conditions and may not be stable either in air or under high vacuum conditions. The identification of the active sites and the understanding of their behaviour are essential information towards a rational catalyst design. One of the most powerful operando techniques for the study of active sites is near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS), which is particularly sensitive to the surface and sub-surface of solids. Here we review the use of NAP-XPS for the study of ceria-based catalysts, widely used in a large number of industrial processes due to their excellent oxygen storage capacity and well-established redox properties.
Collapse
|
14
|
Chutia A, Thetford A, Stamatakis M, Catlow CRA. A DFT and KMC based study on the mechanism of the water gas shift reaction on the Pd(100) surface. Phys Chem Chem Phys 2020; 22:3620-3632. [PMID: 31995067 DOI: 10.1039/c9cp05476f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a combined density functional theory (DFT) and Kinetic Monte Carlo (KMC) study of the water gas shift (WGS) reaction on the Pd(100) surface. We propose a mechanism comprising both the redox and the associative pathways for the WGS within a single framework, which consists of seven core elementary steps, which in turn involve splitting of a water molecule followed by the production of an H-atom and an OH-species on the Pd(100) surface. In the following steps, these intermediates then recombine with each other and with CO leading to the evolution of CO2, and H2. Seven other elementary steps, involving the diffusion and adsorption of the surface intermediate species are also considered for a complete description of the mechanism. The geometrical and electronic properties of each of the reactants, products, and the transition states of the core elementary steps are presented. We also discuss the analysis of Bader charges and spin densities for the reactants, transition states and the products of these elementary steps. Our study indicates that the WGS reaction progresses simultaneously via the direct oxidation and the carboxyl paths on the Pd(100) surface.
Collapse
Affiliation(s)
- Arunabhiram Chutia
- School of Chemistry, Brayford Pool, University of Lincoln, Lincoln, LN6 7TS, UK. and UK Catalysis Hub, RCaH, Rutherford Appleton Laboratory, Didcot, OX11 OFA, UK
| | - Adam Thetford
- UK Catalysis Hub, RCaH, Rutherford Appleton Laboratory, Didcot, OX11 OFA, UK and Department of Chemistry, University of Manchester, UK and Department of Chemistry, University College London, Gordon Street, London, WC1H 0AJ, UK.
| | - Michail Stamatakis
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - C Richard A Catlow
- UK Catalysis Hub, RCaH, Rutherford Appleton Laboratory, Didcot, OX11 OFA, UK and Department of Chemistry, University College London, Gordon Street, London, WC1H 0AJ, UK. and Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| |
Collapse
|
15
|
Bezrkovnyi O, Vorokhta M, Małecka M, Mista W, Kepinski L. NAP-XPS study of Eu3+ → Eu2+ and Ce4+ → Ce3+ reduction in Au/Ce0.80Eu0.20O2 catalyst. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2019.105875] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Sai Phani Kumar V, Deshpande PA. On the stability of hydroxyl groups on substituted titania. Phys Chem Chem Phys 2020; 22:1250-1257. [DOI: 10.1039/c9cp05525h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study reports the stability of hydroxyl groups involving the surface coordinated oxygens of Pd,C,N-doped, and Pd/C and Pd/N-codoped anatase TiO2, probed using DFT calculations.
Collapse
Affiliation(s)
- V. Sai Phani Kumar
- Quantum and Molecular Engineering Laboratory
- Department of Chemical Engineering
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Parag A. Deshpande
- Quantum and Molecular Engineering Laboratory
- Department of Chemical Engineering
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| |
Collapse
|
17
|
Li Z, Ji S, Liu Y, Cao X, Tian S, Chen Y, Niu Z, Li Y. Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites. Chem Rev 2019; 120:623-682. [PMID: 31868347 DOI: 10.1021/acs.chemrev.9b00311] [Citation(s) in RCA: 475] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The use of well-defined materials in heterogeneous catalysis will open up numerous new opportunities for the development of advanced catalysts to address the global challenges in energy and the environment. This review surveys the roles of nanoparticles and isolated single atom sites in catalytic reactions. In the second section, the effects of size, shape, and metal-support interactions are discussed for nanostructured catalysts. Case studies are summarized to illustrate the dynamics of structure evolution of well-defined nanoparticles under certain reaction conditions. In the third section, we review the syntheses and catalytic applications of isolated single atomic sites anchored on different types of supports. In the final part, we conclude by highlighting the challenges and opportunities of well-defined materials for catalyst development and gaining a fundamental understanding of their active sites.
Collapse
Affiliation(s)
- Zhi Li
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Shufang Ji
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Yiwei Liu
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Xing Cao
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Shubo Tian
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Yuanjun Chen
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Zhiqiang Niu
- Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Yadong Li
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
18
|
Nijamudheen A, Datta A. Gold-Catalyzed Cross-Coupling Reactions: An Overview of Design Strategies, Mechanistic Studies, and Applications. Chemistry 2019; 26:1442-1487. [PMID: 31657487 DOI: 10.1002/chem.201903377] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/28/2019] [Indexed: 12/14/2022]
Abstract
Transition-metal-catalyzed cross-coupling reactions are central to many organic synthesis methodologies. Traditionally, Pd, Ni, Cu, and Fe catalysts are used to promote these reactions. Recently, many studies have showed that both homogeneous and heterogeneous Au catalysts can be used for activating selective cross-coupling reactions. Here, an overview of the past studies, current trends, and future directions in the field of gold-catalyzed coupling reactions is presented. Design strategies to accomplish selective homocoupling and cross-coupling reactions under both homogeneous and heterogeneous conditions, computational and experimental mechanistic studies, and their applications in diverse fields are critically reviewed. Specific topics covered are: oxidant-assisted and oxidant-free reactions; strain-assisted reactions; dual Au and photoredox catalysis; bimetallic synergistic reactions; mechanisms of reductive elimination processes; enzyme-mimicking Au chemistry; cluster and surface reactions; and plasmonic catalysis. In the relevant sections, theoretical and computational studies of AuI /AuIII chemistry are discussed and the predictions from the calculations are compared with the experimental observations to derive useful design strategies.
Collapse
Affiliation(s)
- A Nijamudheen
- School of Chemical Sciences, Indian Association for the, Cultivation of Sciences, 2A & 2B Raja S C Mullick Road, Kolkata, 700032, India.,Department of Chemical & Biomedical Engineering, Florida A&M University-Florida State University, Joint College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL, 32310, USA
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the, Cultivation of Sciences, 2A & 2B Raja S C Mullick Road, Kolkata, 700032, India
| |
Collapse
|
19
|
Fernández E, Liu L, Boronat M, Arenal R, Concepcion P, Corma A. Low-Temperature Catalytic NO Reduction with CO by Subnanometric Pt Clusters. ACS Catal 2019; 9:11530-11541. [PMID: 31840009 PMCID: PMC6902616 DOI: 10.1021/acscatal.9b03207] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/08/2019] [Indexed: 11/28/2022]
Abstract
![]()
The catalytic subnanometric metal clusters with a few
atoms can
be regarded as an intermediate state between single atoms and metal
nanoparticles (>1 nm). Their molecule-like electronic structures
and
flexible geometric structures bring rich chemistry and also a different
catalytic behavior, in comparison with the single-atom or nanoparticulate
counterparts. In this work, by combination of operando IR spectroscopy
techniques and electronic structure calculations, we will show a comparative
study on Pt catalysts for CO + NO reaction at a very low temperature
range (140–200 K). It has been found that single Pt atoms immobilized
on MCM-22 zeolite are not stable under reaction conditions and agglomerate
into Pt nanoclusters and particles, which are the working active sites
for CO + NO reaction. In the case of the catalyst containing Pt nanoparticles
(∼2 nm), the oxidation of CO to CO2 occurs in a
much lower extension, and Pt nanoparticles become poisoned under reaction
conditions because of a strong interaction with CO and NO. Therefore,
only subnanometric Pt clusters allow NO dissociation at a low temperature
and CO oxidation to occur well on the surface, while CO interaction
is weak enough to avoid catalyst poisoning, resulting in a good balance
to achieve enhanced catalytic performance.
Collapse
Affiliation(s)
- Estefanía Fernández
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Lichen Liu
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Mercedes Boronat
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Raul Arenal
- Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Mariano Esquillor Edificio I + D, 50018 Zaragoza, Spain
- ARAID Foundation, 50018 Zaragoza, Spain
- Instituto de Ciencias de Materiales de Aragon, CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Patricia Concepcion
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
20
|
Spitaleri L, Nicotra G, Zimbone M, Contino A, Maccarrone G, Alberti A, Gulino A. Fast and Efficient Sun Light Photocatalytic Activity of Au_ZnO Core-Shell Nanoparticles Prepared by a One-Pot Synthesis. ACS OMEGA 2019; 4:15061-15066. [PMID: 31552348 PMCID: PMC6751723 DOI: 10.1021/acsomega.9b01850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/06/2019] [Indexed: 05/31/2023]
Abstract
Gold nanostructures absorb visible light and show localized surface plasmon resonance bands in the visible region. Semiconducting ZnO nanostructures are excellent for ultraviolet detection, thanks to their wide band gap, large free exciton binding energy, and high electron mobility. Therefore, the coupling of gold and ZnO nanostructures represents the best-suited way to boost photodetection. With the above perspective, we report on the high photocatalytic activity of some Au_ZnO core-shell nanoparticles (NPs) recently prepared by a one-pot synthesis in which a [zinc citrate]- complex acted as the ZnO precursor, a reducing agent for Au3+, and a capping anion for the obtained Au NPs. The overall nanostructures proved to be Au(111) NPs surrounded by a thin layer of [zinc citrate]- that evolved to Au_ZnO core-shell nanostructures. Worthy of note, with this photocatalyst, sun light efficiently decomposes a standard methylene blue solution according to ISO 10678:2010. We rationalized photodetection, reaction rate, and quantum efficiency.
Collapse
Affiliation(s)
- Luca Spitaleri
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | | | | | - Annalinda Contino
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Giuseppe Maccarrone
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | | | - Antonino Gulino
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- INSTM
UdR of Catania, Viale
Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
21
|
Katsiev K, Harrison G, Al-Salik Y, Thornton G, Idriss H. Gold Cluster Coverage Effect on H2 Production over Rutile TiO2(110). ACS Catal 2019. [DOI: 10.1021/acscatal.9b01890] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- K. Katsiev
- Fundamental Catalysis, SABIC-CRD at KAUST, Thuwal, Saudi Arabia
| | - G. Harrison
- Department of Chemistry and London Centre for Nanotechnology, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Y. Al-Salik
- Fundamental Catalysis, SABIC-CRD at KAUST, Thuwal, Saudi Arabia
| | - G. Thornton
- Department of Chemistry and London Centre for Nanotechnology, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - H. Idriss
- Fundamental Catalysis, SABIC-CRD at KAUST, Thuwal, Saudi Arabia
| |
Collapse
|
22
|
Li XN, Wang LN, Mou LH, He SG. Catalytic CO Oxidation by Gas-Phase Metal Oxide Clusters. J Phys Chem A 2019; 123:9257-9267. [DOI: 10.1021/acs.jpca.9b05185] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Li-Na Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Li-Hui Mou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
23
|
Nguyen L, Tao FF, Tang Y, Dou J, Bao XJ. Understanding Catalyst Surfaces during Catalysis through Near Ambient Pressure X-ray Photoelectron Spectroscopy. Chem Rev 2019; 119:6822-6905. [DOI: 10.1021/acs.chemrev.8b00114] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Luan Nguyen
- Institute of In Situ/Operando Studies of Catalysis and State Key Laboratory of Photocatalysis on Energy and Environment and College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Franklin Feng Tao
- Institute of In Situ/Operando Studies of Catalysis and State Key Laboratory of Photocatalysis on Energy and Environment and College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Yu Tang
- Institute of In Situ/Operando Studies of Catalysis and State Key Laboratory of Photocatalysis on Energy and Environment and College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Jian Dou
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Xiao-Jun Bao
- School of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
24
|
Ren GQ, Pei GX, Zhang JC, Li WZ. Activity promotion of anti-sintering Au MgGa2O4 using ceria in the water gas shift reaction and catalytic combustion reactions. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63295-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Shi J, Wittstock A, Mahr C, Murshed MM, Gesing TM, Rosenauer A, Bäumer M. Nanoporous gold functionalized with praseodymia-titania mixed oxides as a stable catalyst for the water-gas shift reaction. Phys Chem Chem Phys 2019; 21:3278-3286. [PMID: 30681677 DOI: 10.1039/c8cp06040a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dealloyed nanoporous metals hold great promise in the field of heterogeneous catalysis; however their tendency to coarsen at elevated temperatures or under catalytic reaction conditions sometimes limit further applications. Here, we report on a highly stable nanoporous gold catalyst (npAu) functionalized with praseodymia-titania mixed oxides as synthesized by a sol-gel method. Specifically, we used aberration-corrected transmission electron microscopy to study the morphology and the interface between the oxide deposits and the npAu substrate at the atomic level. Based on electron energy loss spectroscopy (EELS), it is concluded that Pr-TiOx mixed oxides form a solid solution. Flow reactor tests reveal that the Pr-TiOx functionalized nanoporous gold is not only highly active but also very stable for the water gas shift reaction in a large temperature range (180-400 °C). Our results demonstrate the potential of engineering the compositions of oxides coatings on npAu for advanced functional systems.
Collapse
Affiliation(s)
- Junjie Shi
- Institute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Room-temperature electrochemical water-gas shift reaction for high purity hydrogen production. Nat Commun 2019; 10:86. [PMID: 30622261 PMCID: PMC6325145 DOI: 10.1038/s41467-018-07937-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/16/2018] [Indexed: 11/12/2022] Open
Abstract
Traditional water–gas shift reaction provides one primary route for industrial production of clean-energy hydrogen. However, this process operates at high temperatures and pressures, and requires additional separation of H2 from products containing CO2, CH4 and residual CO. Herein, we report a room-temperature electrochemical water–gas shift process for direct production of high purity hydrogen (over 99.99%) with a faradaic efficiency of approximately 100%. Through rational design of anode structure to facilitate CO diffusion and PtCu catalyst to optimize CO adsorption, the anodic onset potential is lowered to almost 0 volts versus the reversible hydrogen electrode at room temperature and atmospheric pressure. The optimized PtCu catalyst achieves a current density of 70.0 mA cm−2 at 0.6 volts which is over 12 times that of commercial Pt/C (40 wt.%) catalyst, and remains stable for even more than 475 h. This study opens a new and promising route of producing high purity hydrogen. Traditional water–gas shift reaction process is hindered by harsh reaction conditions and extra steps for hydrogen separation and purification. Here, the authors report a room temperature electrochemical water–gas shift process for direct production of high purity hydrogen with a faradaic efficiency of approximately 100%.
Collapse
|
27
|
Abstract
The low-temperature water–gas shift reaction (LTS: CO + H2O ⇌ CO2 + H2) is a key step in the purification of H2 reformate streams that feed H2 fuel cells. Supported gold catalysts were originally identified as being active for this reaction twenty years ago, and since then, considerable advances have been made in the synthesis and characterisation of these catalysts. In this review, we identify and evaluate the progress towards solving the most important challenge in this research area: the development of robust, highly active catalysts that do not deactivate on-stream under realistic reaction conditions.
Collapse
|
28
|
Weng Z, Zaera F. Sub-Monolayer Control of Mixed-Oxide Support Composition in Catalysts via Atomic Layer Deposition: Selective Hydrogenation of Cinnamaldehyde Promoted by (SiO2-ALD)-Pt/Al2O3. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02431] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhihuan Weng
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| | - Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
29
|
Zhu M, Wachs IE. A perspective on chromium-Free iron oxide-based catalysts for high temperature water-gas shift reaction. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.08.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
O'Connor CR, Hiebel F, Chen W, Kaxiras E, Madix RJ, Friend CM. Identifying key descriptors in surface binding: interplay of surface anchoring and intermolecular interactions for carboxylates on Au(110). Chem Sci 2018; 9:3759-3766. [PMID: 29780508 PMCID: PMC5939607 DOI: 10.1039/c7sc05313d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/26/2018] [Indexed: 11/21/2022] Open
Abstract
The relative stability of carboxylates on Au(110) was investigated as part of a comprehensive study of adsorbate binding on Group IB metals that can be used to predict and understand how to control reactivity in heterogeneous catalysis.
The relative stability of carboxylates on Au(110) was investigated as part of a comprehensive study of adsorbate binding on Group IB metals that can be used to predict and understand how to control reactivity in heterogeneous catalysis. The binding efficacy of carboxylates is only weakly dependent on alkyl chain length for relatively short-chain molecules, as demonstrated using quantitative temperature-programmed reaction spectroscopy. Corresponding density functional theory (DFT) calculations demonstrated that the bidentate anchoring geometry is rigid and restricts the amount of additional stabilization through adsorbate-surface van der Waals (vdW) interactions which control stability for alkoxides. A combination of scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED) shows that carboxylates form dense local islands on Au(110). Complementary DFT calculations demonstrate that adsorbate–adsorbate interactions provide additional stabilization that increases as a function of alkyl chain length for C2 and C3 carboxylates. Hence, overall stability is generally a function of the anchoring group to the surface and the inter-adsorbate interaction. This study demonstrates the importance of these two important factors in describing binding of key catalytic intermediates.
Collapse
Affiliation(s)
- Christopher R O'Connor
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , MA 02138 , USA .
| | - Fanny Hiebel
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , MA 02138 , USA .
| | - Wei Chen
- School of Engineering and Applied Sciences , Harvard University , Cambridge , MA 02138 , USA.,Department of Physics , Harvard University , Cambridge , MA 02138 , USA
| | - Efthimios Kaxiras
- School of Engineering and Applied Sciences , Harvard University , Cambridge , MA 02138 , USA.,Department of Physics , Harvard University , Cambridge , MA 02138 , USA
| | - Robert J Madix
- School of Engineering and Applied Sciences , Harvard University , Cambridge , MA 02138 , USA
| | - Cynthia M Friend
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , MA 02138 , USA . .,School of Engineering and Applied Sciences , Harvard University , Cambridge , MA 02138 , USA
| |
Collapse
|
31
|
|
32
|
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and
UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
33
|
Affiliation(s)
- Alessandro Trovarelli
- Dipartimento
Politecnico, Università di Udine, via del Cotonificio 108, 33100 Udine, Italy
| | - Jordi Llorca
- Institute
of Energy Technologies, Department of Chemical Engineering and Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
| |
Collapse
|
34
|
Stere CE, Anderson JA, Chansai S, Delgado JJ, Goguet A, Graham WG, Hardacre C, Taylor SFR, Tu X, Wang Z, Yang H. Non-Thermal Plasma Activation of Gold-Based Catalysts for Low-Temperature Water-Gas Shift Catalysis. Angew Chem Int Ed Engl 2017; 56:5579-5583. [PMID: 28402590 PMCID: PMC5485072 DOI: 10.1002/anie.201612370] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/20/2017] [Indexed: 12/02/2022]
Abstract
Non-thermal plasma activation has been used to enable low-temperature water-gas shift over a Au/CeZrO4 catalyst. The activity obtained was comparable with that attained by heating the catalyst to 180 °C providing an opportunity for the hydrogen production to be obtained under conditions where the thermodynamic limitations are minimal. Using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), structural changes associated with the gold nanoparticles in the catalyst have been observed which are not found under thermal activation indicating a weakening of the Au-CO bond and a change in the mechanism of deactivation.
Collapse
Affiliation(s)
- Cristina E. Stere
- School of Chemistry and Chemical EngineeringQueens University BelfastDavid Keir BuildingBelfastBT9 5AGUK
- School of Chemical Engineering and Analytical ScienceThe University of ManchesterThe MillManchesterM13 9PLUK
| | - James A. Anderson
- Surface Chemistry and Catalysis GroupSchool of EngineeringUniversity of AberdeenAberdeenAB24 3UEUK
| | - Sarayute Chansai
- School of Chemistry and Chemical EngineeringQueens University BelfastDavid Keir BuildingBelfastBT9 5AGUK
- School of Chemical Engineering and Analytical ScienceThe University of ManchesterThe MillManchesterM13 9PLUK
| | - Juan Jose Delgado
- yDepartamento de Ciencia de los Materiales e Ingeniería MetalúrgicayQuímica InorgánicaFacultad de CienciaUniversidad de Cádiz11510Puerto Real (Cádiz)Spain
| | - Alexandre Goguet
- School of Chemistry and Chemical EngineeringQueens University BelfastDavid Keir BuildingBelfastBT9 5AGUK
| | - Willam G. Graham
- School of Mathematics and PhysicsQueens University BelfastBelfastBT7 1NNUK
| | - C. Hardacre
- School of Chemistry and Chemical EngineeringQueens University BelfastDavid Keir BuildingBelfastBT9 5AGUK
- School of Chemical Engineering and Analytical ScienceThe University of ManchesterThe MillManchesterM13 9PLUK
| | - S. F. Rebecca Taylor
- School of Chemistry and Chemical EngineeringQueens University BelfastDavid Keir BuildingBelfastBT9 5AGUK
- School of Chemical Engineering and Analytical ScienceThe University of ManchesterThe MillManchesterM13 9PLUK
| | - Xin Tu
- Department of Electrical Engineering and ElectronicsUniversity of LiverpoolLiverpoolL69 3GJUK
| | - Ziyun Wang
- School of Chemical Engineering and Analytical ScienceThe University of ManchesterThe MillManchesterM13 9PLUK
| | - Hui Yang
- School of Chemistry and Chemical EngineeringQueens University BelfastDavid Keir BuildingBelfastBT9 5AGUK
| |
Collapse
|
35
|
Stere CE, Anderson JA, Chansai S, Delgado JJ, Goguet A, Graham WG, Hardacre C, Taylor SFR, Tu X, Wang Z, Yang H. Non-Thermal Plasma Activation of Gold-Based Catalysts for Low-Temperature Water-Gas Shift Catalysis. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Cristina E. Stere
- School of Chemistry and Chemical Engineering; Queens University Belfast; David Keir Building Belfast BT9 5AG UK
- School of Chemical Engineering and Analytical Science; The University of Manchester; The Mill Manchester M13 9PL UK
| | - James A. Anderson
- Surface Chemistry and Catalysis Group; School of Engineering; University of Aberdeen; Aberdeen AB24 3UE UK
| | - Sarayute Chansai
- School of Chemistry and Chemical Engineering; Queens University Belfast; David Keir Building Belfast BT9 5AG UK
- School of Chemical Engineering and Analytical Science; The University of Manchester; The Mill Manchester M13 9PL UK
| | - Juan Jose Delgado
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica; Facultad de Ciencia; Universidad de Cádiz; 11510 Puerto Real (Cádiz) Spain
| | - Alexandre Goguet
- School of Chemistry and Chemical Engineering; Queens University Belfast; David Keir Building Belfast BT9 5AG UK
| | - Willam G. Graham
- School of Mathematics and Physics; Queens University Belfast; Belfast BT7 1NN UK
| | - C. Hardacre
- School of Chemistry and Chemical Engineering; Queens University Belfast; David Keir Building Belfast BT9 5AG UK
- School of Chemical Engineering and Analytical Science; The University of Manchester; The Mill Manchester M13 9PL UK
| | - S. F. Rebecca Taylor
- School of Chemistry and Chemical Engineering; Queens University Belfast; David Keir Building Belfast BT9 5AG UK
- School of Chemical Engineering and Analytical Science; The University of Manchester; The Mill Manchester M13 9PL UK
| | - Xin Tu
- Department of Electrical Engineering and Electronics; University of Liverpool; Liverpool L69 3GJ UK
| | - Ziyun Wang
- School of Chemical Engineering and Analytical Science; The University of Manchester; The Mill Manchester M13 9PL UK
| | - Hui Yang
- School of Chemistry and Chemical Engineering; Queens University Belfast; David Keir Building Belfast BT9 5AG UK
| |
Collapse
|
36
|
de Lima AF, Zonetti PC, Rodrigues CP, Appel LG. The first step of the propylene generation from renewable raw material: Acetone from ethanol employing CeO 2 doped by Ag. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.04.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Rotating Disk Slurry Au Electrodeposition at Unsupported Carbon Vulcan XC-72 and Ce3+ Impregnation for Ethanol Oxidation in Alkaline Media. Electrocatalysis (N Y) 2016. [DOI: 10.1007/s12678-016-0342-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Ambrosi A, Denmark SE. Harnessing the Power of the Water-Gas Shift Reaction for Organic Synthesis. Angew Chem Int Ed Engl 2016; 55:12164-89. [PMID: 27595612 PMCID: PMC6201252 DOI: 10.1002/anie.201601803] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Indexed: 11/06/2022]
Abstract
Since its original discovery over a century ago, the water-gas shift reaction (WGSR) has played a crucial role in industrial chemistry, providing a source of H2 to feed fundamental industrial transformations such as the Haber-Bosch synthesis of ammonia. Although the production of hydrogen remains nowadays the major application of the WGSR, the advent of homogeneous catalysis in the 1970s marked the beginning of a synergy between WGSR and organic chemistry. Thus, the reducing power provided by the CO/H2 O couple has been exploited in the synthesis of fine chemicals; not only hydrogenation-type reactions, but also catalytic processes that require a reductive step for the turnover of the catalytic cycle. Despite the potential and unique features of the WGSR, its applications in organic synthesis remain largely underdeveloped. The topic will be critically reviewed herein, with the expectation that an increased awareness may stimulate new, creative work in the area.
Collapse
Affiliation(s)
- Andrea Ambrosi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Scott E Denmark
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
39
|
Ambrosi A, Denmark SE. Die Wassergas‐Shift‐Reaktion in der organischen Synthese. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601803] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Andrea Ambrosi
- Department of Chemistry University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Scott E. Denmark
- Department of Chemistry University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
40
|
Triggering comprehensive enhancement in oxygen evolution reaction by using newly created solvent. Sci Rep 2016; 6:28456. [PMID: 27328821 PMCID: PMC4916470 DOI: 10.1038/srep28456] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/02/2016] [Indexed: 11/09/2022] Open
Abstract
Theoretical calculations indicate that the properties of confined liquid water, or liquid water at surfaces, are dramatically different from those of liquid bulk water. Here we present an experimentally innovative strategy on comprehensively efficient oxygen evolution reaction (OER) utilizing plasmon-induced activated water, creating from hot electron decay at resonantly illuminated Au nanoparticles (NPs). Compared to conventional deionized (DI) water, the created water owns intrinsically reduced hydrogen-bonded structure and a higher chemical potential. The created water takes an advantage in OER because the corresponding activation energy can be effectively reduced by itself. Compared to DI water-based solutions, the OER efficiencies at Pt electrodes increased by 69.3%, 21.1% and 14.5% in created water-based acidic, neutral and alkaline electrolyte solutions, respectively. The created water was also effective for OERs in photoelectrochemically catalytic and in inert systems. In addition, the efficiency of OER increased by 47.5% in created water-based alkaline electrolyte solution prepared in situ on a roughened Au electrode. These results suggest that the created water has emerged as an innovative activator in comprehensively effective OERs.
Collapse
|
41
|
Chen T, Rodionov VO. Controllable Catalysis with Nanoparticles: Bimetallic Alloy Systems and Surface Adsorbates. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00714] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tianyou Chen
- KAUST
Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Valentin O. Rodionov
- KAUST
Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
42
|
Kotolevich Y, Kolobova E, Khramov E, Cabrera Ortega JE, Farías MH, Zubavichus Y, Zanella R, Mota-Morales JD, Pestryakov A, Bogdanchikova N, Cortés Corberán V. Identification of Subnanometric Ag Species, Their Interaction with Supports and Role in Catalytic CO Oxidation. Molecules 2016; 21:532. [PMID: 27110757 PMCID: PMC6273660 DOI: 10.3390/molecules21040532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/07/2016] [Accepted: 04/15/2016] [Indexed: 11/16/2022] Open
Abstract
The nature and size of the real active species of nanoparticulated metal supported catalysts is still an unresolved question. The technique of choice to measure particle sizes at the nanoscale, HRTEM, has a practical limit of 1 nm. This work is aimed to identify the catalytic role of subnanometer species and methods to detect and characterize them. In this frame, we investigated the sensitivity to redox pretreatments of Ag/Fe/TiO₂, Ag/Mg/TiO₂ and Ag/Ce/TiO₂ catalysts in CO oxidation. The joint application of HRTEM, SR-XRD, DRS, XPS, EXAFS and XANES methods indicated that most of the silver in all samples is in the form of Ag species with size <1 nm. The differences in catalytic properties and sensitivity to pretreatments, observed for the studied Ag catalysts, could not be explained taking into account only the Ag particles whose size distribution is measured by HRTEM, but may be explained by the presence of the subnanometer Ag species, undetectable by HRTEM, and their interaction with supports. This result highlights their role as active species and the need to take them into account to understand integrally the catalysis by supported nanometals.
Collapse
Affiliation(s)
- Yulia Kotolevich
- Departamento de Fisicoquímica de Nanomateriales, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM), Ensenada 22860, Mexico.
| | - Ekaterina Kolobova
- Department of Physical and Analytical Chemistry, Tomsk Polytechnic University, Tomsk 634050, Russia.
| | - Evgeniy Khramov
- National Research Center "Kurchatov Institute", Moscow 123182, Russia.
| | - Jesús Efren Cabrera Ortega
- Departamento de Fisica Aplicada, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada 22860, Mexico.
| | - Mario H Farías
- Departamento de Fisicoquímica de Nanomateriales, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM), Ensenada 22860, Mexico.
| | - Yan Zubavichus
- National Research Center "Kurchatov Institute", Moscow 123182, Russia.
| | - Rodolfo Zanella
- Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México (UNAM), México, DF 04510, Mexico.
| | - Josué D Mota-Morales
- Departamento de Fisicoquímica de Nanomateriales, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM), Ensenada 22860, Mexico.
- CONACYT Research Fellow at Centro de Nanociencias y Nanotecnología, UNAM, Ensenada 22860, Mexico.
| | - Alexey Pestryakov
- Department of Physical and Analytical Chemistry, Tomsk Polytechnic University, Tomsk 634050, Russia.
| | - Nina Bogdanchikova
- Departamento de Fisicoquímica de Nanomateriales, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM), Ensenada 22860, Mexico.
| | - Vicente Cortés Corberán
- Institute of Catalysis and Petroleumchemistry (ICP), Spanish Council for Scientific Research (CSIC), Madrid 28049, Spain.
| |
Collapse
|
43
|
Abstract
Model catalysts with uniform and well-defined surface structures have been extensively employed to explore structure-property relationships of powder catalysts. Traditional oxide model catalysts are based on oxide single crystals and single crystal thin films, and the surface chemistry and catalysis are studied under ultrahigh-vacuum conditions. However, the acquired fundamental understandings often suffer from the "materials gap" and "pressure gap" when they are extended to the real world of powder catalysts working at atmospheric or higher pressures. Recent advances in colloidal synthesis have realized controlled synthesis of catalytic oxide nanocrystals with uniform and well-defined morphologies. These oxide nanocrystals consist of a novel type of oxide model catalyst whose surface chemistry and catalysis can be studied under the same conditions as working oxide catalysts. In this Account, the emerging concept of oxide nanocrystal model catalysts is demonstrated using our investigations of surface chemistry and catalysis of uniform and well-defined cuprous oxide nanocrystals and ceria nanocrystals. Cu2O cubes enclosed with the {100} crystal planes, Cu2O octahedra enclosed with the {111} crystal planes, and Cu2O rhombic dodecahedra enclosed with the {110} crystal planes exhibit distinct morphology-dependent surface reactivities and catalytic properties that can be well correlated with the surface compositions and structures of exposed crystal planes. Among these types of Cu2O nanocrystals, the octahedra are most reactive and catalytically active due to the presence of coordination-unsaturated (1-fold-coordinated) Cu on the exposed {111} crystal planes. The crystal-plane-controlled surface restructuring and catalytic activity of Cu2O nanocrystals were observed in CO oxidation with excess oxygen. In the propylene oxidation reaction with O2, 1-fold-coordinated Cu on Cu2O(111), 3-fold-coordinated O on Cu2O(110), and 2-fold-coordinated O on Cu2O(100) were identified as the active sites, respectively, to produce acrolein, propylene oxide, and CO2. Ceria rods enclosed with the {110} and {100} crystal planes, ceria cubes enclosed with the {100} crystal planes, and ceria octahedra enclosed with the {111} crystal planes exhibit distinct morphology-dependent oxygen vacancy concentrations and structures that can be well correlated with the surface compositions and structures of exposed crystal planes. Consequently, the metal-ceria interactions, structures, and catalytic performances of ceria-supported catalysts depend on the CeO2 morphology. Our results comprehensively reveal the morphology-dependent surface chemistry and catalysis of oxide nanocrystals that not only greatly deepen the fundamental understanding of oxide catalysis but also demonstrate a morphology-engineering strategy to optimize the catalytic performance of oxide catalysts. These results adequately exemplify the concept of oxide nanocrystal model catalysts for the fundamental investigations of oxide catalysis without the "materials gap" and "pressure gap". With the structure-catalytic property relationships learned from oxide nanocrystal model catalyst studies and the advancement of controlled-synthesis methods, it is promising to realize the structural design and controlled synthesis of novel efficient oxide catalysts in the future.
Collapse
Affiliation(s)
- Weixin Huang
- Hefei National Laboratory
for Physical Sciences at the Microscale, CAS Key Laboratory of Materials
for Energy Conversion, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
44
|
Chen HC, Mai FD, Hwang BJ, Lee MJ, Chen CH, Wang SH, Tsai HY, Yang CP, Liu YC. Creation of Electron-doping Liquid Water with Reduced Hydrogen Bonds. Sci Rep 2016; 6:22166. [PMID: 26916099 PMCID: PMC4768145 DOI: 10.1038/srep22166] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/09/2016] [Indexed: 11/09/2022] Open
Abstract
The strength of hydrogen bond (HB) decides water's property and activity. Here we propose the mechanisms on creation and persistence of innovatively prepared liquid water, which is treated by Au nanoparticles (AuNPs) under resonant illumination of green-light emitting diode (LED) to create Au NP-treated (sAuNT) water, with weak HB at room temperature. Hot electron transfer on resonantly illuminated AuNPs, which is confirmed from Au LIII-edge X-ray absorption near edge structure (XANES) spectra, is responsible for the creation of negatively charged sAuNT water with the incorporated energy-reduced hot electron. This unique electronic feature makes it stable at least for one week. Compared to deionized (DI) water, the resulting sAuNT water exhibits many distinct properties at room temperature. Examples are its higher activity revealed from its higher vapor pressure and lower specific heat. Furthermore, Mpemba effect can be successfully explained by our purposed hypothesis based on sAuNT water-derived idea of water energy and HB.
Collapse
Affiliation(s)
- Hsiao-Chien Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University No. 250, Wuxing St., Taipei 11031, Taiwan
| | - Fu-Der Mai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University No. 250, Wuxing St., Taipei 11031, Taiwan
| | - Bing-Joe Hwang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan
| | - Ming-Jer Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan
| | - Ching-Hsiang Chen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Keelung Rd., Sec. 4, Taipei 10607, Taiwan
| | - Shwu-Huey Wang
- Core Facility Center, Office of Research and Development, Taipei Medical University, No. 250, Wuxing St., Taipei 11031, Taiwan
| | - Hui-Yen Tsai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University No. 250, Wuxing St., Taipei 11031, Taiwan
| | - Chih-Ping Yang
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei, Taiwan
| | - Yu-Chuan Liu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University No. 250, Wuxing St., Taipei 11031, Taiwan
| |
Collapse
|
45
|
Ding L, Xiong F, Jin Y, Wang Z, Sun G, Huang W. Surface reaction network of CO oxidation on CeO2/Au(110) inverse model catalysts. Phys Chem Chem Phys 2016; 18:32551-32559. [DOI: 10.1039/c6cp05951a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various surface reaction pathways exist on the CeO2surface and at the Au–CeO2interface for CO oxidation catalyzed by Au/CeO2catalysts.
Collapse
Affiliation(s)
- Liangbing Ding
- Hefei National Laboratory for Physical Sciences at Microscale
- CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Feng Xiong
- Hefei National Laboratory for Physical Sciences at Microscale
- CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Yuekang Jin
- Hefei National Laboratory for Physical Sciences at Microscale
- CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Zhengming Wang
- Hefei National Laboratory for Physical Sciences at Microscale
- CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Guanghui Sun
- Hefei National Laboratory for Physical Sciences at Microscale
- CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at Microscale
- CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| |
Collapse
|
46
|
Roşca DA, Wright JA, Bochmann M. An element through the looking glass: exploring the Au-C, Au-H and Au-O energy landscape. Dalton Trans 2015; 44:20785-807. [PMID: 26584519 PMCID: PMC4669034 DOI: 10.1039/c5dt03930d] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/12/2015] [Indexed: 11/21/2022]
Abstract
Gold, the archetypal "noble metal", used to be considered of little interest in catalysis. It is now clear that this was a misconception, and a multitude of gold-catalysed transformations has been reported. However, one consequence of the long-held view of gold as inert metal is that its organometallic chemistry contains many "unknowns", and catalytic cycles devised to explain gold's reactivity draw largely on analogies with other transition metals. How realistic are such mechanistic assumptions? In the last few years a number of key compound classes have been discovered that can provide some answers. This Perspective attempts to summarise these developments, with particular emphasis on recently discovered gold(iii) complexes with bonds to hydrogen, oxygen, alkenes and CO ligands.
Collapse
Affiliation(s)
- Dragoş-Adrian Roşca
- School of Chemistry , University of East Anglia , Norwich , NR4 7TJ , UK . ; Tel: +44 (0)16035 92044
- Max-Planck-Institut für Kohlenforschung , D-45470 Mülheim/Ruhr , Germany
| | - Joseph A. Wright
- School of Chemistry , University of East Anglia , Norwich , NR4 7TJ , UK . ; Tel: +44 (0)16035 92044
| | - Manfred Bochmann
- School of Chemistry , University of East Anglia , Norwich , NR4 7TJ , UK . ; Tel: +44 (0)16035 92044
| |
Collapse
|
47
|
Affiliation(s)
- Stefan Vajda
- Materials
Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Nanoscience
and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Institute
for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Michael G. White
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
48
|
Roşca DA, Fernandez-Cestau J, Morris J, Wright JA, Bochmann M. Gold(III)-CO and gold(III)-CO2 complexes and their role in the water-gas shift reaction. SCIENCE ADVANCES 2015; 1:e1500761. [PMID: 26601313 PMCID: PMC4646827 DOI: 10.1126/sciadv.1500761] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/30/2015] [Indexed: 06/05/2023]
Abstract
The water-gas shift (WGS) reaction is an important process for the generation of hydrogen. Heterogeneous gold catalysts exhibit good WGS activity, but the nature of the active site, the oxidation state, and competing reaction mechanisms are very much matters of debate. Homogeneous gold WGS systems that could shed light on the mechanism are conspicuous by their absence: gold(I)-CO is inactive and gold(III)-CO complexes were unknown. We report the synthesis of the first example of an isolable CO complex of Au(III). Its reactivity demonstrates fundamental differences between the CO adducts of the neighboring d (8) ions Pt(II) and Au(III): whereas Pt(II)-CO is stable to moisture, Au(III)-CO compounds are extremely susceptible to nucleophilic attack and show WGS reactivity at low temperature. The key to understanding these dramatic differences is the donation/back-donation ratio of the M-CO bond: gold-CO shows substantially less back-bonding than Pt-CO, irrespective of closely similar ν(CO) frequencies. Key WGS intermediates include the gold-CO2 complex [(C^N^C)Au]2(μ-CO2), which reductively eliminates CO2. The species identified here are in accord with Au(III) as active species and a carboxylate WGS mechanism.
Collapse
|
49
|
Beltram A, Melchionna M, Montini T, Nasi L, Gorte R, Prato M, Fornasiero P. Improved activity and stability of Pd@CeO2 core–shell catalysts hybridized with multi-walled carbon nanotubes in the water gas shift reaction. Catal Today 2015. [DOI: 10.1016/j.cattod.2015.03.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Ganduglia-Pirovano MV. The non-innocent role of cerium oxide in heterogeneous catalysis: A theoretical perspective. Catal Today 2015. [DOI: 10.1016/j.cattod.2015.01.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|